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EXACT CALCULATIONS FOR FALSE DISCOVERY PROPORTION WITH
APPLICATION TO LEAST FAVORABLE CONFIGURATIONS

By Etienne Roquain and Fanny Villers

UPMC University of Paris 6

In a context of multiple hypothesis testing, we provide several
new exact calculations related to the false discovery proportion (FDP)
of step-up and step-down procedures. For step-up procedures, we
show that the number of erroneous rejections conditionally on the re-
jection number is simply a binomial variable, which leads to explicit
computations of the c.d.f., the s-th moment and the mean of the
FDP, the latter corresponding to the false discovery rate (FDR). For
step-down procedures, we derive what is to our knowledge the first
explicit formula for the FDR valid for any alternative c.d.f. of the
p-values. We also derive explicit computations of the power for both
step-up and step-down procedures. These formulas are “explicit” in
the sense that they only involve the parameters of the model and the
c.d.f. of the order statistics of i.i.d. uniform variables. The p-values
are assumed either independent or coming from an equicorrelated
multivariate normal model and an additional mixture model for the
true/false hypotheses is used. This new approach is used to investi-
gate new results which are of interest in their own right, related to
least/most favorable configurations for the FDR and the variance of
the FDP.

1. Introduction. When testing simultaneously m null hypotheses, the false discovery pro-
portion (FDP) is defined as the proportion of errors among all the rejected hypotheses and
the false discovery rate (FDR) is defined as the average of the FDP. Since its introduction by
Benjamini and Hochberg (1995) [1], the FDR has become a widely used type I error criterion,
because it is adaptive to the number of rejected hypotheses. However, the randomness of the
denominator in the FDP expression makes the study of the FDP and of the FDR mathematically
challenging.

There is a considerable number of papers that deal with the FDR control under different
dependency conditions between the p-values (see for instance [1, 3–5, 27]). In the latter, the
goal is, given a prespecified level α, to provide a procedure with a FDR smaller than α (for any
value of the data law in a given distribution subspace, e.g. for some dependency assumptions).
For instance, the famous linear step-up procedure (LSU), also called the Benjamini-Hochberg
procedure [1] (based on the Simes’s line [29]), has been proved to control the FDR under inde-
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2 ROQUAIN, E. AND VILLERS, F.

pendence and under a positive dependence assumption (see [1, 3]). While controlling the FDR,
one wants to maximize the power of the procedure, the power being generally defined as the
averaged number of correct rejections divided by the number of false hypotheses.

In this paper, we deal with the “reversed” approach: given the procedure, we aim to compute
the corresponding FDR, or more generally the s-th moment and the c.d.f. of the FDP, and
the Power. For procedures using a constant thresholding and under a mixture model assuming
independence between the p-values, Storey (2003) [30] addressed theses questions, while intro-
ducing the positive false discovery rate (pFDR) (see also Chi and Tan [7]). Considering step-up
or step-down methods requires more efforts: when the p-values are all i.i.d. uniform, the exact
distribution of the rejection number has been computed by Finner and Roters (2002) for step-up
and step-down procedures, which leads to a computation of the FDR in the degenerate case
where all the hypotheses are true [15]. When the p-values follow the particular “Dirac-uniform”
configuration, that is, when the p-values associated to false hypotheses are equal to 0 and when
the p-values associated to true hypotheses are i.i.d. uniform, the FDP distribution has been
computed by Dickhaus (2008) for general step-up-down procedures (see Section 3.7 in [8]). For
an arbitrary distribution of the p-values under the alternative, Ferreira and Zwinderman (2006)
gave a first exact expression for the moment of the FDP of the LSU procedure under indepen-
dence [12]. Together with other recent approaches (see, e.g. [4, 24, 25, 27]), this puts forward a
connection between the FDR expression and the rejection number distribution in the step-up
case, under independence of the p-values. Additionally, Sarkar (2002) found an exact formula
for the FDR, which is valid for any step-up-down procedure [26]. However, it involves the c.d.f.
of ordered components of dependent variables, by contrast with [8, 15] and present paper, using
c.d.f. of ordered components of i.i.d. uniform variables, so obtaining substantially more explicit
formulas.

Meanwhile, some of these approaches have also been investigated from the asymptotic point of
view, when the number of hypotheses m tends to infinity; Chi (2007) computed the asymptotic
rejection number distribution of the LSU procedure by introducing the criticality phenomenon
[6], while Finner et al. (2007) computed the limiting FDR of the LSU procedure for positively
correlated p-values (following an equicorrelated multivariate normal model) in the particular
Dirac-uniform configuration [14]. In this paper, the point of view will be mainly nonasymptotic.

The new contributions of the present paper are as follows:

• For a step-up procedure using a threshold (tk)k, we proved that the distribution of the
number of erroneous rejections conditionally on k rejections is a binomial variable of pa-
rameters k and pFDR(tk) = π0tk/G(tk), where π0 is the (averaged) proportion of true
nulls and G is the c.d.f. of the p-values. This provides new explicit formulas for the c.d.f.
of the FDP, the s-th moment of the FDP (providing a correction with respect to [12] for
s ≥ 3) and for the FDR, for any alternative distribution of the p-values. We also give an
expression for the power, which yields a considerably less complex calculation than in [18],
see Section 3.1.

• Considering a step-down procedure, a new explicit formula for the FDR and the power is
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EXACT CALCULATION FOR FDP 3

presented under any alternative distribution of the p-values. To our knowledge, this expres-
sion is the first one that clearly relates the FDR to (joint) rejection number distribution in
the case of a step-down procedure and that is valid under any alternative, see Section 3.1.

• All the previous results, valid under independence between the p-values, can be easily
extended to the case where the p-value family follows an equicorrelated multivariate normal
model, by using a simple modification, see Section 3.2. However, this requires the use of
a nonnegative correlation. The case of a possibly negative correlation is considered when
only two hypotheses are tested, see Section 3.3.

• Our formulas corroborate the classical multiple testing results while they give rise to several
new results. The two main corollaries hold under independence and are as follows. First,
in Section 4.1.1, for the linear step-down procedure, we prove that a p-value configuration
maximizing the FDR, i.e. a least favorable configuration (LFC) for the FDR, is the Dirac-
uniform configuration. Additionally, considering a general step-down procedure, we define
a new condition on the threshold ensuring that the Dirac-uniform configuration is still a
LFC. As discussed in Section 4.1.1, this condition is different from the one of the step-
up case. Second, we found an exact expression of the minimum and the maximum of the
variance of the FDP of the LSU, these extrema being taken over some p-value configuration
sets of interest. The latter allows to better understand the behavior of the FDP around
the FDR. In particular, this puts forward that the convergence of the FDP towards the
FDR is particularly slow in the sparse case, see Section 4.2.

All our formulas are valid nonasymptotically, that is, they hold for each m ≥ 2. As a counter-
part, they inevitably have a general form that can appear somewhat complex at first sight. For
instance, denoting by Ψm the c.d.f. of the order statistics of m i.i.d. uniform variables on (0, 1),
the FDR formula for step-up procedures requires the computation of Ψm at a given point of Rm

(at most), while the FDR formula for step-down procedures requires the computation of Ψm at
2m different points of Rm (at most). However, let us underline what are to our opinion the two
main interests of this exact approach:

- For some model parameter configurations and after possible simplifications, the formu-
las are usable for further theoretical studies (monotonicity with respect to a parameter,
convergence when m tends to infinity,...), as in Theorem 4.1 and Theorem 4.3.

- For m not too large (say m ≤ 1000), these formulas can be fully computed numerically, e.g.
plotting exact graphs. Thus, they avoid using cumbersome and less accurate simulation
experiments (extensively used in multiple testing literature), see for instance Section 4.1.2.

2. Preliminaries.

2.1. Models for the p-value family. On a given probability space, we consider a finite set of
m ≥ 2 null hypotheses, tested by a family of m p-values p = (pi, i ∈ {1, ...,m}). In this paper,
for simplicity, we skip somewhat the formal definition of p-values by defining directly a p-value
model, that is, by specifying the joint distribution of p.
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4 ROQUAIN, E. AND VILLERS, F.

In what follows, we denote by F the set containing c.d.f.’s from [0, 1] into [0, 1] that are
continuous and by F0(t) = t the c.d.f. of the uniform distribution over [0, 1] (we restricted our
attention to the case where F0(t) = t only for simplicity, all our formulas will be valid for an
arbitrary F0 ∈ F).

Definition 2.1 (Conditional p-value models). • The p-value family p follows the con-
ditional independent model with parameters H = (Hi)1≤i≤m ∈ {0, 1}m and F1 ∈ F , that
we denote by p ∼ P I

(H,F1)
, if p = (pi, i ∈ {1, ...,m}) is a family of mutually independent

variables and for all i,

pi ∼
{

F0 if Hi = 0
F1 if Hi = 1

.

• The p-value family p follows the conditional equicorrelated multivariate normal model (say
for short, conditional EMN model) with parameters H = (Hi)1≤i≤m ∈ {0, 1}m, ρ ∈ [−(m−
1)−1, 1], and µ > 0, that we denote by p ∼ PN

(H,ρ,µ), if for all i, pi ∼ Φ(Xi + µHi), where

the vector (Xi)1≤i≤m is distributed as a R
m-valued Gaussian vector with zero means and

a covariance matrix having 1 on the diagonal and ρ elsewhere and where Φ denotes the
standard Gaussian distribution tail, that is, Φ(z) = P [Z ≥ z] for Z ∼ N (0, 1). In that
model, the marginal distributions of the p-values are thus given by:

pi ∼
{

F0 if Hi = 0

F1(t) = Φ
(
Φ
−1

(t)− µ
)

if Hi = 1
.

The two above models are said “conditional” because the distribution of the p-values are
defined conditionally on the value of the parameter H = (Hi)1≤i≤m ∈ {0, 1}m. The latter
determines which hypotheses are true or false: Hi = 0 (resp. 1) if the i-th null hypothesis is
true (resp. false). We then denote by H0(H) := {i ∈ {1, ...,m} | Hi = 0} the set corresponding
to the true null hypotheses and by m0(H) := |H0(H)| its cardinal. Analogously, we define
H1(H) := {i ∈ {1, ...,m} | Hi = 1} and m1(H) := |H1(H)| = m−m0(H).

To each one of the above models, we associate the “unconditional” version in which we endow
the parameter H with the prior distribution B(1 − π0)

⊗m, making (Hi)1≤i≤m ∈ {0, 1}m being
a sequence of i.i.d. Bernoulli with parameter 1 − π0. On an intuitive point of view, this means
that each hypothesis is true with probability π0, independently from the other hypotheses. We
thus define the following models for p (or more precisely for (H,p)):

Definition 2.2 (Unconditional p-value models). • The couple (H,p) follows the uncon-
ditional independent model with parameters π0 ∈ [0, 1] and F1 ∈ F , that we denote

by (H,p) ∼ P
I
(π0,F1) if H ∼ B(1 − π0)

⊗m and the distribution of p conditionally to

H is P I
(H,F1)

, that is, conditionally on H, p follows the conditional independent model
with parameters H and F1. In that model, the p-values are i.i.d. with common c.d.f.
G(t) = π0F0(t) + (1− π0)F1(t).

imsart-aos ver. 2007/09/18 file: RV_AoS.hyper12071.tex date: April 2, 2010



EXACT CALCULATION FOR FDP 5

• The couple (H,p) follows the unconditional equicorrelated multivariate normal model (say
for short, unconditional EMN model) with parameters π0 ∈ [0, 1], ρ ∈ [−(m− 1)−1, 1], and

µ > 0, that we denote by (H,p) ∼ P
N
(π0,ρ,µ), if H ∼ B(1− π0)

⊗m and the distribution of p

conditionally on H is PN
(H,ρ,µ), that is, conditionally on H, p follows the conditional EMN

model with parameters H, ρ and µ.

An important point is that the quantities m0(H) and m1(H) are deterministic in the con-

ditional models P I , PN , while they become random in the unconditional models P
I
, P

N
with

m0(H) ∼ B(m,π0) and m1(H) ∼ B(m, 1− π0).
The conditional independent model is one of the most standard p-value models and was for

instance considered in the original paper of Benjamini and Hochberg (1995) [1]. Its unconditional
version, also called the “random effects model”, is very convenient and has been widely used
since its introduction by Efron et al. (2001) [11], see for instance [17, 30].

The conditional EMN model is a simple instance of model introducing dependencies between
the p-values. It corresponds to a one-sided testing on the mean of Xi+µHi, simultaneously for all
1 ≤ i ≤ m. It has become quite standard in recent FDR multiple testing literature; for instance,
it was used in [14] with µ = ∞ and it has been considered in [2, 5] for numerical experiments.
Furthermore, Efron (2009) recently showed that the EMN model may also be viewed as an
approximation for some non-equicorrelated models, which reinforces its interest for a practical
use [10]. In this model, provided that ρ ≥ 0, the p-values are positively regression dependent
on each one on the subset H0(H) (PRDS on H0(H)) which is one dependency condition that
suffices for FDR control (see [3]). The unconditional version of this model is convenient because
it provides exchangeable p-values (although not independent when ρ 6= 0).

Additionally, we will sometimes consider the “Dirac-uniform configuration” for the above
models. In that configuration, all the p-values corresponding to false nulls (Hi = 1) are equal to
zero, that is, F1 is constantly equal to 1 for the independent models and µ = ∞ for the EMN
models. This configuration was introduced in [14] to increase the FDR as much as possible for
the linear step-up procedures which thus appears as a “least favorable configuration” for the
FDR (see also Section 4.1).

2.2. Multiple testing procedures, FDP, FDR and power. A multiple testing procedure R is
defined as an algorithm which, from the data, aims to reject part of the null hypotheses. Below,
we will consider, as is usually the case, multiple testing procedures which can be written as
a function of the p-value family p = (pi, i ∈ {1, ...,m}). More formally, we define a multiple
testing procedure as a measurable function R, which takes as input a realization of the p-value
family p ∈ [0, 1]m and which returns a subset R(p) of {1, ...,m}, corresponding to the rejected
hypotheses (i.e. i ∈ R(p) means that the i-th hypothesis is rejected by R for the observed
p-values p).

Particular multiple testing procedures are step-up and step-down procedures. First define a
threshold as any nondecreasing sequence t = (tk)1≤k≤m ∈ [0, 1]m (with t0 = 0 by convention).
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6 ROQUAIN, E. AND VILLERS, F.

Next, for any threshold t, the step-up procedure of threshold t, denoted here by SU(t), rejects the
i-th hypothesis if pi ≤ tk̂, with k̂ = max{k ∈ {0, 1, ...,m} | p(k) ≤ tk}, where p(1) ≤ p(2) ≤ ... ≤
p(m) denote the ordered p-values (with the convention p(0) = 0). In particular, the procedure
SU(t) using tk = αk/m corresponds to the standard linear step-up procedure of Benjamini and
Hochberg (1995) [1], denoted here by LSU. A less rejecting procedure uses a step-down algorithm;
for any threshold t, the step-down procedure of threshold t, denoted here by SD(t), rejects the
i-th hypothesis if pi ≤ tk̃, with k̃ = max{k ∈ {0, 1, ...,m} | ∀k′ ≤ k, p(k′) ≤ tk′}. Analogously to
the step-up case, the procedure SD(t) using tk = αk/m is called the linear step-down procedure
and is denoted here by LSD.

Next, associated to any multiple testing procedure R and any configuration of true/false hy-
potheses H ∈ {0, 1}m, we introduce the false discovery proportion (FDP) of R as the proportion
of true hypotheses in the set of the rejected hypotheses, that is,

FDP(R,H) =
|H0(H) ∩R|

|R| ∨ 1
,(1)

where | · | denotes the cardinality function. Then, while for any multiple testing procedure R, the
false discovery rate (FDR) is defined as the mean of the FDP (see [1]), the power is (generally)
defined as the expected number of correctly rejected hypotheses divided by the number of false
hypotheses. Of course, the FDR and the power depend on the distribution that generates the
p-values, and we may use the models defined in Section 2.1. Formally, for any distribution P
coming from a conditional model using parameter H ∈ {0, 1}m, we let

FDR(R,P ) = Ep∼P [FDP(R(p),H)],(2)

Pow(R,P ) = m1(H)−1
Ep∼P

[
|H1(H) ∩R(p)|

]
.(3)

Similarly, for any p-value distribution P coming from an unconditional model, the FDR and the
Power use an additional averaging over H ∼ B(1− π0)

⊗m and are defined by:

FDR(R,P ) = E(H,p)∼P [FDP(R(p),H)],(4)

Pow(R,P ) = (π1m)−1
E(H,p)∼P

[
|H1(H) ∩R(p)|

]
.(5)

Remark that, for convenience, (5) is not exactly defined as the expectation of (3), because of the
denominator. It corresponds precisely to the expected number of correctly rejected hypotheses
divided by the expected number of false hypotheses.

In the paper, to simplify the notation, we sometimes drop the explicit dependency in p, H
or P , writing e.g. R instead of R(p), H0 instead of H0(H), FDP(R) instead of FDP(R,H) and
FDR(R) instead of FDR(R,P ).

2.3. Some notation and useful results. For any k ≥ 0 and any threshold t = (t1, ..., tk), we
denote

(6) Ψk(t) = Ψk(t1, ..., tk) = P
[
U(1) ≤ t1, ..., U(k) ≤ tk

]
.
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EXACT CALCULATION FOR FDP 7

where (Ui)1≤i≤k is a sequence of k variables i.i.d. uniform on (0, 1) and with the conven-
tion Ψ0(·) = 1. In practice, quantity (6) can be evaluated using Bolshev’s recursion Ψk(t) =
1 −∑k

i=1

(k
i

)
(1 − tk−i+1)

iΨk−i(t1, ..., tk−i) or Steck’s recursion Ψk(t) = (tk)
k −∑k−2

j=0

(k
j

)
(tk −

tj+1)
k−jΨj(t1, ..., tj) (see [28], p. 366-369). Additionally, the following relation holds (see Lemma

2.1 in [15]): for all k ∈ N and ν1, ν2 ∈ R such that 0 ≤ ν1 + ν2 ≤ ν1 + kν2 ≤ 1,

(7) Ψk(ν1 + ν2, ..., ν1 + kν2) = (ν1 + ν2)(ν1 + (k + 1)ν2)
k−1.

From the Ψk’s, we define the following useful quantities: for any threshold t = (tk)1≤k≤m and
k ≥ 0, k ≤ m, we let

Dm(t, k) =

(
m

k

)
(tk)

kΨm−k

(
1− tm, ..., 1 − tk+1

)
,(8)

D̃m(t, k) =

(
m

k

)
(1− tk+1)

m−kΨk

(
t1, ..., tk

)
.(9)

Above, note that (tk)
k and (1 − tk+1)

m−k are correct when k = 0 and k = m, even if (tj)j
is only defined for 1 ≤ j ≤ m. Note that Bolshev’s recursion provides

∑m
k=0Dm(t, k) =∑m

k=0 D̃m(t, k) = 1 for any threshold t.
Finally, we will use the so-called Stirling numbers of the second kind, defined as coefficients

{
s
ℓ

}

for s, ℓ ≥ 1 by
{s
0

}
= 0,

{s
ℓ

}
= 0 for ℓ > s,

{1
1

}
= 1 and the recurrence relation: for all 1 ≤ ℓ ≤ s+1,{s+1

ℓ

}
= ℓ

{s
ℓ

}
+
{ s
ℓ−1

}
. For instance,

{3
1

}
= 1,

{3
2

}
= 3,

{3
3

}
= 1,

{4
1

}
= 1,

{4
2

}
= 7,

{4
3

}
= 6,{4

4

}
= 1. From a combinatorial point of view, the coefficient

{s
ℓ

}
counts the number of ways to

partition a set of s elements into ℓ (nonempty) subsets. The latter is useful to compute the s-th
moment of a binomial distribution: if X ∼ B(n, q), we have ∀s ≥ 1, E[Xs] =

∑s∧n
ℓ=1

n!
(n−ℓ)!

{
s
ℓ

}
qℓ.

3. New formulas.

3.1. Unconditional independent model, m ≥ 2.

3.1.1. Step-up case. Let us consider the unconditional independent model. Finner and Roters
(2002) derived the exact distribution of the rejection number of any step-up procedure in the
case of i.i.d. uniform p-values (i.e., when all the hypotheses are true) [15]. In the unconditional
model, the latter can be generalized as follows: denoting G(t) = π0F0(t) + (1 − π0)F1(t) the
common c.d.f. of the p-values, we have for 0 ≤ k ≤ m that

(10) P [|SU(t)| = k] = Dm

(
[G(tj)]1≤j≤m, k

)
.

(this is straightforward from [15] because G is continuous increasing).
Next, for the procedure R(t) = {i | pi ≤ t} using a constant threshold t ∈ [0, 1], Storey

(2003) proved that the distribution of |H0(H) ∩ R(t)| conditionally on |R(t)| = k is a binomial
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8 ROQUAIN, E. AND VILLERS, F.

distribution B
(
k, π0F0(t)/G(t)

)
(see proof of Theorem 1 in [30], see also Proposition 2.1 in [7]).

Later, Chi (2007) proved that the distribution of |H0(H) ∩ LSU| conditionally on |LSU| = k is
asymptotically binomial (in a particular “supercritical” framework), see [6]. Here, we show that
the latter holds non-asymptotically, for any step-up procedure, which, by using (10), gives exact
formulas for the c.d.f. of the FDP, the s-th moment of the FDP, the FDR and the Power.

Theorem 3.1. When testing m ≥ 2 hypotheses, consider a step-up procedure SU(t) with
threshold t and the notation of Section 2.3. Then for any parameter π0 ∈ [0, 1] and F1 ∈ F ,

denoting G(t) = π0F0(t) + π1F1(t), we have under the generating distribution (H,p) ∼ P
I
(π0,F1)

of the unconditional independent model, for any k ≥ 1,

|H0(H) ∩ SU(t)| conditionally on |SU(t)| = k ∼ B
(
k,

π0F0(tk)

G(tk)

)
.(11)

In particular, we derive the following formulas, for any x ∈ (0, 1), for any s ≥ 1, denoting by{
s
ℓ

}
the Stirling number of second kind and by ⌊z⌋ the largest integer smaller than or equal to z,

P[FDP(SU(t),H) ≤ x] =

m∑

k=0

⌊xk⌋∑

j=0

(
k

j

)(
π0F0(tk)

G(tk)

)j(π1F1(tk)

G(tk)

)k−j

Dm

(
[G(tj)]1≤j≤m, k

)
(12)

E[FDP(SU(t),H)s] =

s∧m∑

ℓ=1

m!

(m− ℓ)!

{
s

ℓ

}
πℓ
0

m∑

k=ℓ

F0(tk)
ℓ

ks
Dm−ℓ

(
[G(tj+ℓ)]1≤j≤m−ℓ, k − ℓ

)
(13)

FDR(SU(t), P
I
(π0,F1)) = π0m

m∑

k=1

F0(tk)

k
Dm−1

(
[G(tj+1)]1≤j≤m−1, k − 1

)
(14)

Pow(SU(t), P
I
(π0,F1)) =

m∑

k=1

F1(tk)Dm−1

(
[G(tj+1)]1≤j≤m−1, k − 1

)
.(15)

We can apply Theorem 3.1 in the case where tk = αk/m, to deduce the following results for
the LSU procedure of Benjamini and Hochberg (1995) [1]: first, (14) leads to FDR(LSU) = π0α,
recovering the well known result of Benjamini and Yekutieli [3] in the unconditional model.
Second, (15) provides the exact expression

Pow(LSU) =

m∑

k=1

F1(αk/m)

(
m− 1

k − 1

)
(G(αk/m))k−1Ψm−k

(
1−G(αm/m), ..., 1−G(α(k + 1)/m)

)
.

Glueck et al. (2008) have obtained an exact expression for the power of the LSU under inde-
pendence (in the conditional model) [18], but the corresponding formula was reported to have
a complexity exponential in m, which is intractable for large m. Here, we obtained a much less
complex formula, requiring (at most) the computation of the function Ψm at one point of Rm.
Third, formula (13) used with tk = αk/m is similar to expression (2.1) in Theorem 2.1 of [12], in
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EXACT CALCULATION FOR FDP 9

which a formula for the s-th moment of the FDP of the LSU was investigated (in the conditional
model). Our formula (13) uses additional factors

{
s
ℓ

}
. As soon as s ≥ 3, they are definitely

needed and they seem forgotten in [12]; for instance, taking α = 1, the corresponding linear
step-up procedure rejects all the hypotheses and (13) reduces to the computation of the s-th
moment of a binomial distribution, which uses at least one

{s
ℓ

}
> 1, see Section 2.3.

Fourth, expression (12) used with tk = αk/m yields what is to our knowledge the first exact
expression for the c.d.f. of FDP(LSU), valid for any m ≥ 2 and for any alternative c.d.f. F1.

For instance, taking a typical Gaussian setting where F1(t) = Φ
(
Φ
−1

(t)− µ
)
, we are able to

evaluate the probability P(FDP(LSU) ≤ c α) for c ≥ 1; for µ = 3, α = 0.05, π0 = 1 − 1/
√
m,

expression (12) provides P(FDP(LSU) ≤ α) ≃ 0.724, P(FDP(LSU) ≤ 2α) ≃ 0.787 for m = 100
and P(FDP(LSU) ≤ α) ≃ 0.557, P(FDP(LSU) ≤ 2α) ≃ 0.826 for m = 1000. This means that the
LSU procedure, designed to control the FDR at level α, can have a FDP larger than 2α with a
“non-negligible” probability, for some admittedly quite standard values of the model parameters.
As m tends to infinity while the model parameters stay constant with m, the FDP converges to
the FDR and the latter effect vanishes (see e.g. [21]). However, we show in Section 4.2 that the
convergence can be slow in the sparse case.

Alternatively, some authors are interested in procedures R controlling the FDP, i.e. satisfying
P[FDP(R) ≤ α] ≥ 1 − γ, see e.g. [17, 20]. As a matter of fact, by using (11), we directly
deduce that the latter FDP control is satisfied by the step-up procedure SU(t⋆) using the oracle
threshold defined by t⋆m+1 = 1 (by convention) and for any 1 ≤ k ≤ m,

t⋆k = max{t ∈ [0, t⋆k+1] | P[X ≤ αk] ≥ 1− γ for X ∼ B(k, π0t/G(t))},
with t⋆k = 0 if the above set is empty. However, the latter threshold is unknown in practice,
because it depends on the c.d.f. G and an interesting issue is to estimate it. Chi and Tan (2008)
introduced the threshold tCT

k = max{t ∈ [0, tCT
k+1] | P[X ≤ αk] ≥ 1 − γ for X ∼ B(k, 1 ∧

(mt/k))} (with the convention tCT
m+1 = 1). As a matter of fact, the latter can be seen as the

empirical substitute of t⋆k, because G(tk̂) ≃ Gm(tk̂) = k̂/m for any step-up procedure rejecting k̂
hypotheses (Gm denoting the e.c.d.f. of the p-values). Using the latter threshold, they established
an asymptotic FDP control (as m tends to infinity). Here, a plausible explanation is that their
procedure correctly mimics the oracle SU(t⋆) (asymptotically).

3.1.2. Step-down case. In that section, we still consider the unconditional independent model,
but we focus on the step-down case. By contrast with the step-up case, for a step-down procedure,
the distribution of |H0(H)∩ SD(t)| conditionally on |SD(t)| = k is not binomial, in general. For
instance, we prove in Section 6.3 that for k ≥ 1, k ≤ m,

P[|H0(H) ∩ SD(t)| = k | |SD(t) = k] = πk
0

Ψk

(
F0(t1), ..., F0(tk))

Ψk

(
G(t1), ..., G(tk))

=: ak(16)

P[|H0(H) ∩ SD(t)| = 0 | |SD(t) = k] = πk
1

Ψk

(
F1(t1), ..., F1(tk))

Ψk

(
G(t1), ..., G(tk))

=: (1− b)k,(17)
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10 ROQUAIN, E. AND VILLERS, F.

and it turns out that a = b only for particular situations, such as t1 = ... = tk, F1(x) = x or
π0 ∈ {0, 1}. Also, in the Dirac-uniform configuration F1 = 1 (an thus G(t) = π0t + π1), we
establish in Section 6.3 that, for 1 ≤ j ≤ k,

P[|H0(H) ∩ SD(t)| = j | |SD(t) = k] =

(
k

j

)
πj
0π

k−j
1

Ψj

(
tk−j+1, ..., tk)

Ψk

(
π0t1 + π1, ..., π0tk + π1)

,(18)

which is not binomial in general (see also Remark 3.3 below).
An exact expression for P[|H0(H) ∩ SD(t)| = j | |SD(t)| = k] only involving functions of

the type Ψi and valid for any j, t and F1 seems considerably more difficult to derive. As a
consequence, we now only focus on the calculation of the FDR and of the power. For this, let us
recall the exact formula for the distribution of |SD(t)|: for all k ∈ {0, ...,m},

P [|SD(t)| = k] = D̃m

(
[G(tj)]1≤j≤m, k

)
.(19)

(see formula (4) p.344 of [28] and [15] which can be directly generalized in the unconditional
independent model because G is continuous increasing). The next result, based on the calculation
of the distribution of |SD(t′)| conditionally on |SD(t)| = k (with t′j = tj+1), connects the FDR
to distributions of the type (19) (see the proof in Section 6.2).

Theorem 3.2. For m ≥ 2 hypotheses, consider the unconditional independent model P
I
(π0,F1),

a step-down procedure SD(t) with threshold t and the notation of Section 2.3. Then for any pa-
rameter π0 ∈ [0, 1] and F1 ∈ F (denoting G(t) = π0F0(t) + π1F1(t)), we have

FDR(SD(t), P
I
(π0,F1)) =π0m

m∑

k=1

m∑

k′=k

F0(tk)

k′
D̃m−1

(
(G(tj))1≤j≤m−1, k − 1

)

× D̃m−k

((
G(tk+j)−G(tk)

1−G(tk)

)

1≤j≤m−k

, k′ − k

)
,(20)

Pow(SD(t), P
I
(π0,F1)) =

m∑

k=1

F1(tk)D̃m−1

(
[G(tj)]1≤j≤m−1, k − 1

)
.(21)

To the best of our knowledge, (20) is the first exact expression for a step-down procedure
that relies the FDR to the (joint) distribution of rejection numbers, for any p-value alternative
distribution. The main tool to get this result is Lemma A.2.

One straightforward consequence of (20) is that π0m
∑m

k=1
tk
k D̃m−1

(
[G(tj)]1≤j≤m−1, k − 1

)
is

an upper-bound of FDR(SD(t)), which in particular proves that FDR(SD(t)) is always smaller
than FDR(SU(t)), as soon as tk/k is nondecreasing in k. While the latter result should probably
be considered as well known, it is not trivial because when increasing the rejection number, both
numerator and denominator are increasing within the FDP expression (for further developments
on this issue, see Theorem 2 in [32]).
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EXACT CALCULATION FOR FDP 11

To illustrate (20), we may consider the case where tk = αk/m, that is, we may compute
exactly the FDR of the LSD procedure. In the Dirac-uniform model F1 = 1 and using (7), we
deduce the following expression:

FDR(LSD, P
I
(π0,F1=1)) =π0

α2

m

(
π1 + π0

α

m

) m∑

k=1

m∑

j=k

k

j

(
m− 1

k − 1

)(
m− k

j − k

)
πm−k
0

×
(
π1 + π0

αk

m

)k−2(α(j − k + 1)

m

)j−k−1(
1− α(j + 1)

m

)m−j

.(22)

Finally, let us emphasize that expression (20) is also useful to investigate least favorable config-
urations for the FDR of step-down procedures (see Section 4.1.1).

Remark 3.3. If we only focus on the Dirac-uniform configuration, the FDP distribution
of a given procedure R (rejecting any p-value equals to 0) only depends on the distribution of
|R ∩H0(H)| (conditionally on H), because |R ∩H0(H)| = |R| −m1(H). As done in Section 3.7
of [8], this leads to exact computations of the FDR for step-up, step-down and more general step-
up-down procedures, in the particular Dirac-uniform configuration. In comparison, our approach
is valid for an arbitrary alternative c.d.f. F1, while it intrinsically uses the exchangeability of the
p-values (which requires to use an unconditional model).

3.2. Unconditional EMN model with nonnegative correlation, m ≥ 2. In this subsection,
our goal is to obtain results similar to Theorem 3.1 and Theorem 3.2, but this time in the
unconditional EMN model of parameters π0, ρ and µ, with a nonnegative correlation ρ ∈ [0, 1].
In that case, we easily see that the joint distribution of the p-values can be realized as follows:

for all i, pi = Φ(
√
ρ Φ

−1
(U) +

√
1− ρ Φ

−1
(Ui) + µHi), where U , (Ui)i are all i.i.d. uniform

on (0, 1) (and independent of (Hi)i). This idea can be traced back to Stuart (1958) [31] and
Owen and Steck (1962) [22]. As a consequence, conditionally on U = u, the p-values follow the
unconditional independent model of parameters π0, F0(· | u, ρ) and F1(· | u, ρ) where we let

F0(t | u, ρ) = Φ

(
Φ
−1

(t)−√
ρ Φ

−1
(u)√

1− ρ

)
, F1(t | u, ρ) = Φ

(
Φ
−1

(t)−√
ρ Φ

−1
(u)− µ√

1− ρ

)
(23)

for ρ ∈ [0, 1) and F0(t | u, 1) = 1{u ≤ t}, F1(t | u, 1) = 1{u ≤ Φ(Φ
−1

(t)− µ)} for ρ = 1. As a
result, to obtain formulas valid in the unconditional EMN model, we may directly use formulas
holding in the unconditional independent model (with the above modified c.d.f.’s) and using an
additional integration over u ∈ (0, 1). Hence, we deduce from Theorem 3.1 and Theorem 3.2 the
following result (the formulas are not fully written for short):

Corollary 3.4. For m ≥ 2 hypotheses, consider the unconditional EMN model P
N
(π0,ρ,µ)

with parameters π0 ∈ [0, 1], µ > 0 and ρ ∈ [0, 1] and let G(t|u, ρ) = π0F0(t|u, ρ)+π1F1(t|u, ρ) us-
ing notation (23). Then, for any threshold t, under the generating distribution (H,p) ∼ P

N
(π0,ρ,µ),
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12 ROQUAIN, E. AND VILLERS, F.

the quantity P[FDP(SU(t)) ≤ x] (resp. E[FDP(SU(t))s]; FDR(SU(t)); Pow(SU(t))) is given by
the RHS of (12) (resp.(13); (14); (15)), by replacing F0(·) by F0(· | u, ρ), F1(·) by F1(· | u, ρ)
and G(·) by G(· | u, ρ), and by integrating over u with respect to the Lebesgue measure on (0, 1).
Additionally, a similar result holds for step-down procedures using (20) and (21).

In particular, applying Corollary 3.4 for the LSU procedure, we obtain that FDR(LSU, P
N
(π0,ρ,µ))

equals:
(24)

π0

m∑

k=1

(
m

k

)∫ 1

0
F0(αk/m|u, ρ)G(αk/m|u, ρ)k−1Ψm−k

(
(1−G(α(m− j +1)/m|u, ρ))1≤j≤m−k

)
du.

An expression for limm FDR(LSU, P
N
(π0,ρ,µ)) was provided by Finner et al. (2007), by considering

the asymptotic framework where m tends to infinity [14]. We compared the latter to the formula
(24) by plotting the graph corresponding to their Figure 3 (not reported here). The results are
qualitatively the same for π0 < 1, but present major differences when π0 = 1 and ρ is small. This
is in accordance with the simulations reported in the concluding remarks of Section 5 in [14].
Hence, the asymptotic analysis may not reflect what happens for a realistically finite m, which
can be seen as a limitation with respect to our non-asymptotic approach. As illustration, when
π0 = 1, Finner et al. (2007) proved that limρ→0 limm FDR(LSU) = Φ(

√−2 log α) < α whereas
we have limρ→0 FDR(LSU) = α, as remarked in [14] using simulations and as proved formally
in the next result.

Corollary 3.5. For any m ≥ 2 and for any threshold t, the quantities FDR(SU(t), P
N
(π0,ρ,µ))

and FDR(SD(t), P
N
(π0,ρ,µ)) are continuous in any π0 ∈ [0, 1], any ρ ∈ [0, 1] and any µ > 0.

Corollary 3.5 is a straightforward consequence of Corollary 3.4; to prove the continuity in

ρ = 1, we may remark that for any u outside the set S = {tk, 1 ≤ k ≤ m}∪{Φ(Φ−1
(tk)−µ), 1 ≤

k ≤ m} of zero Lebesgue measure, the functions F0(t | u, ρ) and F1(t | u, ρ) are continuous in
ρ = 1.

In particular, Corollary 3.5 shows that the limit of the FDR when ρ tends to 1 is given by the
degenerated case ρ = 1. In the latter case, the FDR is particularly easy to compute because only
one Gaussian variable is effective: for step-up procedures, FDR(SU(t)) = π0tm; and for step-

down procedures, FDR(SD(t)) =
∑m

k=1

(m
k

)
πk
0π

m−k
1

k
m min{tm−k+1,Φ(Φ

−1
(t1)−µ)} (the proof is

left to the reader). For instance, under the special p-value configuration where ρ = 1 and π0 = 1,
the above FDR expressions yield FDR(SU(t)) = tm and FDR(SD(t)) = t1 . Thus, as ρ ≃ 1, the
FDR value may considerably change as one considers a step-up or a step-down algorithm.

Going back to Corollary 3.4, let us mention that the latter can be used in order to evaluate the
FDR control robustness under Gaussian equicorrelated positive dependence for any procedure
(step-up or step-down) that controls the FDR under independence. For instance, the adaptive
procedures of Blanchard and Roquain (2008) [5] (step-up using tk = αmin{1, (1−α)k/(m− k+
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EXACT CALCULATION FOR FDP 13

1)}) and Finner et al. (2009) [13] (step-up based upon tk = αk/(m−(1−α)k)) have been proved
to control the FDR at level α under independence (asymptotically for [13]). A simulation study
was done in [5] in order to check if their respective FDR is still below α (or at least close to α)
in the EMN model. Using our exact approach, we are able to reproduce their analysis without
the errors due to the Monte-Carlo approximation. However, we underline that our approach uses
non-random thresholds t; this is not always the case for adaptive procedures (see e.g. [2, 5]).

3.3. EMN model with a general correlation and m = 2. When the correlation ρ is nega-
tive, the approach presented in the last section is not valid anymore and the problem seems
considerably more difficult to tackle. We propose in this section to focus on the case where
only two hypotheses are tested, which should hopefully give some hints concerning the behavior
of the FDR under negative correlations for larger m. The next result follows from elementary
integration and does not require the use of an unconditional model.

Proposition 3.6. For m = 2 hypotheses, consider the conditional EMN model PN
(H,ρ,µ)

with parameters H = (H1,H2) ∈ {0, 1}2 (generating m0 ∈ {1, 2} true null hypotheses), ρ ∈
[−1, 1] and µ > 0. Consider a threshold t = (t1, t2). Let z1 = Φ

−1
(t2) and z2 = Φ

−1
(t1). Then

FDR(SU(t), PN
(H,ρ,µ)) is given by

(25)

ρ ∈ (−1, 1),m0 = 1 1
2

∫ Φ(z1−µ)

0
Φ

(
z1−ρΦ

−1
(w)√

1−ρ2

)
dw +

∫ 1

Φ(z1−µ)
Φ

(
z2−ρΦ

−1
(w)√

1−ρ2

)
dw

ρ ∈ (−1, 1),m0 = 2 t1 +
∫ t2

t1
Φ

(
z1−ρΦ

−1
(w)√

1−ρ2

)
dw +

∫ 1

t2
Φ

(
z2−ρΦ

−1
(w)√

1−ρ2

)
dw

ρ = −1,m0 = 1





t1 if 0 < µ ≤ 2z1
t1 +

1
2 t2 − 1

2Φ(µ− z1) if 2z1 < µ < z1 + z2
1
2 t2 +

1
2Φ(µ− z1) if µ ≥ z1 + z2

ρ = −1,m0 = 2





2t1 if 1/2 ≥ t2
2(t1 + t2)− 1 if 1/2 < t2, t1 + t2 ≤ 1
1 if 1/2 < t2, t1 + t2 > 1

ρ = 1,m0 = 1 1
2 t2

ρ = 1,m0 = 2 t2

,
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14 ROQUAIN, E. AND VILLERS, F.

and FDR(SD(t), PN
(H,ρ,µ)) is given by

(26)

ρ ∈ (−1, 1),m0 = 1 1
2

∫ Φ(z2−µ)

0
Φ

(
z1−ρΦ

−1
(w)√

1−ρ2

)
dw + 1

2

∫ Φ(z1−µ)

Φ(z2−µ)
Φ

(
z2−ρΦ

−1
(w)√

1−ρ2

)
dw

+
∫ 1

Φ(z1−µ)
Φ

(
z2−ρΦ

−1
(w)√

1−ρ2

)
dw

ρ ∈ (−1, 1),m0 = 2 t1 +
∫ 1

t1
Φ

(
z2−ρΦ

−1
(w)√

1−ρ2

)
dw

ρ = −1,m0 = 1





t1 if 0 < µ ≤ z1 + z2
1
2 (t1 + t2)− 1

2Φ(µ− z2) +
1
2Φ(µ− z1) if z1 + z2 < µ < 2z2

1
2 t2 +

1
2Φ(µ− z1) if µ ≥ 2z2

ρ = −1,m0 = 2 min(2t1, 1)

ρ = 1,m0 = 1 1
2 min(t2,Φ(z2 − µ))

ρ = 1,m0 = 2 t1

.

4. Application to least/most favorable configurations.

4.1. Least favorable configurations for the FDR. In order to study the FDR control, an
interesting multiple testing issue is to determine which are the values of the model parameter
F1 (or µ) for which the FDR is maximum. The latter is called a least favorable configuration
(LFC) for the FDR.

4.1.1. Independent model. Let us focus on the unconditional independent model. For a step-
up procedure, expression (14) can be seen as π0mE0[tk̂/k̂] (where k̂ = |SU([G(tj+1)]1≤j≤m−1)|+1
and E0 denotes the expectation with respect to m − 1 i.i.d. uniform p-values). This shows
that the behavior of the function k 7→ tk/k is crucial to determine the LFC’s of the FDR.
Namely, if F1 and F ′

1 are two c.d.f.’s such that for all t ∈ [0, 1], F1(t) ≤ F ′
1(t), then we

have FDR(SU(t), P
I
(π0,F1)) ≤ FDR(SU(t), P

I
(π0,F ′

1)
) when tk/k is nondecreasing, while we have

FDR(SU(t), P
I
(π0,F1)) ≥ FDR(SU(t), P

I
(π0,F ′

1)
) when tk/k is nonincreasing. The latter recovers

a well known result of Benjamini and Yekutieli (2001) which was initially established in the
conditional model, see Theorem 5.3 in [3]. As a consequence, the LFC for the FDR is either
F1 = 1 (Dirac-uniform) when tk/k is nondecreasing, or F1 = 0 (F1(x) = x if we only look at
concave c.d.f.’s) when tk/k is nonincreasing. In the border case of a linear threshold, the FDR
does not depend on F1 (e.g. it is equal to π0α for the LSU), hence any configuration is a LFC.

An open problem is to determine the LFC’s of a step-down procedure using a given threshold
t = (tj)1≤j≤m. Here, we introduce a new condition on the threshold t which provides that the
Dirac-uniform configuration is a LFC for the FDR of the corresponding step-down procedure.
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EXACT CALCULATION FOR FDP 15

We define for any threshold t = (tj)1≤j≤m the following condition:

k ∈ {1, ...,m} 7→
m−k∑

i=0

tk
k + i

D̃m−k

((
tk+j − tk
1− tk

)

1≤j≤m−k

, i

)
is nondecreasing.(A)

We now present the main result of this section, which uses Theorem 3.2 and is proved in Sec-
tion 6.5.

Theorem 4.1. For m ≥ 2 hypotheses, consider the unconditional independent model P
I
(π0,F1)

and a step-down procedure SD(t) with a threshold t = (tj)1≤j≤m satisfying (A). Then for any
π0 ∈ [0, 1] and concave c.d.f. F1 ∈ F , we have

FDR(SD(t), P
I
(π0,F1)) ≤ FDR(SD(t), P

I
(π0,F1=1)),(27)

meaning that the Dirac-uniform distribution is a least favorable configuration for the FDR of
SD(t). Moreover, for α ∈ (0, 1), the linear threshold t = (αj/m)1≤j≤m satisfies (A) and thus
(27) holds for the linear step-down procedure LSD.

While condition (A) may be somehow difficult to state formally, it is very easy to check
numerically because it only involves a finite set of real numbers. For instance, considering
the threshold of Gavrilov et al. (2009) tk = αk/(m + 1 − (1 − α)k) (for which the step-
down procedure controls the FDR, see [16]), we may see that (tk)k satisfies (A) for each
(α,m) ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 0.9} × {5, 10, 50, 100}, for instance. In fact, we were not able
to find a value of (α,m) for which the corresponding threshold does not satisfy (A) (unfortu-
nately, we have yet no formal argument proving (A) for any value of (α,m)). As a consequence,
Theorem 4.1 states that the LFC for the procedure of Gavrilov et al. (2009) is still the Dirac-
uniform configuration (over the class of concave c.d.f.’s), at least for the previously listed values
of (α,m), which is a new interesting finding.

In comparison with the step-up case, for which the standard condition “k 7→ tk/k nonde-
creasing” provides that the Dirac-uniform configuration is a LFC, the new sufficient condition
(A) in the step-down case may be written as “ k 7→ tk/k . Ψ(t, k) is nondecreasing”, where

Ψ(t, k) =
∑m−k

i=0
k

k+iD̃m−k

((
tk+j−tk
1−tk

)
1≤j≤m−k

, i

)
. It turns out that the additional function Ψ

has a quite complex behavior, not necessarily connected to the one of tk/k, so that there is no
general relation between (A) and “k 7→ tk/k nondecreasing”; for instance, on the one hand, (A)
does not hold for the piecewise linear threshold defined by tk = αpk/m for 1 ≤ k ≤ a and
by tk = α(pa − m)((a − m)m)−1k + α(1 − (pa − m)(a −m)−1) for a + 1 ≤ k ≤ m (using e.g.
m = 50, p = 0.6, a = 4, α = 0.5), while tk/k is nondecreasing. On the other hand, (A) holds
for tk = 0.9 (k/m)9/10 (using e.g. m = 50) while tk/k is decreasing. In particular, for the latter
threshold and considering only the set of concave c.d.f.’s, a LFC for FDR(SU(t)) is F1(x) = x
while a LFC for FDR(SD(t)) is F1 = 1 (and we checked numerically using Gaussian models
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16 ROQUAIN, E. AND VILLERS, F.

that F1(x) = x is not a LFC for FDR(SD(t)) ). This puts forward the complexity of the issue:
whether we consider a step-up or a step-down procedure, the LFC’s for the FDR may be different
for some thresholds (e.g. tk = 0.9 (k/m)9/10, m = 50) and they may coincide for some other
thresholds (e.g. the one of [16] for suitable (α,m)).

4.1.2. EMN model. When the p-values follow the EMN model, Finner et al. (2007) conjec-
tured that a LFC for the FDR of the LSU is still the Dirac-uniform distribution (see Section 1
in [14]). Here, we support this conjecture when ρ ≥ 0 but we disprove it when ρ < 0.

In order to investigate this issue, we reported on Figure 1 the FDR of the LSU procedure
against µ in the EMN model when ρ > 0 (left) and when ρ < 0 (right), by using Corollary 3.4 and
Proposition 3.6. Under positive correlation, although each curve is not necessarily nondecreasing
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Fig 1. FDR(LSU) against the mean µ. Left: ρ ≥ 0 unconditional EMN model m = 100 and π0 = 0.5. Right: ρ < 0
conditional EMN model with m = 2 and m0 = 1. α = 0.05.

(e.g. for ρ = 0.2), the case µ = ∞, close to the right most point of Figure 1, seems to be a LFC.
A challenging problem is to state the latter formally. Under negative correlation and m = 2,
however, µ = ∞ is not a LFC anymore. As a matter of fact, in the case where m = 2, m0 = 1
and µ = ∞, the two p-values are independent (one p-value equals 0), so that the FDR equals
α/2 = αm0/m which is not a maximum for the FDR, as we will show below.

Qualitatively, we observed the same behavior concerning the FDR of the LSD procedure.

Under negative correlation, the Dirac-uniform is not a LFC for the FDR and we can therefore
legitimately ask what are the LFC’s in that case. Here, we propose to solve this problem when

m = 2 in the conditional EMN model. Let z1 = Φ
−1

(α) and z2 = Φ
−1

(α/2) and first consider
the LSU procedure. Its FDR is plotted in Figure 2 (top). When m0 = 1, we can check that
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EXACT CALCULATION FOR FDP 17

(ρ, µ) = (−1, z1 + z2) is a LFC because applying (25), the corresponding FDR is 3α/4, which
equals the Benjamini-Yekutieli’s (BY) upper-bound (1+1/2+ ...+1/m)αm0/m [3] (valid under
any dependency). Interestingly, in general, Guo and Rao (2008) states that the BY bound
can be fulfilled using very specific dependency structures between the p-values (not necessarily
including those coming from a EMN model) [19]. Here, we remark that the maximum value
of the FDR still equals the BY bound for m0 = 1, even for p-values coming from a EMN
model. Next, for m0 = 2, we may differentiate the corresponding expression in (25) in order to
obtain that, assuming α ≤ 1/2, the FDR (that does not depend on µ) attains its maximum in
ρ = (−z1(z1 − z2)− {(z21 − z1z2)

2 + 2 log(2)(z21 − z22) + 4 log(2)}1/2)/(2 log(2)) ∈ (−1, 0).
Second, we consider the LSD procedure, whose FDR is plotted in Figure 2 (bottom). In the

case wherem0 = 2, by differentiating the corresponding expression in (25) (that does not depend
on µ), we are able to state that the FDR attains its maximum at ρ = −1 and that the value of
the maximum is α. In particular, the FDR of the LSD procedure is always smaller than or equal
to α when m = 2, in the conditional EMN model (for any m0) and thus also in the unconditional
EMN model, even for a negative correlation. An interesting open problem is to know whether
this holds for larger m.
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Fig 2. FDR against the covariance −1 ≤ ρ ≤ 1 in the conditional EMN model. m = 2; α = 0.2. Left: m0 = 1,
right: m0 = 2. Top: LSU, bottom: LSD.

Remark 4.2. Reiner-Benaim (2007) also studied the value of µ maximizing the FDR in the
case m = 2 in the (conditional) EMN model with possibly negative correlation [23]. The latter
work focused on the two-sided testing with ρ ∈ {−1, 1}, m0 = 1 and m = 2.
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18 ROQUAIN, E. AND VILLERS, F.

4.2. Least/most favorable configurations for the variance of the FDP. We focus here on the
unconditional independent model and on the LSU procedure. Using (13) with s = 2, we easily
derive the following expression for the variance of the FDP:

V[FDP(LSU)] = απ0

m∑

k=1

1

k
Dm−1

(
[G(α(j + 1)/m)]1≤j≤m−1, k − 1

)
− (απ0)

2/m.(28)

As a consequence, by contrast with the FDR which is constantly equal to π0α in that case, the
variance of the FDP depends on the alternative p-value c.d.f. F1. Moreover, since the sum in
(28) equals E0[(|SU([G(α(j + 1)/m)]1≤j≤m−1)|+ 1)−1] (where E0 denotes the expectation with
respect to m − 1 i.i.d. uniform p-values), the smaller F1 (point-wise), the larger the variance.
Therefore, over the set F1 ∈ F , the least favorable configuration for the variance (that is, the
configuration where the variance is the largest) is given by F1 = 0 while the most favorable
configuration (that is, the configuration where the variance is the smallest) is the Dirac-uniform
configuration F1 = 1. Over the more “realistic” c.d.f. sets F ′ = {F1 ∈ F | ∀x ∈ (0, 1), F1(x) ≥ x}
and Fε = {F1 ∈ F | ∀x ∈ (0, 1), F1(x) ≥ ε}, 0 < ε ≤ 1 the least favorable configurations for the
variance are given respectively by F1(x) = x and F1(x) = ε. For these extreme configurations,
the expression of the variance (28) can be simplified by using the next formula (proved in
Section 6.6): for any threshold of the form tk = β + kγ, 1 ≤ k ≤ m, with β, γ ≥ 0,

(29) E0[(|SU(t)|+ 1)−1] =
1

γ − β

[
(1 + γ − β)m+1 − 1

m+ 1
− γ
[
(1 + γ − β)m − 1

]]

for γ 6= β and E0[(|SU(t)| + 1)−1] = 1−mγ otherwise (where E0 denotes the expectation with
respect to m i.i.d. uniform p-values) This leads to the following result.

Theorem 4.3. Consider the linear step-up procedure LSU in the unconditional independent
model with parameters π0 and F1. Then for any m ≥ 2, α ∈ (0, 1), π0 ∈ [0, 1] and ε ∈ (0, 1],

under the generating distribution (H,p) ∼ P
I
(π0,F1), the following holds:

min
F1∈F

{V[FDP(LSU)]} = min
F1∈F ′

{V[FDP(LSU)]} = min
F1∈Fε

V[FDP(LSU)]}

=
απ0
m

1− πm
0

1− π0
− (απ0)

2

m

(
1− πm−1

0

1− π0
+ 1

)
(30)

max
F1∈F

{V[FDP(LSU)]} = απ0(1− απ0)

max
F1∈F ′

{V[FDP(LSU)]} = απ0(1− α) + (1− π0)
π0α

2

m

max
F1∈Fε

{V[FDP(LSU)]} =
απ0
m

1− (1− (1− π0)ε)
m

(1− π0)ε
− (απ0)

2

m

(
1− (1− (1− π0)ε)

m−1

(1− π0)ε
+ 1

)
.
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EXACT CALCULATION FOR FDP 19

The proof is made in Section 6.6. Using Theorem 4.3, we are able to investigate the following
asymptotic multiple testing issue: does the FDP converge to the FDR as m grows? Establishing
the latter is crucial because when one establishes FDR ≤ γ, one implicitly wants that for the
observed realization ω, the control FDP(ω) ≤ γ′ still holds for γ′ ≃ γ (at least with high
probability and when m is large). Here, the variance measure the L2 distance between the FDP
and the FDR, and since FDP ∈ [0, 1] the latter distance tends to zero if and only if the FDP
converges to the FDR in probability. First, if π0 ∈ (0, 1) does not depend on m, the convergence
holds over the set of c.d.f.’s Fε, with a distance (E(FDP − FDR)2)1/2 converging to zero at
rate 1/

√
m. This corroborates previous asymptotic studies in the so-called “subcritical” case

(see e.g. [6, 21]). By contrast, when considering the classes F and F ′ the convergence does not
hold in the least favorable configurations F1(x) = 0 and F1(x) = x, respectively. The latter
is quite intuitive because the denominator in the FDP does not converge to infinity anymore
in that cases (see e.g. [15]), so these configurations can probably be considered as “marginal”.
Second, our non-asymptotic approach allows to make π0 depends on m in the following way
1 − π0 = 1 − π0,m ∼ m−β with 0 < β ≤ 1, which corresponds to a classical “sparse” setting
(see e.g. [9]). Expression (30) implies that, in this sparse case, the variance is always larger
than a quantity of order 1/m1−β . In particular, when 1− π0,m ∼ 1/m, for any alternative c.d.f.
F1, the FDP does not converge to the FDR, and when 1 − π0,m ∼ m−β with 0 < β < 1,
for all F1, the convergence of the FDP towards the FDR is of order slower than 1/m(1−β)/2

(in L2 norm). As illustration, for m = 10000, 1 − π0 = 1/100 and α = 0.05, expression (30)
gives (E(FDP − FDR)2)1/2 ≥ 0.0217, so the FDP has a distribution quite spread around the
FDR = π0α ≃ 0.05. As a conclusion, considering a sparse signal slows down the convergence of
the FDP to the FDR, so any FDR control should be interpreted with cautious, even in this very
standard framework (independent p-values with the LSU procedure).

5. Extensions. Our approach is also useful to study the false non-discovery proportion
(FNDP), that is, the proportion of false hypotheses among the non-rejected hypotheses, and
in particular the false non-discovery rate (FNR), defined as the average of the FNDP. For
this, we use the following duality property between step-up and step-down procedures: point-
wise, the hypotheses rejected by SD(t,p) are exactly the hypotheses non-rejected by SU(t,p)
with pi = 1 − pi and tr = 1 − tm−r+1. Hence the distribution of the FNDP of a step-down
procedure can be deduced from the distribution of the FDP of a step-up procedure. Precisely,
for 0 ≤ k ≤ m− 1, the property (11) implies that the distribution of the erroneous non-rejection
number |H1(H)∩ (SD(t))c| conditionally on |SD(t)| = k is binomial with parameters m− k and
π1(1− F1(tk+1))/(1−G(tk+1)). In particular, this leads to

FNR(SD(t), P
I
π0,F1

) = mπ1

m−1∑

k=0

1− F1(tk+1)

m− k
D̃m−1((G(tj))1≤j≤m−1, k).

Moreover, applying once more the duality property between step-up and step-down, we deduce
from Section 3.1.2 that for a step-up procedure, the distribution of the erroneous non-rejection
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20 ROQUAIN, E. AND VILLERS, F.

number conditional on the rejection number is not binomial, in general, while we can still obtain
an explicit expression for the FNR.

Finally, since our formulas depend on the true parameters of the model, which are in general
unknown in a statistical approach, one may formulate the concern of estimating these quantities
in our formulas. We did not investigate in detail this issue as it would exceed the scope of this
paper. Here, we simply notice that plugging convergent estimators of the parameters in our
formulas will lead to convergent estimators for the corresponding quantity (e.g. P(FDP ≤ x),
FDR or Power), because our formulas are continuous in all the model parameters.

6. Proofs.

6.1. Proof of Theorem 3.1. Let us first prove (11) by computing the joint distribution of
|H0(H) ∩ SU(t)| and |SU(t)|. In the independent unconditional model, we may use the ex-
changeability of (Hi, pi)i to obtain for any 0 ≤ j ≤ ℓ ≤ m,

P[|H0(H) ∩ SU(t)| = j, |SU(t)| = ℓ]

=

(
ℓ

j

)(
m

ℓ

)
P[H0(H) ∩ SU(t) = {1, ..., j},SU(t) = {1, ..., ℓ}]

=

(
ℓ

j

)(
m

ℓ

)
P[SU(t) = {1, ..., ℓ},H1 = ... = Hj = 0,Hj+1 = ... = Hℓ = 1].

Next, by definition of a step-up procedure, we have SU(t) = {i | pi ≤ tk̂} with k̂ = |SU(t)|
(expression related to the “self-consistency” condition introduced in [4]). Using Lemma A.1, if
k̂′(ℓ) denotes the number of rejections of the step-up procedure of threshold (tj+ℓ)1≤j≤m−ℓ over
m− ℓ hypotheses and using the p-values pℓ+1, ..., pm, we have

SU(t) = {1, ..., ℓ} ⇐⇒ p1 ≤ tℓ, ..., pℓ ≤ tℓ, k̂ = ℓ

⇐⇒ p1 ≤ tℓ, ..., pℓ ≤ tℓ, k̂
′
(ℓ) = 0.

Therefore,

P[|H0(H) ∩ SU(t)| = j, |SU(t)| = ℓ]

=

(
ℓ

j

)(
m

ℓ

)
P[p1 ≤ tℓ, ..., pℓ ≤ tℓ, k̂

′
(ℓ) = 0,H1 = ... = Hj = 0,Hj+1 = ... = Hℓ = 1]

=

(
ℓ

j

)(
m

ℓ

)
P[p1 ≤ tℓ, ..., pj ≤ tℓ,H1 = ... = Hj = 0]

× P[pj+1 ≤ tℓ, ..., pℓ ≤ tℓ,Hj+1 = ... = Hℓ = 1]P[k̂′(ℓ) = 0]

=

(
ℓ

j

)(
m

ℓ

)
(π0F0(tℓ))

j(π1F1(tℓ))
ℓ−jΨm−ℓ

(
1−G(tm), ..., 1 −G(tℓ+1)

)
,
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where we used the independence between the (Hi, pi) in the second equality. This leads to (11)
and then to (12). For (13), we use the Stirling numbers of second kind and the formula of the
s-th moment of a binomial distribution of Section 2.3. Expression (14) is a direct consequence
of (13) for s = 1. For the power computation, from (11), the distribution of |H1(H) ∩ SU(t)|
conditionally on k̂ = |SU(t)| is binomial with parameters k̂ and π1F1(tk̂)/G(tk̂). Therefore,

E[|H1(H) ∩ SU(t)|] = E[π1k̂F1(tk̂)/G(tk̂)] and (15) follows.

6.2. Proof of Theorem 3.2. Let us prove the FDR expression (the proof for the power is
similar). Define k̃ = |SD(t)| and k̃(1), k̃′(1) as in Lemma A.2. We get by exchangeability of

(Hi, pi)i and independence of the p-values,

FDR(R) =

m∑

i=1

E

[
1{pi ≤ tk̃}

k̃ ∨ 1
1{Hi = 0}

]
= mE

[
1{p1 ≤ tk̃}

k̃ ∨ 1
1{H1 = 0}

]

= mE

[1{p1 ≤ tk̃(1)+1}
k̃′(1) + 1

1{H1 = 0}
]
= π0mE

[F0(tk̃(1)+1)

k̃′(1) + 1

]
.

Therefore, expression (20) will be proved as soon as we state that for any k, k′ with 0 ≤ k ≤ m
and k ≤ k′ ≤ m, that we have

P
[
|SD(t)| = k, |SD(t′)| = k′

]

= D̃m

(
(G(tj))1≤j≤m, k

)
D̃m−k

((
G(tk+1+j)−G(tk+1)

1−G(tk+1)

)

1≤j≤m−k

, k′ − k

)
,(31)

for any threshold (tj)1≤j≤m+1 and letting t = (tj)1≤j≤m and t′ = (tj+1)1≤j≤m . To prove (31),
remark that we may assumed that G(x) = x up to replace (tj)j by (G(tj))j (because G is
continuous increasing). Next, assume k < k′ < m and denote L(r) =

∑m
i=1 1{pi ≤ tr}. By

definition of a step-down procedure, the probability P [|SD(t)| = k, |SD(t′)| = k′] is equal to

P
[
∀j ≤ k, L(j) ≥ j, L(k + 1) = k,∀j, k + 1 ≤ j ≤ k′, L(j + 1) ≥ j, L(k′ + 2) = k′

]

=

(
m

k

)(
m− k

k′ − k

)
P
[
∀j ≤ k, L(j) ≥ j,∀j, k + 1 ≤ j ≤ k′, L(j + 1) ≥ j,

p1, ..., pk ≤ tk+1 < pk+1, ..., pk′ ≤ tk′+2 < pk′+1, ..., pm
]

=

(
m

k

)(
m− k

k′ − k

)
P

[
p1, ..., pk ≤ tk+1 < pk+1, ..., pk′ ≤ tk′+2 < pk′+1, ..., pm ,

∀j ≤ k,

k∑

i=1

1{pi ≤ tj} ≥ j, ∀j, k + 1 ≤ j ≤ k′,

k′∑

i=k+1

1{pi ≤ tj+1} ≥ j − k

]

=

(
m

k

)(
m− k

k′ − k

)
P
[
p(1) ≤ t1, ..., p(k) ≤ tk

]
(1− tk′+2)

m−k′

× P
[
tk+1 < p(1) ≤ tk+2, ..., p(k′−k) ≤ tk′+1

]
,
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where we used that the p-values are i.i.d. Simple computations give that

P
[
tk+1 < p(1) ≤ tk+2, ..., p(k′−k) ≤ tk′+1

]
= P

[
p(1) ≤ tk+2 − tk+1, ..., p(k′−k) ≤ tk′+1 − tk+1

]
.

This leads to (31). The cases k < k′ = m and k = k′ are similar.

6.3. Proof of (16), (17) and (18). Let us state the following general expression: for 1 ≤ j ≤
k ≤ m,

P[|H0(H) ∩ SD(t)| = j, |SD(t)| = k]

=

(
k

j

)
πj
0π

k−j
1

P[U(1) ≤ t1, ..., U(k) ≤ tk | H1 = ... = Hj = 0,Hj+1 = ... = Hk = 1]

Ψk

(
G(t1), ..., G(tk))

,(32)

where (Hi, Ui)1≤i≤k is a sequence of i.i.d. variables following the unconditional independent
model (for k hypotheses). Then, applying (32) in the case j = k, j = 0 and F1 = 1 will lead to
(16), (17) and (18), respectively. To state (32), we use that (Hi, pi)i is a i.i.d. sequence:

P[|H0(H) ∩ SD(t)| = j, |SD(t)| = k]

=

(
k

j

)(
m

k

)
P[SD(t) = {1, ..., k},H1 = ... = Hj = 0,Hj+1 = ... = Hk = 1]

=

(
k

j

)(
m

k

)
P[∀ℓ ≤ k,

k∑

i=1

1{pi ≤ tℓ} ≥ ℓ,∀i ≥ k + 1, pi > tk+1,

H1 = ... = Hj = 0,Hj+1 = ... = Hk = 1]

=

(
k

j

)
πj
0π

k−j
1 P[∀ℓ ≤ k,

k∑

i=1

1{pi ≤ tℓ} ≥ ℓ | H1 = ... = Hj = 0,Hj+1 = ... = Hk = 1]

×
(
m

k

)
(1−G(tk+1))

m−k,

which leads to (32) by applying (19).

6.4. Proof of Theorem 3.6. We focus on the step-up case, when ρ ∈ (−1, 1) and m0 = 1
(the remaining cases are left to the reader). Without loss of generality, we may assume that the
first coordinate correspond to the true null, that is, H = (0, 1). In this context, the FDP takes
one of the three values: 0, 12 , 1, according to the location of the tests statistics Yi = Xi + µHi

with respect to the critical values z1 and z2. From the definition of a step-up procedure, we
may define the two regions for i ∈ {1, 2}, Di = {(y1, y2) ∈ R

2 | FDP(y1, y2) = i/2}, where
FDP(y1, y2) denotes the FDP of SU(t) taken in the p-values p = (Φ(y1),Φ(y2)). The re-
gions Di are represented on Figure 3(a). Next, since (Y1, Y2) follows the EMN model, we
may write for i ∈ {1, 2}, P(FDP(Y1, Y2) = i/2) = (2π

√
1− ρ2)−1

∫ ∫
Di

exp{− 1
2(1−ρ2)

(
y1 −
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ρ(y2 − µ)
)2 − 1

2(y2 − µ)2} dy1dy2 = (2π)−1
∫ ∫

D̃i
exp{−1

2 (u
2 + v2)} dudv by using the sub-

stitution u = (
√

1− ρ2)−1
(
y1 − ρ(y2 − µ)

)
and v = y2 − µ, and where the resulting in-

tegration domain D̃i is represented on Figure 3(b). Therefore, we obtain P(FDP = 1/2) =

(
√
2π)−1

∫∞
z1−µ exp{−v2/2}Φ

(
(z1 − ρv)/

√
1− ρ2

)
dv, and P(FDP = 1) = (

√
2π)−1

∫ z1−µ
−∞ exp{−v2/2}Φ

(
(z2 −

and the final expression results by using the substitution w = Φ(v).

-
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Fig 3. Left: Di. Right: D̃i. For i = 1(double cross-hatch) and i = 2 (simple cross-hatch). Graph for ρ < 0.

6.5. Proof of Theorem 4.1 . For any t ∈ [0, 1], let G(t) = π0t+π1F1(t) and G1(t) = π0t+π1.
First, since F1 is concave, we have for t < t′ ≤ 1, that (F1(t

′)−F1(t))/(t
′−t) ≥ (1−F1(t))/(1−t)

and thus for t ≤ t′, we obtain the inequality

(33) (G(t′)−G(t))/(1 −G(t)) ≥ (G1(t
′)−G1(t))/(1 −G1(t))

(by convention, the LHS (resp. RHS) of (33) is equal to 0 if G(t) = 1 (resp. G1(t) = 1)). From

expression (20), we obtain that FDR(LSD, P
I
(π0,F )) equals

π0m

m∑

k=1

D̃m−1((G(tj))1≤j≤m−1, k − 1)

m−k∑

i=0

tk
k + i

D̃m−k

((
G(tk+j)−G(tk)

1−G(tk)

)

1≤j≤m−k

, i

)

≤ π0m

m∑

k=1

D̃m−1((G(tj))1≤j≤m−1, k − 1)

m−k∑

i=0

tk
k + i

D̃m−k

((
G1(tk+j)−G1(tk)

1−G1(tk)

)

1≤j≤m−k

, i

)

= π0m

m∑

k=1

D̃m−1((G(tj))1≤j≤m−1, k − 1)

m−k∑

i=0

tk
k + i

D̃m−k

((
tk+j − tk
1− tk

)

1≤j≤m−k

, i

)
,
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where the inequality comes from (33) and because for a fixed k, the sum over i can be seen as the
expectation of tk/(k + I) where I is the rejection number of a step-down procedure (point-wise
nondecreasing in the threshold). Next, considering this time the sum over k as an expectation,
since G ≤ G1 and since a step-down procedure is point-wise nondecreasing in the threshold, the
proof is finished by using assumption (A).

Consider now the case where tj = αj/m and let us prove that this threshold satisfies (A).

For any m ≥ 2 and 1 ≤ k ≤ m, let us denote Sm,k =
∑m−k

i=0
k

k+iD̃m−k

((
αj/m

1−αk/m

)
1≤j≤m−k

, i

)
.

Letting am,k = k
m

(
1 − α m−k

m−αk

)
(increasing in k) and bm,k = m−α

m
m−k
m−αk (decreasing in k), we

may prove the following recursion (see the proof below):

(34) Sm,k = am,k + bm,kSm−1,k.

Using (34) we propose to state that (tk)k satisfies (A), that is,“k ∈ {1, ...,m} 7→ Sm,k is non-
decreasing” by a recurrence on m ≥ 2: the property is obviously true for m = 2. Assuming the
property true for m− 1, we obtain for any 2 ≤ k ≤ m− 1,

Sm,k − Sm,k−1 = am,k − am,k−1 + bm,kSm−1,k − bm,k−1Sm−1,k−1

= am,k − am,k−1 + (bm,k − bm,k−1)Sm−1,k + bm,k−1(Sm−1,k − Sm−1,k−1)

≥ (am,k + bm,k)− (am,k−1 + bm,k−1),

because Sm−1,k ≤ 1. Hence, since am,k+bm,k = 1− α
m

m−k
m−αk , the quantity am,k+bm,k is increasing

in k and Sm,k − Sm,k−1 ≥ 0. Also, we obviously have Sm,m = 1 ≥ Sm,m−1, and the recurrence is
completed.

We now finally state (34). Let for 1 ≤ j ≤ m− k, tj =
αj/m

1−αk/m and t′j = 1− tm−k−j+1, so that

Sm,k = E0

[
k

k + |SD((tj)1≤j≤m−k)|

]
= E0

[
k

m− |SU((t′j)1≤j≤m−k)|

]
,

where E0 denotes the expectation with respect to i.i.d. uniform p-values. Hence, denoting t′j =

β + jγ with β = m−mα−α
m−αk and γ = α

m−αk , we obtain

Sm,k

k
=

1

m
+

1

m
E0

[
|SU((t′j)1≤j≤m−k)|

m− |SU((t′j)i≤j≤m−k)|

]

=
1

m
+

1

m

m−k∑

j=1

j

m− j

(
m− k

j

)
(t′j)

jΨm−k−j

(
1− t′m−k, ..., 1 − t′j+1

)

=
1

m
+

m− k

m

m−k∑

j=1

t′j
m− j

(
m− k − 1

j − 1

)
(t′j)

j−1Ψm−k−j

(
1− t′m−k, ..., 1 − t′j+1

)
,
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so that
Sm,k

k equals

1

m
− γ

m− k

m
+

m− k

m
(β +mγ)

m−1−k∑

j=0

(t′j+1)
j

m− 1− j

(
m− 1− k

j

)
Ψm−1−k−j

(
1− t′m−k, ..., 1 − t′j+2

)

=
1

m
− γ

m− k

m
+

m− k

m
(β +mγ)E0

[
1

m− 1− |SU((t′j+1)1≤j≤m−1−k)|

]

=
1

m
− γ

m− k

m
+

m− k

m
(β +mγ)

Sm−1,k

k
,

and the recursion (34) is proved.

6.6. Proofs for Section 4.2. Let us first prove (29): denote for any 0 ≤ i ≤ m − 1, ui =
E0[(|SU((tj)i+1≤j≤m)|+i+1)−1] (where E0 denotes the expectation with respect to i.i.d. uniform
p-values) and um = 1/(m+ 1), um+1 = 0, so that u0 equals the quantity in (29). We may prove
the following recursion relation: for any 0 ≤ i ≤ m,

(35) (i+ 1)ui = (1− (m− i)γ)− (m− i)(β − γ)ui+1.

Expression (35) is proved as follows: for i < m,

(i+ 1)ui =1− E0

[ |SU((tj)i+1≤j≤m)|
|SU((tj)i+1≤j≤m)|+ i+ 1

]

=1−
m−i∑

k=1

k

k + i+ 1

(
m− i

k

)
(tk+i)

kΨm−i−k

(
1− tm, ..., 1 − tk+i+1

)

=1− (m− i)

m−i∑

k=1

tk+i

k + i+ 1

(
m− i− 1

k − 1

)
(tk+i)

k−1Ψm−i−k

(
1− tm, ..., 1 − tk+i+1

)

=1− (m− i)

m−(i+1)∑

k=0

(
γ +

β − γ

k + (i+ 1) + 1

)(
m− (i+ 1)

k

)
(tk+(i+1))

k

×Ψm−(i+1)−k

(
1− tm, ..., 1 − tk+(i+1)+1

)
.

Next, we obtain that the solution of the recursion (35) is given by

ui =

m−i∑

j=0

1− (m− (i+ j))γ

m− (i+ j)

(m− i)× · · · × (m− (i+ j))

(i+ 1)× · · · × (i+ j + 1)
(γ − β)j ,

which leads to u0 =
∑m

j=0
1−(m−j)γ

j+1

(m
j

)
(γ − β)j and (29) results.

To prove Theorem 4.3, we combine (28) and (29), the latter using m − 1 hypotheses and
special values for β and γ: β = γ = π0α/m for F1(x) = 0 ; β = γ = α/m for F1(x) = x ;
β = π0α/m+ (1− π0)ε and γ = π0α/m for F1(x) = ε.
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Appendix

APPENDIX A: USEFUL LEMMAS

The following lemma is related to the proof of Theorem 2.1 in [12] and to Lemma 8.1 (i) in
[25].

Lemma A.1. Consider a step-up procedure SU(t) using a given threshold t testing m null
hypotheses with p-values p1, ..., pm and rejecting k̂ = |SU(t)| hypotheses. For a given 1 ≤ ℓ ≤ m,
denote by k̂′(ℓ) the number of rejections of the step-up procedure of threshold (tj+ℓ)1≤j≤m−ℓ over
m− ℓ hypotheses and using the p-values pℓ+1, ..., pm. Then we have point-wise

∀1 ≤ i ≤ ℓ, pi ≤ tk̂ ⇐⇒ ∀1 ≤ i ≤ ℓ, pi ≤ tk̂′
(ℓ)

+ℓ ⇐⇒ k̂ = k̂′(ℓ) + ℓ.

Proof. First note that since k̂ is nondecreasing in each coordinate of (p1, ..., pm), we always
have k̂ ≤ k̂′(ℓ) + ℓ. Second, since p(k) ≤ tk is equivalent to |{1 ≤ j ≤ m | pj ≤ tk}| ≥ k, the

rejection number of SU(t) can be defined as k̂ = max{k ∈ {0, 1, ...,m} | |{1 ≤ j ≤ m | pj ≤
tk}| ≥ k}. Hence, ∀1 ≤ i ≤ ℓ, pi ≤ tk̂′

(ℓ)
+ℓ is equivalent to |{1 ≤ j ≤ m | pj ≤ tk̂′

(ℓ)
+ℓ}| ≥

ℓ+ |{ℓ+ 1 ≤ j ≤ m | pj ≤ tk̂′
(ℓ)

+ℓ}| which is equivalent to |{1 ≤ j ≤ m | pj ≤ tk̂′
(ℓ)

+ℓ}| ≥ ℓ+ k̂′(ℓ),

by definition of k̂′(ℓ). As a consequence, since k̂ is a maximum and since k̂ ≤ k̂′(ℓ) + ℓ, the latter

is equivalent to k̂′(ℓ)+ ℓ = k̂. This establishes the second equivalence. The first equivalence easily

comes from the second equivalence and using that tk̂ ≤ tk̂′
(ℓ)

+ℓ because (tk)k is a nondecreasing

sequence.
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For step-down procedures, we use the next lemma.

Lemma A.2. Consider a step-down procedure SD(t) using a given threshold t testing m
null hypotheses with p-values p1, ..., pm and rejecting k̃ = |SD(t)| hypotheses. Denote by k̃(1)
(resp. k̃′(1)) the number of rejections of the step-up procedure of threshold (tj)1≤j≤m−1 (resp.

(tj+1)1≤j≤m−1) over m − 1 hypotheses and using the p-values p2, ..., pm. Then we have point-
wise

p1 ≤ tk̃ ⇐⇒ p1 ≤ tk̃(1)+1 ⇐⇒ k̃ = k̃′(1) + 1.

In the above lemma, we underline that the assertion p1 ≤ tk̃′
(1)

+1 =⇒ p1 ≤ tk̃ is not true in

general.

Proof. Similarly to the step-up case, the rejection number of SD(t) can be defined as k̃ =
max{k ∈ {0, 1, ...,m} | ∀k′ ≤ k, |{1 ≤ j ≤ m | pj ≤ tk′}| ≥ k′}. Also remark that we always
have k̃′(1) + 1 ≥ k̃ and, by definition of k̃, for any j we have pj ≤ tk̃ ⇔ pj ≤ tk̃+1. First prove

that p1 ≤ tk̃ ⇔ k̃ = k̃′(1) + 1: using the definitions of k̃ and k̃′(1) we obtain p1 ≤ tk̃ ⇔ |{2 ≤
j ≤ m | pj ≤ tk̃+1}| < k̃ ⇔ k̃′(1) < k̃ ⇔ k̃′(1) + 1 = k̃. Second, we prove p1 > tk̃ ⇔ p1 > tk̃(1)+1:

since we obviously have k̃ ≥ k̃(1), we get p1 > tk̃ ⇒ p1 > tk̃+1 ⇒ p1 > tk̃(1)+1. Conversely, if

p1 > tk̃(1)+1, we get |{1 ≤ j ≤ m | pj ≤ tk̃(1)+1}| = |{2 ≤ j ≤ m | pj ≤ tk̃(1)+1}| < k̃(1) + 1 (by

definition of k̃(1)), hence k̃(1) +1 > k̃ (by definition of k̃), which implies k̃(1) = k̃, thus p1 > tk̃+1
and finally p1 > tk̃.
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