Exact calculations for false discovery proportion with application to least favorable configurations

Abstract : In a context of multiple hypothesis testing, we provide several new exact calculations related to the false discovery proportion (FDP) of step-up and step-down procedures. For step-up procedures, we show that the number of erroneous rejections conditionally on the rejection number is simply a binomial variable, which leads to explicit computations of the c.d.f., the {$s$-th} moment and the mean of the FDP, the latter corresponding to the false discovery rate (FDR). For step-down procedures, we derive what is to our knowledge the first explicit formula for the FDR valid for any alternative c.d.f. of the $p$-values. We also derive explicit computations of the power for both step-up and step-down procedures. These formulas are ``explicit'' in the sense that they only involve the parameters of the model and the c.d.f. of the order statistics of i.i.d. uniform variables. The $p$-values are assumed either independent or coming from an equicorrelated multivariate normal model and an additional mixture model for the true/false hypotheses is used. This new approach is used to investigate new results which are of interest in their own right, related to least/most favorable configurations for the FDR and the variance of the FDP.
Type de document :
Article dans une revue
The Annals of Statistics, IMS, 2011, 39 (1), pp.584-612. 〈10.1214/10-AOS847〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00456385
Contributeur : Etienne Roquain <>
Soumis le : vendredi 2 avril 2010 - 14:34:21
Dernière modification le : mercredi 29 novembre 2017 - 16:31:38
Document(s) archivé(s) le : vendredi 17 septembre 2010 - 16:37:39

Fichiers

RV_AoS.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

INSMI | PMA | UPMC | USPC

Citation

Etienne Roquain, Fanny Villers. Exact calculations for false discovery proportion with application to least favorable configurations. The Annals of Statistics, IMS, 2011, 39 (1), pp.584-612. 〈10.1214/10-AOS847〉. 〈hal-00456385v2〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

123