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constrained control problems with BV trajectories”
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Abstract

This paper aims to investigate a control problem governed by differential equations with
Random measure as data and with final state constraints. By using a known reparametrization
method (by Dal Maso and Rampazzo [16]), we obtain that the value function can be charac-
terized by means of an auxiliary control problem involving absolutely continuous trajectories.
We study the characterization of the value function of this auxiliary problem and discuss its
discrete approximations.

Keywords: Optimal control problem, differential systems with measures as data, measurable

functions, Hamilton-Jacobi equations
AMS Classification: 49J15, 35F21, 34A37

1 Introduction

In this paper we investigate, via a Hamilton-Jacobi-Bellmann approach, a final state constrained
optimal control problem with a Radon measure term in the dynamics.

Several real applications can be described by optimal control problems involving discontinuous
trajectories. For instance, in space navigation area, when steering a multi-stage launcher, the
separation of the boosters (once they are empty) lead to discontinuities in the mass variable [9]. In
resource management, discontinuous trajectories are also used to modelize the problem of sequential
batch reactors (see [19]). Many other applications can be found in the Refs. [8, 14, 15, 17].

Consider the controlled system:

M

dY () =Y gi(t, Y(t), a(t))dpi + go(t, Y (t), a(t))dt for t € (r,T) (1.1a)
=1

Y(rT) = X. (1.1b)
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where z € RV, the measurable control « : (0, +00) — R™ takes values in a compact set A C R™,
and g = (1, ..., puar) is a given Radon measure. Let ¢ : RY — R be a given lower semicontinuous
(Isc) function, and consider the control problem:

v(X, 7)== inf{p(Yx (1)) : a(-) € L(0,T;A), and Y, satisfies (1.1)}. (1.2)

Due to the presence of the measure u, the definition of solution for the state equation (1.1) is
not classical. We will refer to the definition introduced by Dal Maso and Rampazzo in [16] using the
technique of graph completion (Definition 2.1 in Section 2 below). Roughly speaking, by a suitable
change of variable in both time and the primitive of u, we can reduce (1.1) to usual controlled
ordinary differential equation (ode) with a measurable time-dependent dynamics (see Theorem 2.2
below). Note that several works have been done to study the impulsive control problems, i.e. when
the measures appear as controls. We refer to [26] for existence of optimal trajectories, and to [1]
for first and second necessary optimality conditions.

Here, in problem (1.2), the measure is given by the model and the state equation is controlled
by means of a measurable function a. Our main goal is to use the HJB approach in order to
characterize the value function v and then to study a numerical method to compute this function.

Since the value function v fulfils a Dynamic Programming Principle (DPP), we can derive, at
least formally, the following HJB equation

M
—v(X,t) + sup —Dv(t, X) - (go(t,X, a) + Zgi(t,X, a),ui> } =0; (1.3)

acA i—1
(X, T) = p(X).

Clearly, the main difficulty is to give a meaning to the term “Dv - p” knowing that one can not
expect to have a differentiable value function. In order to overcome this problem, following the
ideas in [12], we define a new value function v such that:

v(X, 1) =0(X,W(1)),

where W is the known change of variable coming form the graph completion technique (See Theorem
2.4). The advantage is that now the HJB equation for ¢ has a t-measurable Hamiltonian and not
a measure term. More precisely, we can prove that v is a solution of the following equation:

{ —vs(X, s) + H(s, X, Dv(X, 5)) = 0; (1.4)

v(X, 1) = o(X);

where H(t,x,p) = supyca{—p- F(t,z,a)} and F(t,x,a) is a t-measurable dynamics (see Section
2.2 for the definition of F). Due to the double presence of an only ¢-measurable Hamiltonian and
a lsc final data, the definition of viscosity solution is still not classical.

We recall that, in the case when ¢ is continuous, the definition of viscosity solution for ¢-
measurable Hamiltonians has been introduced by Ishii in 1985 (see [20]) and then studied for the
second order case by Nunziante in [24]-[25](see also the work of Lions-Perthame [21] and Briani-
Rampazzo [13]). Moreover, a very general stability result has been proved more recently by Barles
in [3]. On the other side, to deal with the case when the Hamiltonian H is continuous with respect
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to the time variable and the final data ¢ is Isc, the definition of bilateral viscosity solution has been
introduced by Barron and Jensen in 1990 ([6]) and by Frankowska [18].

In this paper, since we deal with target problem, the function ¢ is Isc and the Hamiltonian
in (1.4) is only t-measurable. We introduce a new definition of viscosity solution of (1.4), namely
the definition of L!-bilateral viscosity solution (Definition 3.2 below). This definition allows to
characterize v as the unique L!-bilateral viscosity solution of equation (1.4) (Theorem 3.4). It
gives also a suitable framework to deal with the numerical approximation of v (and then of v
by the change of variable WW). More precisely, we prove in Theorem 3.6 a convergence result for
monotone, stable and consistent numerical schemes, and give an example of a scheme satisfying
these properties. Some numerical tests are presented in Subsection 3.2.

On the other hand, we study the properties of L!- bilateral viscosity solution for a general
HJB equation. In particular, we derive under classical assumptions on the Hamiltonian (see in
Section 4), the consistency of the definition (Theorem 4.7), a general stability result w.r. to the
Hamiltonian (Theorem 4.9), a stability result w.r. to the final data (Theorem 4.10), and uniqueness
result (Theorem 4.11).

This paper is organized as follows. In Section 2 we set the optimal control problem we are
considering. Subsection 2.1 is devoted to the definition of solution for the state equation while
Subsection 2.2 to the construction of the reparametrised optimal control problem and the definition
of v. In Section 3 we consider the optimal control problem for the t-measurable HJB equation, we
state the definition of L!-bilateral viscosity solution, and we prove that the value function o is the
Lt-bilateral viscosity solution of equation (1.4) in Theorem 3.4. Subsection 3.1 is devoted to the
convergence result and to the construction of a good approximating scheme while in Subsection 3.2
we give some numerical test.

Finally in Section 4 we will prove the consistency (Theorem 4.7), stability (Theorem 4.9 and
4.10) and uniqueness (Theorem 4.11) result for L!-bilateral viscosity solution.

Notations. For cach r > 0, 2 € RN we will denote by B, (z) the closed ball of radius r centered
in z. Given a Radon measure u we will denote by L}L(R) the space of L!-functions with respect to
the measure p.

For a function f : [a,b] — RY we will denote by V,’(f) the classical variation on [a,b] and by
BV ([0, T]; RN) the set of functions f : [0,7] — RY with bounded variation on [0,7]. Moreover,
we will denote by BV ~([0,T]; RY) the set of left continuous functions of BV ([0, T]; R") which are
continuous at 0.

In all the sequel, we will use the classical notations: f(t*) := lilril+ f(s)and f(t7) := lir? f(s).

S—r S—1—

And finally, we will denote by AC([0,1]; RY) the set of absolutely continuous functions from [0, 1]
to RV,

2 The optimal control problem with BV trajectories

In this section we state the final state constrained optimal control problem we consider. First, we
recall the definition of solution for the state equation introduced by Dal Maso and Rampazzo in [16]
and we recall the graph completion construction. Then, we define the value function, we construct
the reparametrised optimal control problem and we prove that the two value functions are linked
by a change of variable.
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2.1 The state equation

Let us fix 0 < 7 < T, an initial data X € RY, a given Radon measure y = (1, -, 1pr), & control
variable @ € A, and consider the controlled trajectory Y : R — R solution of:

Zgz (Y (0.0l + ot Y (.0lt)dt forte(nT) o0
Y(r7) = X.
We assume the following;:

(Hco) The set of controls is A := L>°((0,7); A) N L7°((0,7); A) where A is a compact subset of R™,
m > 1.

(Hgl) The functions g;(t,Y,a) : Rt x RV x A — RN, (i = 0,..., M), are measurable functions in
t and continuous in (Y, a). Moreover, for each Y € RV a € A we have go(-,Y,a) € L}(R")
and g;(-,y,e) € L, (R"),(i =1,...,M).

(Hg2) There exists a function kg € L>(R*;R™) such that
9:(t,Y,0) — gi(t, Z, )| < ko)[Y — Z| VY, ZcRY, ac A, andaetecR", i=0,...,M.

(Hg3) There exist K > 0 such that
gi(t,Y,a)| < K VY eRY, acA, andaeteR",i=0,..., M.

Following [16], we introduce the left continuous primitive B of the Radon measure y, i.e. B €
BV ([0, T]; R™) and his distributional derivative B coincides with g on [0,T[. In all the sequel,
we will denote by T := {t;, ¢ € N} the countable subset of [0,7) which contains 0 and all the
discontinuity points of B and by E. the set of all continuity points of B. Furthermore, let (¢;)ic7 :=

(¥}, ...,9M) be a family of Lipschitz continuous maps from [0, 1] into R such that
D Vi) <oo,  Yy(0)=B(t7), and (1) = B(tT) VteT; (2.6)
teT

(if t = 0 we require only (1) = B(0")). We will denote by ¢ the solution of:

ngf @) foroe 1] €0)=¢

and we set €(&, ) == (1) — &,
We are finally ready to state the definition of solution introduced by Dal Maso and Rampazzo

in [16, Definition 5.1].

Definition 2.1. Fiz an initial datum and time (X,7) and control variable o € A, the function
Yy, € BV([r, T};RN) s a solution of (2.5) if for each Borel subset B of |7, T[ we have

/BdY(t):/B (Y dt+2/ D+ 3 €Y (2.7)

B”Ec teTNB

and Y (17) = X. Moreover, if T € T we have Y (77) = (X, ;).
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In order to prove the uniqueness of this solution we set

+oo t
ai= VW), a= Y an w(t) = ) (2.5)
=1

C T+ V{(B)

and we define W : [0,T] — [0, 1] as follows:

1
T+a (w(t) + Z ai> : (2.9)

t;<t

W(t) =

The graph completion of B corresponding to the family (1)¢);c7 is then defined by:

(t; B(t)) if s =W(t) te [0, TI\T
B(e) = (#5467 = { (tsvi, (22 )) it s € W) WD) tieT.

()= W(t:)
(2.10)
We are ready now to construct the reparametrisation of system (2.5). Let o := W(7), for each
control a € A and initial datum X we denote by Z% , : [0, 1] — RY the solution of

M 0 i
B = 2 a@0.26)a@0) (@O G + ) +
0
90(8°(s), Z(s), a(¢°(s)) %(s) for s € (o,1]
[ Z(0) = X

(2.11)
where p® is the absolutely continuous part of the measure p with respect to the Lebesgue measure,
ie. u(t) = pe(t)dt + p°. Note that the derivatives of ¢0, ¢ are measurable functions, therefore
assumptions (Hgl)-(Hg2) ensure the applicability of Caratheodory’s Theorem to obtain the ex-
istence of a unique solution of (2.11) in AC([o, 1]; RY).

Theorem 2.2. Assume (Hco) and (Hgl)-(Hg3). Let p be a Radon measure and ()T be a
family fulfilling (2.6). Then Yy € BV([r,T]; RN is a solution of (2.5) if and only if there exists a
solution Z% , € AC([o, 1]; RY) of (2.11) corresponding to the graph completion ® defined in (2.10)
such that

Z% sW(t)) = y(t) Vtelr,T] (2.12)

where W is given by (2.9).
Moreover, for each Radon measure v and each family ()7 equation (2.5) has a unique solution
(up to a set of zero Lebesgue measure).

Proof. The equivalence (2.12) can be obtained by adapting the proof given for M = N =1
in [12, Theorem 2.8]. On the other hand, the uniqueness of the solution is a consequence of
Caratheodory’s Theorem applied to equation (2.11). O

Remark 2.3. We point out that this definition depends on the family (¢)ie we choose. It is
now a classical result that under commutativity conditions on the vector fields g; (i =1,..., M) the
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solution does not depend on this choice. In the pioneering works of Bressan and Rampazzo [10, 11]
the case when the g; do not depend on the control and are continuous in t, have been studied. When
the g; depends on the control o we refer to [23] for a precise discussion.

However, in this paper, the dependency on the choice of 1y does not imply any specific difficulty
in the sequel.

2.2 The control problem

Given a lower semicontinuous function ¢ : RY — R and a final time T, our aim is to calculate the
following value function
o(X,7) = inf p(VE,(T)) (2.13)
o€ ’

where Y¢  is the solution of equation (2.5).
It is easy to prove that the following Dynamic Programming Principle holds: for each 7 < h < T

we have
v(X,T) = ingv(Y)%T(h),h). (2.14)
ac ’
Therefore we can formally derive a HJB equation:
—u(X,t)+ H(t,X,Dv(X,t)) = 0 for (X,t) € RN x (0,7), (2.15)
v(X,T) = ¢(X) for X cRN '

where the Hamiltonian is
M
H(t, X, P) =sup {—P : <gg(t, X,a)+ Zgi(t,X, a)ui> } . (2.16)
acA i—1

As we said before, in the introduction of the paper, the problem is to give a meaning to the term
Dv - p knowing that one can not expect to have a differentiable value function.

In view of Theorem 2.2, it is then natural to consider the trajectories Z% » solution of the the
reparmetrised system (2.11). We define then the corresponding value function as follows:

B(X,0) = inf p(Z%,(1). (2.17)

The link between the two problems is given by the following result.

Theorem 2.4. Let v and v be respectively defined in (2.13) and (2.17).
For each X € RN and 7 € [0,T] we have

v(X,7) = 0(X,W(1)) (2.18)
where W is given by (2.9). Moreover
vy(X, 1) = 5(X,W(1)) VX RN Vrelo,T]\T (2.19)
and
vy(X,7) > 0(X,W(1)) VX eRN, VvreT, (2.20)

where we respectively denote by vy and vy the lower semicontinuous envelope of v and v w.r. to both
variable (X, 7) and (X, s).
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Proof. By Theorem 2.2 above we have Yy (T) = Z§(7W(T)(W(T)) = Z% (1) then (2.18)
follows by the definitions of v and .

Since, by construction WW(7) is monotone increasing in [0,7] and continuous in any 7 € T,
(2.19) and (2.20) easily follow. O

Remark 2.5. In (2.19), (2.20) we stressed the link between the lsc envelopes of v and v because is
indeed the function v4(X,s) that will be characterized as solution of an HJB equation.

Thanks to Theorem 2.4, it is clear that we turn now our attention to the HJB equation for the
function v. The advantage is that we do not have any more measure in the dynamics.
The new value function v satisfies also a DPP:

9(X,0) = ini@(Z?‘(J(h), h) VYo <h<1, and ¥X € R". (2.21)
aE ’
From this DPP, one could expect to characterize v through the following HJB equation:
—05(X,s) + H(s, X,Dv(X,s)) = 0 for (X,s) € RY x (0,1), (2.92)
9(X,1) = @(X) for X € RN '
where the Hamiltonian is
0 dg¢’
H(SaXa P) = Sup —P- gO(¢ (5)7X7 a)i(s)_}—
acA ds

M . i
+;gi(¢0(8),X, a)) (ua(¢0(s))cfi(s) + sz (s)) } (2.23)

Note that, by definition (2.10), the graph completion (¢°, ¢*) is a Lipschitz function, therefore
we can not expect to have a time continuous Hamiltonian. Moreover, our final condition ¢ is only
lower semicontinuous. Thus, we should first give a precise meaning to the definition of the viscosity
solution of the equation (2.22).

3  Optimal control problems with measurable time-dependent dy-
namics

In this Section we prove that the value function o is the unique L'-bilateral viscosity solution of
(2.22), and that the latter can be solved numerically. For the sake of generality we will prove our
results in the following more general framework.

The set of controls is A := L>°(R"; A), where A is a compact subset of R™ (m > 1).

Fix a final time T, given € R, 7 > 0 and a control a € A, we consider the trajectory Yg 7
solution of the following system:

{ zgi))::];(t, y(t),a(t)), for t € (1,7) (3.24)

For each initial point and time (z,7) € RY x R we set:

9w, ) i= inf 9y (T)). (3.25)

We assume the following :
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(HF1) F(t,z,a) : RT x RY x A — R" is measurable in ¢ and continuous in = and a. Moreover, for
each (z,a) € RN x A we have F(-,z,a) € L'(RT).
(HF2) There exists kg € L°(RT;R") such that
|F(t,z,a) — F(t,z,a)| < ko(t)|x — z| Vr,ze RN, ac A, teR".
(HF3) There exists a K > 0 such that
| F(t,z,a)| < K Ve RN ac A teR",

(Hid) The function ¢ : RV — R is lower semi continuous and bounded.

Remark 3.1. Let us point out that if we assume (Hgl)-(Hg3), then the function

0 i 0
F(s,x,a) = Zgz (¢°(s) ( “(6°(s ))dqi (s) + (fid; (s)) + 90(¢°(s), 7, a) %(s)

fulfils (HF1)-(HF3). Therefore, all the results in this section will apply, in particular, to the value
function v defined in (2.17).

In all the sequel, we denote V the lower semicontinuous envelope of ¥ defined by:

V(x,t) ;= liminf 9¥(y, s). (3.26)

y—x,5—t

Our first aim is then to prove that we can characterize the function V in (3.26) as the unique
L!-bilateral viscosity solution (see the definition below) of the following HJB equation:

—V(z,t) + H(t,x, DV(x,t)) = 0 for (z,t) € RN x (0,7T), (3.27)
V(z,T) = ¢(x) zeRN ‘
where the Hamiltonian is
H(tvxap) :Sup{_p'f(taxva)}' (328)

acA

Definition 3.2. L!-bilateral viscosity solution (L1Bvs)
Letu : RN x (0,T) — R be a bounded Isc function. We say that u is a L'-bilateral viscosity solution
(L1Bvs) of (3.27) if:
for any b € LY(0,T), ¢ € CHRYN) and (xo,t9) local minimum point for u(z,t) fo s)ds — ¢(x)
we have
lim  esssup sup {H(t,z,p) —b(t)} >0 (3.29)
6=0%  |t—to|<6  z€Bs(z0), pEBs(D(x0))
and
lim  essinf inf H(t,xz,p) —b(t)} <0. 3.30
§—0t ‘t—to‘g(s CCEB(;(xo),pEBL;(Dd)(Z‘o)){ ( p) ( )} ( )

Moreover, the final condition is satisfied in the following sense:

o(z) = inf {liminfu(a:n,tn) Xy —x, T T} .

n—oo
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Remark 3.3. For the sake of clarity, we will state and prove, in Section 4, the consistency, stability
and uniqueness result for the viscosity sense (L1Buvs) defined in Definition 3.2.

Let us now prove the characterization of the value function.

Theorem 3.4. Assume (HF1)-(HF3) and (Hid). The function defined in (3.26) is the unique
L*-bilateral viscosity solution of (3.27) when the Hamiltonian is given in (3.28).

Proof. This proof follows the ideas of Barron and Jensen in [7]. First, it is easy to verify that
VY fulfills the final condition V(z,T) = ¢(x) in the sense given by Definition 3.2. Moreover, consider
(©n)n a monotone increasing sequence of continuous functions, from RY to R, pointwise converging
to ¢. For each n € N we set V,,(x,7) := infaea {@n(y2,(T))}. The proof will be divided in two
steps.

Step 1. We first remark that by definition we have V,,(z,T) = @, (x), thus the final condition is
fulfilled. Moreover, V), is the unique continuous solution of (3.27), with final condition V,(-,T) =
©n(+), in the sense of Definition 4.6. By the consistency result of Theorem 4.7, we get that V), is
solution of (3.27) also in the sense of Definition 3.2.

Step 2. By using the same arguments as in [7], we can prove that V,, converges pointwise to
V. Therefore, the conclusion follows from the stability with respect to the final condition proved
in Theorem 4.10. Furthermore, the uniqueness follows by Theorem 4.11. O

3.1 Numerical approximations of (3.27).

In the case when the Hamiltonian is continuous (both in time and in space), numerical discretization
of Hamilton-Jacobi equations has been studied by many authors. The general framework of Barles-
Souganidis [4] ensures that the numerical scheme is convergent (to the viscosity solution) whenever
this scheme is consistent, monotone and stable and the HJB equation satisfies a strong comparison
principle. The class of schemes satisfying these properties is very large and includes upwind finite
differences, Semi-Lagrangian methods, Markov-Chain approximations.

In this section, we extend the result of [4] to the case of equation (3.27), where the Hamiltonian
is only t-measurable, and show that the t-measurable viscosity notion is still a good framework to
analyze the convergence of numerical approximations. We give also an example of a monotone, sta-
ble and consistent scheme of (3.27) based on finite differences approximations. Finally, a numerical
example is given in Subsection 3.2.

Let G be a space grid on RY with a uniform mesh size Az > 0 (of course a nonuniform grid
could also be considered), and let At > 0 be a time step (we assume that 7'/At belongs to N). In
the sequel, we will use the following notations:

T
A= (Az,At), tn,:=nAt, zjisanodein G, Nr:= AL (3.31)

Consider an approximation scheme of the following form:
SA(tn,J:j,v;L,v"Jrl) =0 Vz; €G,n=0,---,Np—1; vjVT = p(z;) Vz; €G. (3.32)
Thus if v is a continuous function defined on [0,7] x R the approximation scheme reads

SA(t,x,v(z,t),v(-,t + At)) = 0in (0,T) x RY. (3.33)
On S2: (0,7) x RN x R x L>®(RY) we assume the following:
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(M) Monotonicity. For each u > v we have
SA(t,a:,r, u) < SA(t,x,r,v) vt e (0,T),z e RN, r e R. (3.34)
(S) Stability. There exists K > 0 such that, if v is solution of (3.33) then
102 < K || @ llee, (3.35)
K being independent of Az, At.

(C) Consistency. For every point (a:o, to) for any b € L'(0,T) and any function ¢(x) such that:
¢ € CH(RN), by setting 1(x,t) fo ) ds + ¢(x), we have:
ess sup sup {=b(t) + H(t,z,p)} >
[t—to|<At  x€Bas(20), pEBaL(Do(w0)))
> 82(to, w0, 1 (20, t0), ¥ (-, to + AL)) + 0ag(1) >
> essinf inf —b(t)+ H(t,z,p)}. (3.36
T [t—to|<At Z‘EBAI(IO)vaBAIL‘(D(z)(‘TO)){ Q ( P )

An example of scheme fulfilling the above assumptions, when the Hamiltonian is given by (3.28),
is the following

St 2, (e, t), ul- 4 Af)) = WD Zu@ AL

At
1 At " u(z,t + At) — u(x — Az, t + At)
+At/ Sup ((—f) (s,2,a) A +
Ax,t+ At) — t+ At
+(=F) (s, ,a) - u(@ + Azt + At) —ufz, t + )> ds, (3.37)
Ax
where we classically denoted gt := max(g,0) and g~ := min(g,0).

Proposition 3.5. Assume that F fulfills assumptions (HF1)-(HF3), and consider the Hamilto-
nian in (3.28). Let A = (Ax, At) be mesh sizes satisfying:

A
A—i|f"(s,az,a)|d5 <1 fora.e s € (0,T), Ve € RN, a € A. (3.38)

Then, the scheme S® given in (3.37) satisfies conditions (M), (S) and (C).

Proof. Fist remark that the Stability condition (S) easily follows from the boundedness of F
and (HF3). Moreover, the monotonicity (M) follows from condition (3.38) by standard arguments.
To prove consistency, we fix (xzg,tp) and consider a function v (z,t) fo s)ds + ¢(x) for
be L'(0,T) and ¢ € C*(RY). By using the regularity of ¢ and assumption (HF3) on F, we get:

1

to+At
S (to, 20, (20, t0), (o + AL)) = At/t (—b(s) + H(s, 0, Dd(20))} ds + ons(1).

Condition (C) follows. O

The general convergence result is the following.
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Theorem 3.6. Assume (HF1)-(HF3). Let V be defined as in (3.26) with ¢ fulfilling assumption
(Hid). Consider a sequence of continuous and bounded functions o, : RN — R (for m > 1) such
that (©m)menN s monotone increasing and

lim @ (z) = ¢(z) VoeRY.

m—0o0

Let A = (Az, At) be a mesh size such that the scheme S® fulfills conditions (M), (S) and (C),
and let v™>™ = (07 )n,j be the solution of :

SA (tn,xj, 07

j A" =0 Vz;€G,n=0,---,Np—1; o = o () Ve, € G. (3.39)

J
Then, as At — 0, Az — 0 and m — +o00, v™™ converges pointwise to the function V.

Proof. The proof will be given in two steps.
Step 1. We first suppose that the final data is continuous (pm = ¢). We consider a Ap =
(Axy, Aty) and denote by v™* the solution of (3.39) corresponding to Ay and ¢, = ¢. We will
prove that, as k& — 0, the sequence v®F converges locally uniformly to the unique L'-viscosity
solution of (3.27).

For the sake of simplicity for each k& we will set (zx,t;) := (j,,tn,) where (x;,,t,,) are the
point defined in (3.31) when A is Ag.

Let us first observe that by the stability assumption (S) the sequence v
the following weak semi-limits are well defined:

Ak is bounded, therefore

vy (z,t) := liin_}(r)lf xk_}iﬂ}r}gk%tv“ (g, tr) v (x,t) = lir;ljélp xk_gr?k%t V2 (2, tr). (3.40)
Note that both v, and v* trivially satisfy the final condition in (3.27). Therefore, the convergence
result will follows once we prove that v, and v* are respectively a L!-viscosity supersolution and
a Ll-viscosity subsolution of (3.27). Indeed, if this is true, by the comparison result [20, Theorem
8.1], we have v* < v,. Since the reverse is true by definition, the two weak semi limits coincide and
the thesis follows.

Let us now prove that v* is a L!-viscosity subsolution of (3.27). (The proof of v, being a
L'-viscosity supersolution of (3.27) is completely similar and will not be detailed.)

Followmg Definition 4.6 belovv for any b € L'(0,T), ¢ € CY(RN) and (w0,) local maximum
point of v*(z,t) fo s)ds — ¢(x) we have to prove that

lim  essinf inf H(t,z,p) —b(t)} <0. 341
6—0F  |t—to]<o xeBg(xo),peBé(Dd,(xo)){ ( p) ( )} ( )

Note that without loss of generality, we can assume that (zg,tg) is a strict local zero maximum of
fo s)ds — ¢(z). There exists then a sequences of points (zg, t) such that

(a) (zg,tr) — (zo,to) as k — 0.

(b) (2, tx) is a local maximum point of v™ fo s)ds — ¢(x).

(c) & = 2k k(zg, ty) — f b(s)ds — ¢(xr) — 0 =v*(xp,tg) — fgo b(s)ds — ¢(xo) as k — 0.
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Thanks to (b), we can apply the monotonicity assumption (M) with v = v™, u = ¢(z) +
fg b(s)ds + &, and r = v2* (zp, t) = & + (k) + fg’“ b(s)ds and obtain

tr+ At

S8 <tk,xk,5k+¢<xk>+ /0 " b(s)ds, & + 0() + /0 b(s)ds) <

< SAk (tk‘amka UAk ($k?tk)’ UAk('atk + Atk)) =0, (342)
where we also used that v®* is a solution of (3.32).
Fix now a 6 > 0, by (a) and the regularity of ¢ we can always find a 6 < J such that

min(Axy, Aty) < i, Bs, (tk, xx) € Bs(xo,to), and Bs, (Dé(xy)) € Bs(D¢(xo)). Therefore, also by
the Consistency assumption (C) and (3.42) we have:

ess inf inf H(t,x,p) —b(t)} <
|t—t0|§5 $€B§(SE0)7PEB5(D¢(IU)) { ( p) ( )}
< essinf inf {H(t,z,p) —b(t)} <

 |t=tg|<or  x€Bs, (zk), pEBs, (Do(ak))
tr trp+At
< SA <tk,ﬂik,£k + ¢ () +/ b(s)ds, &k + ¢() +/ b(s)d8> + 05, (1) < 05, (1). (3.43)
0 0

Inequality (3.41) follows then by letting § — 0% (which implies §; — 07).
Step 2. For every m > 1, by Step 1, as k — 0, the sequence (vAk’m)k converges to v, the
unique L'-viscosity solution of

{ —v(x,t) + H(t,z,Dv) = 0 in RY x (0,7) (3.44)

v(x,T) = @m(z) inRY.

With the same arguments as in Step 1 of the proof of Theorem 3.4, we conclude the pointwise
convergence of v, to V. d

Remark 3.7. In the case of Eikonal equation with t—measurable velocity function, a similar con-
vergence result is proved, in the recent work of A. Monteillet [22], for a particular numerical scheme.

3.2 A numerical test.

In this section, we use the scheme given in (3.37) to solve Hamilton-Jacobi equations coming from
a simple control problem with BV trajectories.
Consider the target C := B(0,r), which is the ball centred at the origin and of radius r = 0.25.

Consider also a trajectory YT(?(’C), depending on the control variables a : (0,7') — A := [0, 27] and
¢:(0,T7) — U, and governed by the following dynamics

V(t) = c(t) (Z?;((ZD e G) 51+ Cs (?) 52,
Y(r) = X

where C1 := 0.5, C2 := 0.2, and §, (for v = 1,2) denotes the Dirac measure at time ¢t = u. The
control variable ¢ takes its values in a compact set U. Here we will consider two cases:
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e Case 1: U = {0.5} which amounts saying that we are allowed to move in any direction in
the sphere centred at the origin and with radius 0.5.

e Case 2: U = [0, 0.5], which means that we can move in any direction in the Ball centred at
the origin and with radius 0.5.

In both cases, at time t = 1 and ¢t = 2 the trajectories jump. We consider the value function
corresponding to the Rendez-Vous problem:

u(t, X) = inf{p(Y5(T)); «€ L>(0,T;4), ce L*(0,T;U)},

where T' = 3, and ¢(z) = 0 when = € C and 1 otherwise.
It is not difficult to compute the parametrized function:

(153 0, 0) 0<s< &
(1, 65—7, 0) %5<S<%;
d(s) =4 (155 — 6 1, 0) 1—75<s<18—2;
(2, 1, ) 1%<s<}—5;
(155—12 2,1) £<s<Ll

Let us notice that in Case 2, the value function v corresponding to the parametrized problem is lsc.

Fig. 1 shows the numerical solution in the Case 1, while Fig.2 shows the results corresponding
to Case 2. These numerical experiments are performed by using the finite differences scheme with
150 grid points. Computations are done on the domain [~1.5,3]2. The final cost function is
approximated by a function (with n = 10):

¢n(X) :=1/nmin (1, ||z — 0.5)). (3.45)

In the two cases, we compute first the value function v corresponding to the parametrized control

25

-2 -1 0 1 2 -2 -1 0 1 2

(a) O-level sets of © (b) 0-level sets of v

Figure 1: Case 1: Numerical solutions with 150% grid nodes.

problem, and then we deduce the original value function by using a change of variable. The
latter step is very easy to perform numerically, since v turns to be just the restriction of ¥ on
[0, 1—15] N [1—75, %] N Hé, 1]. In Figs. 1 & 2, we plot only the 0-level sets.
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25 25
2 2
15 15
1 1
05 05
0 0
-05 -05
-1 -1
-1.5 -1.5
) 1 0 1 2 ) 1 0 1 2
(a) O-level sets of v (b) 0-level sets of v

Figure 2: Case 2: Numerical solutions with 150? grid nodes.

4 Properties of the L!-bilateral viscosity solution of HIJB equa-
tions.

This section is devoted to the main properties of the L'-bilateral solutions we have defined in
Definition 3.2. First, we give an equivalent formulation of this definition and we prove that it
is consistent with the definitions of viscosity solutions given for a more regular HJB equation
(Subsection 4.1). The Stability results are given in Subsection 4.2.

Fix T > 0, and consider the general Hamilton-Jacobi-Bellman equation

{ —uy(z,t) + H(t,x,Du) = 0 in RY x (0,7) (4.46)

u(z,T) o(z) in RN,

On the Hamiltonian H : Rt x RY x RV — R we assume the following:
(HO) The function H(t,z,p) is measurable in ¢ and continuous in z and p. Moreover, for each
(z,p) € RNV x RY we have H(-,z,p) € L}(RT).

(H1) For each compact subset K of RY x R there exists a modulus m = m(K) : (0,7) xRt — R+
such that t — m(t,r) € L'(0,T) for all 7 > 0, m(t, ) is increasing in 7, m(-,r) — 0in L*(0,7")
as r — 0, and

[H(t,z,p) — H(t,y,q)l <m(t, |z —yl+|p—ql)
for almost every ¢ and for any (z,p), (y,q) € K.

Moreover:
(H2) There exists a function kg € L®°(R™;R™") such that

[H(t,x,p) — H(t,y,p)| < ko()(L+ Ipl)(Jo —y|) forall peRY,t € RY, 2,y € R,



Control problems for BV trajectories 15

(H3) For each (¢, x) the function H(t,z,-) is convex and there exists a constant L > 0 such
that

|H(t,x,p) — H(t,z,q)| < Llp—gq| forall p,qeRY,teR" zecR".
On the final data we suppose:

(Hid) The function ¢ : RV — R is lower semi continuous and bounded.

Remark 4.1. It is easy to check that if the dynamics F fulfils assumptions (HF1)-(HF3), then
the Hamiltonian defined in (3.28) satisfies assumptions (HO)-(H3).

In order to give an equivalent formulation of the definition of L'-bilateral viscosity solution we
need to introduce the following sets of functions. Fix (xg,%p) and a function ¢ € C*(RY x RT) we
set

H™ (to, mo, Dé(z0, to)) :=
={G(t,z,p) € C(RT x RN x RY), convex in p, b(t) € L'(R")
such that G(t,z,p) + b(t) < H(t,z,p)
for all z € Bs(x),p € Bs(Do(xo,t0)), a. e. t € Bs(tyg) and some § > 0}

H " (to, w0, Do(wo, to)) :=
={G(t,z,p) € C(RT x RN x RY), convex in p, b(t) € L'(R")
such that G(t,z,p) + b(t) > H(t,z,p)
for all z € Bs(z),p € Bs(Do(xo,t0)), a. e. t € Bs(tyg) and some § > 0}

Definition 4.2. L!-bilateral viscosity solution (L1Bvs) IT
Let u: RN xRt — R be a bounded lower semi-continuous function. We say that u is a L'-bilateral
viscosity solution (L1Bvs) of (4.46) if:

1. for any (xo,t0), ¢ € CI(RN X R+) (G b) E H™ (to, zo, Dp(xo, to)) such that (zo,to) is a local

minimum point for u(x,t) fo o(x,t) we have
—¢i(20, to) + G(to, o, Dp(x0, t0)) < 0, (4.47)
2. for any (zo,to), ¢ € Cl(RN X R*) (G, b) 6 H (to, xo, Do(wo,1t0)) such that (xo,to) is a local
minimum point for u(z,t) fo s)ds — ¢(z,t) we have
—¢1(zo,to) + G(to, o, Do(xo, to)) > 0. (4.48)

Moreover, the final condition is satisfied in the following sense:

n—oo

o(x) = inf {liminfu(xn,tn) Ty — T, T T} .
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Remark 4.3. Note that in fact, there are many more formulations. We can take the test function
o(x,t) € CHRYN x (0,7T)), (i.e. C'-depending also on t in Definition 8.2) and ¢ € CH(RY), (i.e.
depending only on the x-variable) in Definition 4.2.

We can replace ¢ € CH(RN) by ¢ € C2(RY),...,C®°[RYN). Moreover, by classical arguments
in the theory of viscosity solutions, we may replace the local minimum by global, or local strict or
global strict.

Proposition 4.4. Assume (HO) and (H1). Then, Definition 3.2 and Definition 4.2 are equivalent.

Proof. We first remark that for any b € L'(0,T), ¢ € C*(RY) and (wxo,%p) local minimum
point for u(z,t) fo s)ds — ¢(z) we have

lim  esssup sup {H(t,z,p) —b(t)} =
620 |t—t9|<6  z€Bs(xo), p€Bs(Do(0))
= inf G(to, xg, Do(x
(G,b)€H+(t0,$0,D¢(xQ)) ( 0 0 ¢( 0))
and
lim  essinf inf {H(t,z,p) —b(t)} =

§—0t+  [t—to|<6  xz€Bs(x0), p€Bs(Dg(z0))

= sup G(t07x07D¢($0))‘
(G,b)eH (to,x0,D9(z0))

The equivalence of the two definitions follows then by observing that in Definition 4.2 we can
consider test functions ¢ depending only on the xz-variable. (See also Remark 4.3.)
O

4.1 Consistency

We prove now that our definition is consistent with the definitions of viscosity solutions given for
a more regular HJB equation. In particular we consider the case of a time-continuous Hamiltonian
and/or a continuous initial data. For the sake of completeness let us recall here the definition of
viscosity solution in those cases.

Definition 4.5 (bilateral viscosity solution (Bvs), See [6]). Assume that H is continuous w.r. to
the time variable. Let u € LSC(RYN x (0,T)) be a bounded function. We say that u is a bilateral
viscosity solution (Bvs) of (4.46) if:

for any ¢ € C*(RN x (0,T)) and (xo,to) local minimum point of u(x,t) — ¢(z,t) we have

—¢i(wo, to) + H (to, w0, Dd(z0,t0)) = 0.
Moreover, the final condition is satisfied in the following sense:

o(z) = inf {lim infu(xy,ty) @ xn =2, t, T T}

n—oo
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Definition 4.6 (L!-viscosity solution (L1vs), [20, 21]). Assume that the final condition ¢ is a
continuous function on RV,

We say that u € LSC(RN x (0,T)) is a L'-viscosity supersolution (L1vsp) of (4.46) if: for any
be LY0,7T), ¢ € CLRYN) and (z0,t) local minimum point of u(x,t) — fg b(s)ds — ¢(x) we have

lim  esssup sup {H(t,z,p) —b(t)} >0.
0207 Ji—to|<6  w€Bs(wo), pEBs(D(w0))

We say that u € USC(RY x (0,T)) is a L'-viscosity subsolution (lesb) of (4. 46) if: for any
be LY0,7T), ¢ € CLRYN) and (x0,to) local mazimum point of u(x,t) fo s)ds — ¢(x) we have

lim  essinf inf H(t,xz,p) —b(t)} <0.
6—0t ‘tfto‘gé IGBg(wo),pGBg(D¢(wo)){ ( p) ( )}

We say that u € C(RYN x (0,T)) 4s a L'-viscosity solution (L1vs) if it is both a L'-viscosity
subsolution and a L'-viscosity supersolution and the final condition is satisfied pointwise:

u(z, T) = p(z) in RY.
Theorem 4.7. (Consistency). Assume (HO0)-(H3) and (Hid).
(a) If the final condition ¢ is a continuous function, then

w is a L'-bilateral viscosity solution <= u is a L'-viscosity solution.

(b) If the Hamiltonian H is continuous also in the t-variable, then

w is a L'-bilateral viscosity solution <= u is a bilateral viscosity solution.

Proof of (a).
The key tool to prove this equivalence is a Lemma introduced in the [6] to prove the equivalence
between a Bvs and a Cvs. For the sake of completeness we recall here this result.

Lemma 4.8. [6, Theorem 1.1] Let W be a continuous function on [0,00) X R™ such that W has a
zero mazimum (minimum) at (1,£). Let € > 0. Then there is a smooth function v, a finite set of
numbers oy > 0 summing to one, and a finite collection of points (tx,x)) such that

1. W — 4 has a zero minimum (mazimum) at (tg, xp);
2. (tk,zr) € Boi(l)\[(s y) for some (s,y) € By 1)(7,§);
3. |Dyatp(th, z)| = );

4. > oDy g (ty, ) = 0.

Proof of u is a Livs = wu is a L1Bus.

Following Definition 3 2 we have to show that fix b € L(0,T), ¢ € CYHRYN) and (xo,t) local
minimum point for u(z,t) fo s)ds — ¢(x) we have

lim  esssup sup {H(t,z,p) —b(t)} >0 (4.49)
6—=0"  |t—ty|<6  weBj(xo), p€Bs(Dd(w0))
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and
lim  essinf inf H(t,xz,p) —b(t)} <0. 4.50
§—0T  |t—to|<6 IEBé(ﬂfo),PEBa(Dfﬁ(ﬂCo)){ ( P) )} ( )
Since u is a L1vs, in particular is a L!-viscosity supersolution therefore inequality (4.49) is satisfied.
To prove (4.50), for each 6 > 0 we apply Lemma 4.8 above choosing ¢ small enough the ensure

the existence of an > 0 such that Oi/(p +0:(1)+n <6 and o-(1)v/e + 0-(1) + n < ¢ (and with

W (t,z) = u(z,t) + [y b(s)ds — d(,1)).
Therefore, there exists a smooth function ¢ and a finite set of points (xg,t;) such that u —
J3b— (¢ + 1) has a zero maximum at (zy, t;) and for each k

By(xk, tk) C Bs(to,z0), Byp(Dé(zk) + D(xk, tk)) C Bs(D(x0))- (4.51)
Thus
inf inf H(t,z,p) —b(t)} <
|§E§ollr%5 xGBé(ro)ﬂégBa(Dﬂl"o)){ (t,.p) (0}
< essinf inf {H(t,z,p) —b(t)}. (4.52)

[t—tk|<n  x€By(wk), pEBn(De(zk)+DY(zk,tk))
Since u is a L1vs, in particular is a L!-viscosity subsolution therefore in each point (3, z3) we have

lim essinf inf H(t,z,p) —b(t)} <O0.
n—=07F [t—tx|<n IGBn(xk),peBn(D¢(xk)+D?/)(xk,tk)){ ( P) “)}

Letting 6 going to 07 (= 7 — 07) in (4.52) we obtain (4.50) and conclude the proof.

Proof of u is a L1Bvs = w is a L1vs.
We first remark that, by Definition 3.2 if u is a L1Bvs, is in particular a L'-viscosity supersolution.
Therefore, to prove that u is a L!- VlSCOSlty Subsolution fix b € LY(0,T), ¢ € CY(RY) and (zo, o)
local maximum point of u(z, ) fo s)ds — ¢(x) our thesis is

lim  essinf inf H(t,z,p) —b(t)} <O0. 4.53
§—0t  |t—to|<S zEBg(mo),pEBg(Dd)(a:o)){ ( p) ( )} ( )
As above, for each 6 > 0 we apply Lemma 4.8 choosing ¢ small enough the ensure the existence

of an n > 0 such that Oi([) +0:(1) +n < § and 0-(1)y/e + 0:(1) + n < §, and with W (t,z) =

u(x,t) + fo s)ds — ¢(x,t). Therefore, there exists a smooth function ¢ and a finite set of points
(g, tg) such that u — fO b— (¢ + 1) has a zero minimum at (xg,t;) and for each k

By (g, tr) C Bs(to, o), By(Dé(xr) + Dp(xp,tr)) C Bs(Dd(wo)). (4.54)
Thus,
inf inf H(t,z,p) — b))} <
|§§Stol|r§5 xeBg(azo),;)IéBa(wao)){ (t,2,7) (®)}
< essinf inf {H(t,z,p) —b(t)}. (4.55)

[t—tp|<n  x€Bp(xk), pEBy(Do(x)+DY(xk tr))
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Since w is a L1Bvs we have (3.30) at each point (¢, zy), i.e

lim essinf inf H(t,z,p) —b(t)} <O0.
n—07t [t—tx|<n zEBn(xk),pEBn(Dqﬁ(azk)-‘,-Dw(a:k,tk)){ ( p) ( )}

Letting 6 going to 07 (= 7 — 07) in (4.55) we obtain (4.53) and conclude the proof.

Proof of (b).
Proof of u is a L1Bvs = u is a Bus.
Thanks to the continuity of H for any ¢ € C'(RY x R*) and (zg,%p) local minimum point of
u(z,t) — ¢(x,t) we can choose G = H and b = 0 in Definition 4.2. Since the couple (H,0) is in both
H™ (to, zo, Do(z0,t0)) and H™ (tg, xo, DP(xg,t0)) the two inequalities (4.48) and (4.47) are fulfilled.
Therefore

—¢¢(zo,to) + H(to, xo, DP(x0,10)) =0

and the thesis follows.

Proof of u is a Bvs = w is a L1Bvs.

Fix b € LY(0,T), ¢ € C*RY) and (zg,tp) local minimum point of u(z,t) fo s)ds — ¢(x).
By standard mollification’s arguments we can approximate b in L'(0,T) by a sequence (b:)->o €
C*°((0,T)) and we have the existence of a sequence of points (x., t.) such that as e — 0, (z¢,t.) —
(z0,1t0) and fix €, (x¢,t.) is a local minimum point for u(x,t) + f(f b-(s)ds — ¢(x). Since u is a Bvs
we have

—be(te) + H(te, xe, Dp(x2)) = 0.

Note that for each § > 0 fixed we can find an € small enough to have

ess inf inf H(t,x,p) —b(t)} < —b(te) + H(ts,ze, DP(x:)) =0
essinl il {H(2) = W0} € <b(t) + H{te, 2z, Do)

and

0= _ba(ts) + H(tsa Te, D¢(££)) < ess sup sup {H(t, $,p) - b(t)} .
[t—to|<6  x€Bs(z0), pEBs(Dd(x0))

Therefore, letting 6 — 0, we respectively obtain (3.30) and (3.29) and this ends the proof.

4.2 Stability

We will prove here the stability with respect to the final datum and the one with respect to the
Hamiltonian. The latest will be proved under a very weak convergence in time that as been proved
for L'-viscosity solution by Barles in [3]. (Our proof is indeed an adaptation to L1Bvs of the
proof of [3, Theorem 1.1]). Note that in this proof we only need assumptions (HO)-(H1) on the
Hamiltonian.

Theorem 4.9. Stability w.r.to H. For each n € N let u,, be a L'-bilateral viscosity solution of

(4.56)

—uy(x,t) + Hp(t,x,Du) = 0 in RN x (0,7)
wx, T) = ¢(x) inRY,

We assume that:
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1) For each n € N the Hamiltonian Hy, fulfils hypotheses (HO)-(H1) for some modulus m,, =
mn(K) such that || mn(-,7) |10~ 0 as r — 0 uniformly with respect to n, for any compact
subset K.

11) There exists a function H fulfilling hypotheses (HO)-(H1) such that, for any (x,p) € RY x
RN
’ t t
lim H (s,z,p)ds — / H(s,z,p)ds locally uniformly in (0,T).
0

n—o0
1) The final condition ¢ fulfils (Hid),

Then the function
u(z,t) := inf  lminf u,(z,,t,),
(Zn o tn)—(z,t) N—00

is a L'-bilateral viscosity solution of

{ —ui(z,t) + H(t,z,Du) = 0 in RN % (0,T) (4.57)

u(z,T) = ¢(x) inRY,
Proof. Following Definition 4.2 we have to prove that

1. for any (zo,to), ¢ € CI(RN X R+) (G, b) G H~ (to, xo, Dp(z0, 1)) such that (xo,tp) is a local

minimum point for u(z,t) fo s)ds — ¢(z,t) we have
—¢1(zo,to) + G(to, zo, DP(xo,t0)) < 0, (4.58)
2. for any (g, o), ¢ € Cl(RN X R*) (G, b) E H* (to, z0, Do(x0,t0)) such that (z,to) is a local
minimum point for u(z,t) fo s)ds — ¢(z,t) we have
—¢i(x0,to) + G(to, o, Dp(xg,t0)) > 0. (4.59)

In order to prove 1, let us fix a (zg,tg), ¢ € Cl(RN X R*) (G, b) G H~ (to, o, Dp(x0,t0)) such
that (zo,to) is a strict local minimum point for u(z,t) fo s)ds — ¢(z,t).

Fix now a small § > 0, we consider a large Compact subset K of RN x RN and the functions
m,my given by assumptions 1),11). We construct a new sequence (u),, defined by

uw (z,t) := un(z, tmn s, m(s, s.
9 (&,1) = tn t>+/0[ (5.6) + m(s, )] d

Note that for each n,d the function u is a L1Bvs of
—wy + Hy(t, x, Dw) — my(t,0) — m(t,d) = 0. (4.60)

Moreover, if we set ud(z, t) == inf,, 1)o@, iminf, ufl(xn, tn), by the properties of m,m,, we
have u < u5 <wu+ 05( ) Therefore, by classical results, since (zo,t9) is a strict local minimum
pomt of u(x,t) fo ds — ¢(z,t), for § small enough there exists a local minimum point of

fo s)ds — ¢(x,t), that we will denote (x5,ts5). Note that (xs,t5) — (x0,t0) as 6 — 0.
We set now

Un(s) == Hy(s, x5, Dp(x5,t5)) — H(s, x5, DP(x5,t5)).
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Our aim is to use the fact that the function u’ is a L1Bvs of (4.60) by testing with the function
o(x,t)+ fo b— fo . To do this we first observe that the convergence assumption II) implies fo Py —

0 locally uniformly in (0, T') therefore, for each (z5,t5) local minimum point of u®(z,t) fo s)ds —
qﬁ(a: t) there exists a a sequence (2}, t5) — (375, ts) as n — oo of local minimum points of u (m t)—
fo s)ds + fo Yn(s)ds. (Recall that ud(z,t) := inf (5, )= (a,¢) M infp 0 u (2, tn)).
Let (G,b) € H™ (to, xo, Dgf)(:po, to)) we state now that there exists a n big enough and a § small
enough such that we can find a n > 0 for which

Un(t) + G(t,2,p) + b(t) > Ho(t,2,p) — mu(t,6) — m(t, )
Vt € By(t),a € By(a}),p € By(Do(a}, 1)), (4.61)

Indeed, since (G, b) € H™ (to, xo, Dp(xo,t0)) there exists a [ such that

Un(t) + G(t, z,p) +b(t) = Hu(t, z,p) — ma(t,6) —m(t, )
Vt € Bg(to),z € Bg(xo), p € Bg(De(z0,0))
(where we used also the definition of m, m,,.) Thus (4.61) follows from (z§,t3) — (zs,ts5) as n — 00,
(s,t5) — (x0,t0) as § — 0 and the regularity of ¢.
By deﬁnition of L1Bvs, condition (4.61) and the fact that (2},t}) is a local minimum point of
ud (z,t) fo s)ds + fo ¥ (s)ds imply that
_d)t(‘r& ) t?) + G(ﬁg, tgv ng(l‘g, t?)) <0.

Therefore letting n — oo and & — 0 by the continuity of G we obtain (4.58) and conclude the proof
of 1.
Point 2 can be proved with the same argument by remarking that the functions

t
W (2,1) = (2, 1) — / (s, 8) + m(s, )] ds.
0
are L1Bvs of
—wy + Hy(t, z, Dw) + my(t, ) + m(t,d) = 0.
O

Theorem 4.10. (Stability w.r.to ¢.) For each n € N let u,, be a L'-bilateral viscosity solution
of equation (4.46) with final condition
u(z, T) = pp(x) in RV,

Assume that, for each n € N, the function @, € C(RY) and is bounded, moreover the sequence
(¢n)nen s monotone increasing and

lim ¢, (z) = p(z) VoeRYN.

n—oo

Then, the function
u(z,t) := lm wu,(z,t),
n—oo

is a L'-bilateral viscosity solution of equation (4.46) with final condition

u(z, T) = ¢(x) in RY.
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Proof. By definition of L1Bvs our we have to prove that Vz € RV,

= inf lim inf u(zp, t,).
o) =, L minf (e o)
Note that, since ¢, € C(RY™), u, is continuous in RY x [0, T] (see [20, Corollary 1.10]). Therefore,
for each sequence (zy,t,) — (z,T), we have

Po) = g, #nle) = g, T) = iy, 05, n{ns ) = 000, 6(n, )

and the proof is completed. O

4.3 Uniqueness

We finally prove the uniqueness result.

Theorem 4.11. Assume (HO)-(H3) and (Hid). Then there exists at most one L'-bilateral vis-
cosity solution of (4.46).

Proof. This proof will follow the idea of G.Barles of using the inf-convolution in the proof of
uniqueness for bilateral viscosity solution [2, Theorem 5.14].

Suppose that there exist v and u two L!-bilateral viscosity solution of (4.46). Since v is in
particular a L'-viscosity supersolution the main point is to look for a sequence of L!-viscosity
subsolutions of (4.46) approximating u. The thesis will then follow by comparison result for L!-
viscosity solution.

The construction of the approximating sequence can be summarised in the following Lemma.
The proof being an adaptation of the proof given in [2, Lemme 5.5] will be not detailed (see also
[5, Lemma 19]).

Lemma 4.12. Under the assumption of Theorem 4.11, if u is L'-bilateral viscosity solution of
(4.46), let ue be defined by

. _kelr —yl?
ue(z,t) := ylerlgN {u(y,t) +e 82} , e >0.
Then, the upper semi continuous envelope (u:)* is a L'-viscosity subsolution of
—(ue)y + H(t,z, Dus)— | K ||oo e2XTMe =0 for (z,t) € RY x (0,T), (4.62)
for K big enough and where M = \/m Moreover,
(ue)*(z,T) < p(x) forz e RV, (4.63)
Since (u.)* is a L!-viscosity subsolution of (4.62) the function (u:)*— || K |l e2KT )¢ is a

L'-viscosity subsolution of (4.46), therefore, by the comparison result for L!-viscosity solutions (see
[20, Theorem 8.1] or [25]) we obtain

(ue)* = || K ||oo 25T Me < v(z,t)  V(z,t) € RN x (0, 7)
where we used also (4.63). Letting ¢ — 0 we have
u(z,t) <wv(x,t) Y(z,t) e RY x (0,7),

thus, reversing the roles of u and v, the uniqueness follows. O
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