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Some flows in shape optimization

Pierre Cardaliaguet*and Olivier Ley'

Abstract. Geometric flows related to shape optimization problems of Bernoulli
type are investigated. The evolution law is the sum of a curvature term and a non-
local term of Hele-Shaw type. We introduce generalized set solutions, the definition
of which is widely inspired by viscosity solutions. The main result is an inclusion
preservation principle for generalized solutions. As a consequence, we obtain ex-
istence, uniqueness and stability of solutions. Asymptotic behavior for the flow is
discussed: we prove that the solutions converge to a generalized Bernoulli exterior
free boundary problem.

Résumé. On étudie des flots géométriques liés a des problémes d’optimisation
de forme du type “probleme de Bernoulli”. La loi d’évolution considérée a la forme
d’une somme d’un terme de courbure et d’un terme non-local de type Hele-Shaw.
Notre définition de solution généralisée est fortement inspirée de la notion de solu-
tions de viscosité. Le résultat central est un principe d’inclusion pour les ensembles
solutions. Nous en déduisons ’existence, une unicité générique et des propriétés
de stabilité des solutions. Enfin, nous étudions le comportement asymptotique des
solutions en montrant qu’elles convergent vers la solution d’un probléme & frontiere
libre de Bernoulli.

1 Introduction

In recent years several works have been devoted to the study of viscosity
solution for moving boundary problems whose evolution law is governed by

a nonlocal equation. See in particular [B, [, B, B, [2, BQ, B1]. In this paper,
we consider subsets 2(¢) of RY (with N > 2) whose boundary 9§2(t) evolves
with a normal velocity of the type

Ve = FER®, HXO) + Ah(z, Q(t)) (1)
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where A > 0, Vil(t) is the outward unit normal to 9(t) at x, H;?(t) is the
curvature matrix of 9Q(t) at x (nonpositive for convex sets), F' is continuous
and elliptic, i.e., nondecreasing with respect to the curvature matrix. The
nonlocal term h is of Hele-Shaw type:

h(z, Q(t)) = |Du()|* ,
where u : Q(t) — R is the solution to the following p.d.e.

—Au=0 inQ(t)\S,
u=g¢g onds, (2)
u=0  on 0t).

The set S # () is a fixed source with a smooth boundary and g : 9S — R is
positive and smooth. We always assume that S CC Q(t).

The motivation to study such problems comes from several numerical
works using the “level-set approach” in shape optimization [, 3, 4, B3,
Pg. The idea of these papers is to use formally a gradient method for the
minimization of an objective function J(2) where Q is a subset of R"™. The
use of the level-set method for building the gradient flow has then the major
advantage to allow topological changes. Let us underline that this technique
is up to now purely heuristic. One of the goals of this paper is to justify it
for some simple shape optimisation problems.

In order to make our purpose more transparent, a brief description of
the level-set approach to shape optimization problem is now in order (see
also the discussion in [[] for a more detailed presentation concerning more
realistic shape optimization problems). Consider the problem of minimizing
the capacity of a set under volume constraints:

min cap(Q ith vol(Q2) = constant} , 3
Lmin feap(®) with vol(g) ) ®)

where

cap(Q) :/ |Du(x)|*dz and vol() :/ dz
Q\s Q\S

and v is the solution of ({]) with Q instead of Q(t). For any local diffeo-
morphism @, we can compute the shape derivatives with respect to 8 of the
capacity and of the volume. By Hadamard formulas we get

cap'(Q)(0) = /a Q|Du(a)|2<9(a),u§2>da and vol'(Q)(0) = /a Q(@(a),y(?ma.



Assuming that the optimal shape 2 is smooth, the necessary conditions of
optimality states that there is a Lagrange multiplier A > 0 such that

cap’(2)(0) + Avol'(2)(0) =0 .
So it is natural to set
JA(2) = vol(Q2) + Acap(9?) ,

where A\ = 1/A. If we choose 0(z) = (—1 + A Du(x)[?)v$ on 09, then, at
least formally, we get

TL(Q)(0) = —/ (=14 A\|Du(0)2)%do < 0.
o0

Therefore the velocity 0(z) = (—1 + A Du(z)|?>)v} appears as a descent
direction for the optimization problem () and for the set . The heuristic
method for solving (f) is now clear: fix an initial position o, consider the
evolution (Q(t));>0 with normal velocity given by ([[) and F = —1, and
compute the limit of Q(t) as t — 4o0o: this limit is the natural candidate
minimizer for ().

It is worth noticing that problem () has for necessary condition the
classical Bernoulli exterior free boundary problem

Find a set K cC RY, with S cC K and |Du(z)| = k for all z € 0K, (4)

where k > 0 is a fixed constant and u is the solution of (f). We refer the
reader to the survey paper [Lf] for a complete description of this problem.
If one considers a perimeter constraint instead of a volume constraint:

min cap(Q ith per(2) = constant} ,
s min Acap(f)  with  per(€) }
one is naturally lead to consider the evolution equation ([l) with F(v, A) =
~=Tr(A) (ie., the mean curvature). The flow is then formally a descent
direction for
IA(Q) = per(Q) + Acap(Q) .

Let us underline that this problem has for necessary condition the gener-
alization of the free boundary problem (f]) with curvature dependance (see
63).

Of course all the above computations are only formal: in general, solu-
tions to the evolution equation do not remain smooth, even when starting
from smooth initial data. Numerically, this difficulty is overcome by using



the level-set approach, which allows to define the solution after the onset of
singularities. The aim of this paper is to define and study generalized solu-
tions of the evolution equation, and to investigate the asymptotic behavior
of the solution as t — 4oc.

Our concept of solutions is widely inspired by the definition of viscosity
solution for the mean curvature motion, which corresponds to equation ([)
with F(v,A) = 25Tr(A) and A = 0. Motivated by the numerical work
of Osher and Sethian [P, a weak notion of solution for this motion was
introduced in the articles of Chen, Giga and Goto [[[(] and Evans and Spruck
(3. In this so-called level-set method, the evolution is described as the level
set of the solution of an auxiliary pde, the level set equation. This equation
is solved in the sense of viscosity solutions (see [[[1]]). This powerful method
leads to plenty of results, we refer for instance to the survey book of Giga
[l6]. Note that the level-set approach in shape optimization is a natural-but
up to now formal-generalization of these ideas.

As pointed out in [§, fl, Rf], the generalized solutions obtained by the
level set approach can also be defined in more geometric and intric ways (see
also the related notion of barrier solutions introduced by De Giorgi). We
use here a definition introduced in [J], and used repetitively in [[i, B, fl. In
the case of the mean curvature motion, Giga [[l] proved this definition is
equivalent to the level-set one. Compared with the already quoted studies
on viscosity solutions of front propagation problems with nonlocal terms,
the main novelty of this paper is the fact that we are able to treat signed
velocities which also involve curvature terms. We learnt recently that a
similar result (for a Stefan problem) has been obtained by Kim in [RT].

Our main result is an inclusion principle, which is the equivalent of the
maximum principle for geometric evolutions. It states that viscosity subso-
lutions for the flow remain included into viscosity supersolutions, provided
the initial positions are. For this we have to generalize Ilmanen interposi-
tion Lemma, which was already the key tool of [, f]. This Lemma allows to
separate disjoint sets by a smooth (that is C1!) surface in a clever way. We
improve this result in two directions (see Theorem B.3). At first we show
that, when dealing with subsets of R x R, the smooth separating hyper-
surfaces in R x RY can be chosen to be smoothly evolving hypersurfaces
of RYN. Secondly, we build in a carefull way a C? approximation of these
evolving hypersurfaces which allows to treat problems with curvature as in
.

Let us finally explain how this paper is organized. In Section 2, we de-
fine the notion of generalized solutions and state the main properties of the
velocity law. Section 3 is devoted to the interposition Theorems. In Section



4 we state and prove the inclusion principle for our generalized solutions.
As a consequence, we derive results about existence, uniqueness and stabil-
ity of generalized solutions. Finally, Section 5 is devoted to the asymptotic
behaviour of the solutions in terms of a generalized Bernoulli exterior free
boundary problem.

Acknowledgment. The authors are partially supported by the ACI grant
JC 1041 “Mouvements d’interface avec termes non-locaux” from the French
Ministry of Research.

2 Definitions and preliminary results

2.1 Definition of the solutions

Let us first fix some notations: throughout the paper |- | denotes the eu-
clidean norm (of RY or RN¥*!, depending on the context) and B(z, R) the
open ball centered at = and of radius R. If K is a subset of RY and z € RY,
then dg (x) denotes the usual distance from x to K: di(z) = infyck |y — |
and dg is the signed distance to 0K defined by

[ di(z) if z¢K,
dx (@) = { Ce(r) iz K (5)

Finally, in the whole paper, if K1 and K are subset of RM for N > 1, then
Ky CcC Ky

means that K is bounded and, either K; C int(Ks) or equivalently KN

RN\K, = 0.

We intend to study the evolution of compact hypersurfaces X (t) = 9€(t)
of RN, where Q(t) is an open set, evolving with the following law:

VE>0, 2 € X(t), Vi, =ha(z,Q) (6)

where V(?m) is the normal velocity of the evolving set, hy = hy(z,?) is given,

for any set Q C R with smooth boundary by

h(z,Q) = F(WS, H?) + Ah(z, Q) (7)

€

where 1! is the outward unit normal to Q at z, HS! the curvature matrix.
Throughout this paper we assume that (v, A) € SN "1xSy — F(v, A) € Ris



continuous and elliptic, i.e., nondecreasing with respect to the matrix. Here
SN=1 denotes the (N — 1)—dimensional unit sphere, and Sy the space of
N —dimensional symmetric matrices. Typical examples for F' are F(v, A) =
—1 (this corresponds to the flow associated to Bernoulli problem in the
introduction) or F(v, A) = Tr(A) (for the flow arising in the minimization
of the capacity under perimeter constraints). As for h, it is a nonlocal
evolution term of Hele-Shaw type: the example we consider here is

h(z,Q) = |Du(z)* (8)
where v : 0 — R is the solution of the following p.d.e.

i)  —Au=0 inQ\S,
i1) u=g¢g onds, 9)
iii)  wu=0  ondfd

The set S # () is a fixed source and we always assume above that S CC Q(¢).
Here and throughout the paper, we suppose that

i) S c R" is bounded and equal to the closure of an open set
with a C2 boundary,
ii) g:0S — (0,+00) is CH* (for some a € (0,1)).
(10)
Let us underline that h(z,(2) is well defined as soon as  has a “smooth”
(say for instance C%*) boundary and that S CC €. In the sequel, we set

D={K c R" : K is bounded and S C int(K)} , (11)

where int(K') denotes the interior of K.
From now on, we consider the graph

K={tz)e R" xRN : zeQ()}.

of the evolving sets Q(t). Note that K is a subset of RT x R™. The set K
is our main unknown. We denote by (¢, x) an element of such a set, where
t € Rt denotes the time and = € R denotes the space. We set

Kt) = {ze RN : (t,z) e K}.

The closure of the set K in R]\i *1 is denoted by K. The closure of the
complementary of X is denoted :

o~

K = (R* x RV)\K



and we set R R
Kt)={xe R : (t,2) eK}.
We use here repetitively the terminology and the notations introduced
in [§, f] and [
e A tube K is a subset of RT x RY, such that K N ([0,#] x RY) is a

compact subset of RN*! for any ¢ > 0.

o Aset KC R" x RN is left lower semicontinuous if

vVt >0, Vo € K(t), if t,, — ¢, then Jx,, € K(t,) such that z,, — = .

o If s =1,20r (1,1), a C® regular tube K, is a tube with a nonempty
interior and whose boundary has a C® regularity, and is such that at
any point (¢,x) € OK,, the outward unit normal Vgirx) = (v, vg) to Ky
at (t, ) satisfies

vy # 0. (12)

e The normal velocity V(’f;) of a C! regular tube K, at the point (¢, ) €
0K, is defined by

vke — _ 4

(t:2) |V

; (13)
where yé%:v) = (v, V) is the outward unit normal to I, at (¢, z).
e A C! regular tube K, is externally tangent to a tube K at (t,z) € K if
K C K, and (t,x) € 0K, .
It is internally tangent to K at (t,z) € K if

K, C K and (t,x) € 0K, .

e We say that a sequence of C!'! tubes (K,,) converges to some C!'! tube
K in the CYP sense if (K,,) converges to K and (0K,,) converges to 0K
for the Hausdorff distance, and if there is an open neighborhood O of
OK such that, if dx (respectively dx, ) is the signed distance () to K
(respectively to K, ), then (dg, ) and (Ddg, ) converge uniformly to
di and Ddx on O and ||D?dy,, ||oc are uniformly bounded on O.



Remark 2.1

1. The reason to introduce C%! and C? tubes is clear when looking at (f)
and (@): h is well defined if K, is a C1'! tube (see Section P.J) and F is
well defined if K, is a C2 tube (to be able to compute the curvature of ,.).
Therefore, () is well defined when K, is a C? regular tube and, following
the ideas of viscosity solutions (see [L1]]), C? regular tubes will play the role
of “test-functions” in the following definition.

2. For simplicity, we gave all the above definitions with tubes defined for
all time ¢ > 0. But this is not the point, everything in the sequel is local in
time, so we use the same definitions with tubes K where K(s) is only defined
in a neighborhood of some fixed t. Note that smooth tubes will always be
defined locally in time.

Definition 2.1 Let K be a tube and Ky € D be an initial set.

1. K is a viscosity subsolution to the front propagation problem (in short
FPP) (@) if K is left lower semicontinuous and K(t) € D for any t,
and if, for any C? regular tube K, esternally tangent to K at some
point (t,x), with IC,.(t) € D and t > 0, we have

V< e K (1)

where V(’E;) is the normal velocity of IC, at (t,x).
We say that K is a subsolution to the FPP (B) with initial position K,
if K is a subsolution and if K(0) C K.

2. K is a viscosity supersolution to the FPP (@) if K is left lower semi-
continuous, and IC(t) C D for any t, and if, for any C? regqular tube
Ky internally tangent to K at some point (t,z), with K,(t) € D and
t > 0, we have

Kr
V(t,:v) > hA(xJCr(t)) :
We say that K is a supersolution to the FPP (@ with initial position
Ky if K is a supersolution and if K(0) C RN\ Kj.

3. Finally, we say that a tube K is a viscosity solution to the front prop-
agation problem (with initial position Ky) if KC is a sub- and a super-
solution to the FPP (with initial position Kj).

Remark 2.2 The operator hy defined in ([f) is the sum of a local operator
F and a nonlocal one h. As in the theory of viscosity solutions, we can local-
ize arguments related to the local part of the operator. More precisely, C?



regularity of the boundary of the tube is required to compute the curvature
in F, but only C'! regularity is needed to compute the nonlocal part h.
Therefore, the above definition is equivalent if we replace “for any C? regu-
lar tube I, internally (respectively externally) tangent to I at some point
(t,z)...” by “for any C"! regular tube K, internally (respectively externally)
tangent to K at some point (¢, z) such that K, is C? in a neighborhood of
(t,z)...” We will use this equivalent definition in the proof of Theorem 1.

2.2 Regularity properties of the velocity h

We complete this part by recalling the regularity properties of the nonlocal
term h defined by (§) and (f]). These results were already given in [f], so we
omit the proofs. Here we assume that the set S and the function g satisfy
assumptions ([[(]).

Because of the maximum principle, the function h is nonnegative and
nondecreasing: if K| € D and Ky € D are closed and with a C%! boundary,
if K1 € Ky and if 2 € K1 N Ky, then 0 < h(z, K1) < h(z, K3).

Furthermore, h is continuous in the following sense: If K,, and K € D
are closed subsets of R with C! boundary such that K, converge to K
in the C1'P sense, if z, € 0K,, converge to x € K, then

h,{n h(zy, K,) = h(z, K).
This is a straightforward application of [[q, Theorem 8.33].
Next we give a result describing the behaviour of h for large ball:

Lemma 2.2 For any xg € RN, there are constants ro > 0 and o > 0 such
that

Vr > To, Vo € aB('IOaT)’ h(xaB(xO’T)) <

@ if N =2

{ ar?—2N if N #2,
r?[log(r)|?

Moreover, the constants ro and « only depend on S and on ||g||oc-

The proof is based on standard construction of supersolutions to (f]) for
= B(0,r), and so we omit it.

Lemma (P.J) states that h is small when € is a large ball. On the
contrary, the following lemma means that h is large when “(2 is close to S.”
For all v > 0, we introduce

S, ={rec RN, ds(z) <~} (14)

Then, we have



Lemma 2.3 There exist v9 > 0 and a constant o > 0 which depends only
on g and S such that, for all v € (0,7),

(0%

h(z, Sy) > p)

Vo € 05,.

2

Proof of Lemma R.3. Since S has a C? boundary, we can fix 79 > 0
small enough such that dg defined by (f]) is C? in S9.,\{ds < —270}. We
fix v € (0,7) and set K = {dg < —7}. We note that dx = dg + is C? on
S9vo\{ds < —27}. Moreover dix = on 0S and di = 27y on 05,,. Set

M = max{|Ad%(x)| | 0 < dg(z) <~} and m = min{g(z) | = € S} . (15)
Finally we set 2 = S, and, for 3 = e 3M/4m we define
o(r) = ﬁ(e_Mr/(4V2) -1) YreR.

We claim that
u(x) = p(di () — (27)%)

is a subsolution of (ff). Indeed, since ¢(0) = 0, for all z € 95, u(z) = 0.
From the definition of 3, for all z € 85, u(z) = ¢(—3+?%) < m < g. Setting
re = d%(z) — (27)?, an easy computation gives

—Au(x) = =¢" (rz) [ D(d )] = ' (ra) Aldi)-
But D(d%) = 2dx Ddk and |Ddk| = 1. From ([L5), we get
—Au(a) < —4¢" (ry)dE + M|¢' (r2)|.
A computation of the derivatives of ¢ gives

BM? -M 2 d7 (z)
~Au(z) < B gy (1 - dx@)

For x € Q\S, we have dg(x) > ~ and therefore we obtain —Au(z) < 0.
Finally u is a subsolution with v > 0 in Q and u = 0 on 9S,. Thus, for all
x €08,,
- M2e—3M /2,2
2
. 5,) > [Du(e)? = S

QED

We now recall the main regularity property of the map h:

10



Lemma 2.4 Let R > 0 be some large constant and v > 0 be sufficiently
small such that S, defined by (i4) has a C? boundary. There is a constant
0 > 1/v such that, for any compact set K with C' boundary such that
S, Cint(K) and K C B(0,R — ), for any v € RN with |v| < 1/0 and any
x € 0K, we have

h(z 4 v, K +v) > (1 —0|v|)*h(z, K). (16)

For the proof, see [, Proposition 2.4].

3 Interposition theorems

This part is devoted to interposition theorems in space and in space-time.
Such results are fondamental in the proof of the inclusion principle. They
play the same role as Jensen’s maximum principle (see [[[9]) or Ishii’s lemma
(see [T, Theorem 8.3]) in the standard theory of viscosity solutions.

3.1 An interposition theorem in RV

Let us start with an interposition result for subsets of RY. The following
proposition is a direct consequence of Ilmanen interposition lemma [[§] and
can be found in [[, Proposition 3.7].

Proposition 3.1 (Interposition) Let K; and Ky be two closed subsets of
RN, with K1 compact and such that K1 CC Ky. Let y; € K1 and ys € 0K>
be such that

ly1 — Y| = e |21 — 22| -
Then there is some open subset X1 of RYN with a CY' boundary, such that
Y1 is externally tangent to Ky at yy (i.e., K1 C X1 and y1 € 0%1) and such
that Y9 := X1 +yo — y1 18 internally tangent to Ko at yo (i.e., Yo C Ko and
Y2 € 322)

See Figure [] for an illustration of this proposition. The key point in this
result is that the smooth set Y5 internally tangent to K> is just a translation
of the smooth set ¥; externally tangent to K;.

The CY! regularity of the sets ¥; and 3o turns out to be optimal: one
cannot expect ¥; and 3y to be C? in general. Unfortunately the C? regularity
will be required in the sequel to be able to deal with curvature terms. In
order to overcome this difficulty, one can approximate the sets ¥; and X9
in the following way:

11



K,
Y2

Figure 1: Illustration of the result of Proposition B.1.

Theorem 3.2 (Approximation) Let K1, K, y1, y2, X1 and X2 be as in
Proposition [3.1 and 6 > 0 be sufficiently small. Then there exists Y10 and
Yon open subsets of RN with Y1 boundary, converging respectively to ¥,
and Xy in the C1P sense, there exists y1., € K1 and ya, € 0Ky converging
respectively to y1 and ya, and there exists (N — 1) x (N — 1) matrices X,
X9 such that

(1) X1, is externally tangent to K1 at y1, and Yo, is internally tangent
to Ko at yap.

(i) For i = 1 and 2, %, is of class C* in a neighbourhood of y;, with
lim H, " — X;, and
1! :

1 X1 0 1/ Inoi —In—1
— — < < —
5l = ( 0 —Xo > =9 ( —Ino1 Ina ) - 17

Remark 3.1

1. Note carefully that the two approximations are not independent because
of the inequalities ([[4), which implies in particular that X; < Xo.

2. By “§ > 0 sufficiently small”, we mean § € (0, [y1 — y2|/(2 + |y1 — y2]))-

The proof of Theorem B.9 is very similar to the (more difficult) proof of the
second part of Theorem B.J below, so we omit it.

12



3.2 Interposition by regular tubes

The aim of this part is to extend previous results for subsets X1,X9 C
R x RY which are regular tubes. The point here is to be able to construct
tubes satisfying the regularity assumption ([L2).

For this we introduce some notations. In R x RY we work with the
norm (where o > 0 is fixed)

1
L o 2) 2
)l = (50 +1a)
For any subset E of RNt we note the distance to E for this norm

dL(t,x) = inf |[(s,y) — (t,2)]s .
B(t,x) (S’y)eEl( y) — (t, )]

For any two subsets A; and Ay of RN*! we define the minimal distance
between A1 and Ay by

Ay, Ag) = inf ta, 29) — (t1,21)]s -
e(Ar, A2) (thxl)eAEI(t%m)eA2|( 2,T2) — (t1,71)|

We consider the following transversality condition:

for C; cc Cy ¢ R x RN with C; compact and Cs closed,
and for any (51,71) € C1 and any (S2,92) € Co, (18)
if |(51,91) — (82, 92)|c = €(C1,Cs), then 81 > 0,82 > 0 and g1 # Ja.

Theorem 3.3 Let Cy and Cy be such that ({I§) holds. Let us fix (51,91) €
Cq and (§2,§2) e Cy with

|(‘§1,g1) - (‘§2’g2)|0 = 6(0156;) .

1. Interposition: There exists a C1'' regular tube X1, defined on an open
interval I (see Remark [2.1.2), such that 1 is externally tangent to Cy
at (51,91), with s1 € I, and ¥g := X1 + (S2,42) — (51,41) s internally
tangent to Cy at (S2,72).

2. Joint approximation by C? tubes: Futhermore, for any § > 0 suf-
ficiently small, there exists C1'' reqular tubes Y1,n and Xo , converging
respectively to X1 and Yo in the chb sense, there exists (51, Y1,n) € C1
and (525, Yo,n) € 6’; converging respectively to (81,91) and (S2,¥2), and
there exists (N — 1) x (N — 1) matrices X1, Xo such that

13



(1) X1, is externally tangent to Cy at (51.n,Y1,n) and Yo, is inter-
nally tangent to Cy at (S2.n,Y2,n)-
(i1) Fori=1and2,%;, is of class C? in a neighbourhood of (Sins i)
with lim ") 5 X, and
o ,

1 X; 0 1/ It —In—
— — < < —
5la-n = ( 0 —-X ) ~ 0 ( —In-1 N > - (19)

The proof of this theorem is done in Section B.5.

Remark 3.2

1. Inequality ([19) implies that X; < X». Although we only use this latter
inequality in the sequel, inequality ([[d) allows to treat equations with F
depending on z (see for instance [[L1]]). Let us once again point out that the
two approximations are not independent because of ([[9).

2. Thanks to the ChP convergence of ¥ ,, and Y ,, to X1 and X9 respectively,
one also has:

. Y1,n(51,0) 1 Yo n(52,n) _  X1(51) _  32(52)

hin Vg1n - hin Via.m =y = Vg, ’ (20)
. Sin 1 Yon _ v _ 122
hrrln V(§1,n,§1,n) - hrl;n V(§2,m?32,n) - V(§1,z?1) o ‘/(52,2?2) : (21)

3. By “d > 0 sufficiently small, we mean: § € (0,e(C1, 6’;)/(2 +e(Ch, 6’\2)))

3.3 Existence of the regular interposition tubes

Let us introduce a new notation: if ¥ is a tube defined on some open interval
I (see Remark P.1].2), then we set

bd(%) := | Jo%(t) . (22)

tel

The following result is the key point in the proof of the existence of the
regular interposition tubes of Theorem B.J part (i).

Proposition 3.4 Let Cy, Co, (51,91) € C1, (52,52) € Cy be as in Theorem
B.3. There exist a CY' regular tube 3 defined on some interval I and some
(t,x) €](51,91), (52, 72)[ such that

tel, zeds(t) and e(Cy, Co)=e(Cy, bd(X)) +e(X, Co). (23)
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Above, |(51,41), (52, y2)[ denotes the open segment joining (51,91 ) and (52, ¥2).

Proof of Proposition B.4. Let us first fix some notation needed through-
out the proof: we set

Cl ’ 6;)’

€:= ¢
o E:={(t,z) € RT x R" : (t,z) €](s1,41), (2, y2)[ Where
(s1,41) € C1 and (s2,y2) € Cy satisty |(s1,91) — (s2,y2)|s = €},

A, ={(t,x) € R" x RN : dZ (t,z) > pand d%;(t,x) > p} for p € (0,€/2) ,
and, if I is an interval, then A,(I) = A, N (I x RY),

o (t(s),x(s)) :=s(51,41) + (1 — s)(52,y2) for all s € (0,1) and
(t_wf') = (t(1/2)7x(1/2))7 (24)

o [, :=(t—r7,t+7)foralr>0.

For later use we note that

d%;(t(s),x(s)) =se and dg, (t(s),z(s)) = (1 —s)e forall s € (0,1),
(25
because of the definition of (51, 71) and (82, ¥2). Moreover, for a point (¢, x)
R* x RN, the equality é—d% (t,x) = dg, (t,z) holds if and only if (t,7) € E.
We now reduce the consthuction of the tube X to the construction of a
suitable function w:

~—

m

Lemma 3.5 Let I be a nonempty open interval of RT and w: A,(I) - R
be of class Ct1 (for some p € (0,€/2)) and such that

e—dZ(s.y) S w(s.y) <dg(s.y)  Vsy)€AD).  (26)

We also assume that there is some v € (p,é—p) and some (t,x) € ENA,(I)
with w(t,x) =~ and such that

Dyw(s,y) #0 V(s,y) € Ap(I) with w(s,y)=1~. (27)

Then the set ¥ = {(s,y) € A,() | w(s,y) < v} satisfies the requirements of
Proposition [3.4.

15



Proof of Lemma [B.5. Let us first check that ¥ is a tube of class C1'! in
the intervall 1. Because of assumption (R7) it suffices to show that bd(X) C
A,(I) where bd(X) is defined by (R2). Using (R6) and the fact that v €
(p,€ — p), we have, for all (s,y) € bd(2),

A% (s,y) =2 e—vy>p and dg (s,y) =7 >p.
Hence (s,y) € A,(1).
Finally we show that (23) holds. If w(s,y) = 7, then dZ, (s,y) > v while
d"CA(s,y) > & — . Hence e(Cy,bd(X)) > v, e((/l’;, Y)>eée—~vand
2

e(Cy,bd(2)) + ¢(Cs, %) > e(Cy, Ca) .
For the reverse inequality let us first recall that e — dZ- (t,x) = dg, (t,z)
2
because (t,2) € E. This implies that v = dZ, (t,r) > e(C1,bd(¥)) and
€—vy=dZ(tz) > ¢(Cy, ¥). Hence (F3) holds.
2
QED

Next we turn to the construction of a function w satisfying the assump-
tions of Lemma B.5§. We advice the reader to look at Figure ] to follow the
rest of the proof of Proposition B.4.

The first step is the following result given in [f]: let us set

Ky :={(t,z) € R" x RN : dZ, (t,z) < 15¢/16} .
Then, we have

Lemma 3.6 [4, Lemma 5.1] The function ¢(t,x) = dg (t,z) is Chlin a
bounded open neighborhood Oy of EN (K1\0K1) and

1
é—d% (tx) < 1%6 —p(t,x) <dZ (t,x) Y(t,z)e R x RN .  (28)

We now show that ¢ has a nonvanishing spatial gradient in a neigh-
borhood o/f\E N O;. Let (t,z) € EN O;. Then there exists (s1,y1) € C1,
(s2,y2) € Cs such that |(s1,y1) — (s2,92)|s = € and (t,z) €](s1,y1), (s2,y2)][-
Therefore, Do(t,z) = ((s2,92) — (s1,%1)))/é. From assumption ([Lg), we
know that y1 # yo. Thus D,p(t, z) # 0 for all (¢,2) € ENO;. By continuity
of Dy in Oy, there is an open set Oz C O which contains F'N Ag/g and
such that

n:= min_|Dyp(t,x)| > 0. (29)
(t,x)eO2

We are now going to modify ¢ far away from E. For this we need a

technical lemma:
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Figure 2: Illustration of the proof of Proposition [3.4.

Lemma 3.7 Let f,g,h be continuous functions in R* such that g < f < h
in R*. Suppose that K = {h = g} is non empty and compact and that there
is some open neighbourhood U of K such that f is CY' in U.
Then, for any 77 > 0 and for any open subset U’ such that K C U’ CcC U,

there is a function 1 : R* — R such that:

(1) ¢ is CllO’c1 in R* and ¢ is C* in RF\U’,

(i) g < < hin R¥ and g < < h in RF\U',

(iii) |D( — )] < 7 in TF.
Proof of Lemma B.7. Let U; and U, be two open subsets of R* such
that K C Uz CC Uy CC U’ and fix some smooth map 0 : RF — [0, 1] such
that # = 1in Uy and 8 = 0 in Rk\Ul. Then we consider a smooth map
¢ : R* — R such that g < £ < h in RF\Us,

1€ = fllee@nus) < _n and  ||DE€ — D fl| poounus) < U )
* = 2|| Db s =2

The construction of such a function £ is possible because g < f < h outside
of K and f is Cb! in U. Then we set

¥(z) = 0(z) f(z) + (1 - 0(2))¢(z) Vo€ R".

17



Note first that (i) and (ii) obviously hold. As for (iii), it clearly holds in Us
since ¢ = f in Us. Moreover, for z € U'\Us, we have

n o nDo)| _
(D = @) < |DE = f)(@)] + [f(2) = &@)||DO(z)] < 2 T oo, =7

QED

Next, we apply LemmaB.q with k := N+1, U := O, U’ := Oy, 77 :=1/2
where 7 is given by (R9),

g(t,x) :=ée— d‘é\2 (t,x) — Aes (t,x), h(t,x) :=dg, (t,z) + d, ¢ (t,x)

and f(t,x) := 15¢/16 — @(t, ) for (t,z) € RT x RY. We extend f, g and h
for t < 0 by setting f(¢t,x) = f(0,z), g(t,z) = g(0,z) and h(t,z) = h(0,z).
From Lemma B.q we have ¢ < f < h in RN*!. Moreover, from assumption
(L), the set K := {g = h} = ENAg /g is compact and contained in (0, +00) x
RY and we know from Lemma [B.§ that f is C1! in the neighbourhood Oy
of K. Lemma B.7q states that there is a map 1 : RN*! — R such that

(i) ¢ is Clloi in RNt and €% in RNV+1\ Oy,
(i) € —dZ <4 < dp, in Ag,

(iii) e — d%; <t < dg, in Ag;s\Os,

(iv) [D(¢ = )l <n/2 in Oy.

Putting together () and (iv) implies that

|Da(t, )] 2 | Do f(t,2)| = [Da(y = f)(t,2)| = 5 V(t,2) € Oz

N3

We now choose two open subsets U; and Us of RY and some 7 > 0 such
that Oy(f) CC Uy CC Uy (recall that £ is defined by (R4)) and

|D(t, )] > g V(t,x) € I x Ty . (31)

We also fix some smooth function § : RY — [0,1] such that § = 1 in U,
6 =0 in RV\U; and we set

w(t,x) = 0(z)Y(t,z) + (1 — 0(x))Y(t, x) V(t,z) € RVTL.

Note that w belongs to Cllo’i (RN NC>®(R x (RN\U1)). We claim that we
can choose 7 > 0 sufficiently small such that

{ (i) e~ dZ <w<dZ, in Ag(ly),

(i) |Ds w|>?7/81n] x Uj. (32)

18



Let us prove the first assertion. Let (t,7) € Ag/4(I;). On the one hand,
if (t,z) € Agja(Ir) N (I x Ug), then 6(z) = 1 and w(t,z) = (t,x). Since
Ag/u(Ir) C Agsg, we conclude from (B((ii)). On the other hand, suppose
(t,r) € Aga(I-)\(I; x Uz). In particular, (t,z) ¢ Oz(t) and (f,x) ¢ Os.
Therefore, from (B((iii)), we have

|

—d%;(t_,x) < Y(t,x) < dg,(t,x).

Using the uniform continuity of the above distance functions in the compact

set Az4(Ir), we obtain that, for 7 small enough,

_d%;(t,x) < P(t,x) < dE,(t,x) Y(t,z) € Agu(I)\(Ir x Us) .

@l

Combining with (B{(ii)), we conclude also in this case.
For the second assertion, we notice that, for (¢,x) € I, x Uy, we have

| Da(w=1)(t, 2)| < [1=0()[[De (4 (t, 2) =0, 2) [+ [ (E, 2) = (F, 2) || DO ()]

with a right-handside smaller than 7/8 provided 7 is sufficiently small, be-
cause Y € cht Then, for (t,z) € I, x Uy, we have, from the choice of U;

loc*

and 7 in (BI),
‘Dﬂ&w(t?x)‘ = ‘D$w(t7x)’ - ’Dx(w - w)(th)‘ > 77/8 ’

which proves the second statement.

We now fix o € (0,€/4) such that
(t(s),z(s)) € I x Oa(t) Vse (1/2—-0,1/2+0) .

This is possible because (t,Z) = (¢(1/2),2(1/2)) belongs to Oy(t). From
(BH), an easy calculation gives w(t(s),z(s)) = (1 — s)é. Since w is smooth
in R x (RN\U;), Sard Lemma states that we can find a level v € ((1/2 —
0)eé, (1/2 + 0)e) such that v is a non critical value of w in R x (RV\U).
We claim that w and ~ satisfy the requirements of Lemma B.J. Note first
that, for s = (€ —)/e, the point ((s),z(s)) belongs to EN Az/4(I;) and
satisfies w(t(s),z(s)) = v. Moreover, (P) holds from (B3(i)). Finally we
show that () holds. Indeed, if w(t,z) = v for some (t,z) € Ag4(I;), then
either = € Uy, in which case Dyw(t,z) # 0 thanks to (BY(ii)), or = ¢ Uy
and Dw(t,z) = (0, Dyw(,tx)) # 0 because 7 is a non critical value of w in
I, x (RN\Uj). In each case we have D,w(t,z) # 0. This completes the
proof of Proposition B.4.

QED

19



3.4 (? regularization of a C!'! tangent surface near contact
points

The aim of this section is to show the following fact: if a C1'! surface 2
is externally tangent to a set K at a point y, then it is possible to find a
CY! surface 3 which is close to ¥ (in the C'P sense) and is still externally
tangent to K at a point § close to y. Moreover, 3 is more regular than ¥,
namely is C? in a neighborhood of §. In particular, we can use ¥ as a test
set to estimate the curvature (see Remark R.9).

Let us give the exact assumptions:

Let K be a subset of RF for k > 1 and ¥ be an open set with a
CH! boundary 9%, which is externally tangent to K at some point
y € OK. Let x ¢ K be such that y is the unique projection of x onto
K and p := Ddg(z) is the outward normal to 3 at y. Suppose that (33)
there is a sequence of points x,, — x, where dg is twice differentiable
with first and second derivative denoted respectively p,, and X,,, and
finally assume that p,, converges to p while X, converges to some X.

Note that, by usual properties of the distance function at differentiability
points, the projection of x,, onto K is unique and converges to y. We denote
by y, this projection.

Proposition 3.8 Under Assumption ([33) we can find a sequence of open
sets ¥, with C' boundary such that

(i) ¥, is externally tangent to K at yp,

(ii) ¥, has a C? boundary in a neighbourhood of y,, with normal p, and
curvature equal to the restriction to (p,)* of —(Xn — %Ik),

(i4i) X, converges to ¥ in the CV" sense.

Before starting the proof of the proposition, we need two lemmas. The first
one builds, from the derivatives of the distance function at a point a, a map
¢ which has a local maximum on K at the point b, projection of a onto K:

Lemma 3.9 Suppose that a ¢ K and that d is twice differentiable at a.
Let b be the projection of a onto K. Then, for any o > 0, the (smooth)
function

8(2) = (Ddxe(@), = = ) + 5((DPdic(a) — ali)(= = b), 2 = b)

has a strict local maximum at b on K.
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Proof of Lemma B.9. For any z € K, we have
o 2 2
¢(z):dK(z+a—b)—§|z—b| —dg(a) — |z —b|“e(z — b)

because dg is has a second order Taylor expansion at a. But, since z € K,
we have dg(z+a—b) < |(z+a—0b) — z| = |a — b| = dx(a). Therefore

6() < =51z = b = |z = b%e(z — b)
which is negative as soon as z € K is sufficiently close to b and z # b.

QED

From now on, we fix a smooth function § : R™ — [0,1] such that 6 is
nonincreasing, # = 1 on [0,1/2] and § =0 on [1, +00).

We will use several times below the following interpolation. The proof
relies on straightforward computations, so we skip it.

Lemma 3.10 Let ¢ and v some C' functions in some open set O. Let
g € O be such that ¢(y) = ¥ (y), and let us set, for any p >0,

£p(2) = (2)0,(2) +(2)(1 — 0,(2)) where 0,(z) =0 <|Z ;2??| > .

Then, for any p > 0 such that B(y,p) CC O, we have

1€, — Ylloe < Cnp + (My + Ma2)p?) , || D&, — Dip|loc < C(n+ (M + My)p)

and o
1D%p|o0 < ;(77 + (M + Ms)p)

for some constant C = C(k) > 0, where we have set n = |D¢(y) — Dip(y)|,
My = |[D*@lloc and My = || D*¢]|oc.

Remark 3.3

1. The norms || - || are of course taken on B(y, p), since §, = 1) outside.
2. The key point is that £, coincides with ¢ in a small neighbourhood of ,
but is not too far from ¢ in the full set O provided p and n are small.

We are now ready to prove the proposition.
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Proof of Proposition B.§. From Lemma B.9 the function ¢,, defined by

6n(2) = (Ddxc (), = = o) + 5{(D*dic(n) = Z1) = ), 2 = )

has a strict local maximum at y, on K. Since y, is the unique projection of
x,, onto K, the map ¢, (z) = di(zy,) — |z — x| has a global strict maximum
on K at y,. Hence

2

Cn(2) = Pn(2)0n(2) + Yn(2)(1 — 0,(2)) where 6,(z) = 0 <\Zp72yn!> ,
n
has a global strict maximum at y,, on K, provided we choose p, > 0, p, — 0
and n large enough. Since ¢, is globally smooth with uniformly bounded
second order derivative, and since 1, is smooth with uniformly bounded
second order derivative ouside of the ball B(z,dk(x)/2), and since finally
Yn(Yn) = Pn(yn) = 0 and DYn(yn) = DYn(yn) = pn, Lemma states
that ¢, and D(, uniformly converge to the function z — dg (x) — |z — | and
its derivative respectively, in the set IR*\B(xz,dx (x)/2), and that ||D%C,]|eo
is uniformly bounded in R*\B(z,dx (x)/2).

Let us now denote by dy; the signed distance to 3 (see (f) for a defini-
tion). Since 9% is a CY'! manifold, we can find some open neighbourhood O
of Y such that dx is C'! in O, with || D?dx| s bounded in O. For z € RF,
we define

d"(z) =dx(z) — Buly — z|2 where 3, >0, 8, — 0.

Notice that d” is Cb! in O, that d" and its derivative converge locally uni-
formly to dy, whereas ||D?d"|s is bounded in O. The advantage of in-
troducing d" is that {d" < 0} is still externally tangent to K at y with
OK No{d" <0} = {y} (instead, ¥ can touch K at many points). We claim
that, if we choose 3, = 2|y — y,|'/3, then, at least for n large,

d"(2) < d*(ya) for any z € K\B(yn, Bu/2). (34)

Indeed, for z € K\B(yn, fn/2),

d"(2) = d"(yn) < —Buly — 2 = dx(yn) + Buly — yal’
< =Bu(Bn/2 =1y = ynl)® + |y — ynl + Buly — ynl®
2
< _‘y_yn‘(1_4‘y_yn‘3)7

which is nonpositive for large n since y, — ¥.
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We introduce the maps

. N N ]2
£0(2) = ol (")~ (] (1-0,(2)) where G, (2) =0 (E22L)
and

on = max{|p, — an(yn”,ﬁn/ﬁ} .

Let us notice that o, — 0 because y,, — y and p,, and Dd"(y,) = Ddx(y,)—
2B (yn — y) converge both to p = Ddyx(y) since Ddy is continuous at y.
We now use Lemma B.10, with (,(yn) = [d"(yn) — d"(yn)] = 0 and 7, :=
|DCn(yn) — DA™ (yn)| = |pn — Ddx:(yn) + 2Bn(yn — y)| — 0. It states that &,
and D&, uniformly converge to dy, and Ddy, respectively. Moreover, since
Nn < op, the second order derivative of &, is uniformly bounded.

Let us finally prove that the set ,, = {§,, < 0} satisfies our requirements.
What we already proved on &, shows that ¥, converges to ¥ (in the ChP
sense). From its construction, ¥, is smooth in a neighborhood of y,, with
normal at the point y, equal to p, and curvature equal to the restriction to
(pn) " of (X, — %Ik)

It remains to check that ¥, is externally tangent to K at y,. It suffices
to prove that £,(z) < 0 for any z € K, because §,(y,) = 0. Let z € K. If
|2 — yn| < 0n/V2, then &,(2) = Cu(2) < 0 from the construction of ¢,. If
|2 —yn| > 00 /V2, then |z —yp| > B,/2 and thus, from (B4), d"(z) < d"(yy).
Since moreover ¢, has a global maximum on K at y,, we finally have

€n(2) = Cu(2)fn(2) +[d"(2) — d"(yn)](1 — On(2))

< Caln)fn(2) + [ (g) — A" ()] (1L — () = 0.

In conclusion we have proved that &, has a global maximum on K at y,,
and the proof is complete.

QED

3.5 Proof of Theorem

The first part of the theorem is an immediate consequence of Proposition
BA4: weset £y =% — (t,2) + (51,71) and ¥o = ¥ — (t,2) + (32, %2) where &
and (t,z) are given by Proposition B.4 and we check that 31 and X3 enjoy
the desired properties.

Without loss of generality, we assume that § € (0,e/(2 4 €)). Let us
introduce, for all (71, 21,72, 22) € RT x RN x RT x RY,

1
f(Tl,Zl,TQ,ZQ) == dUCI(Tth) + d%;(T2722) + 2_5‘(7—1721) - (T2722)‘(27 .
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Then dZ, , d(éA and f are semi-concave functions in (R* x R)?\(Cy U 6'\2)2
2

We claim that f has a minimum at (7, z1, T2, Z2), where

(171) = £+ 0)(E0T0) + 5 (1~ 0)(52. )
and 1 1
(72, 22) = 5(1 = 8)(51,41) + 5 (1 +0)(52,72)-

Indeed, on the one hand, an easy computation shows that f(7, z1, T2, Z2) =
€ — 6/2. On the other hand, for all (71, 21,72, 29) € RT x RY x R x R,
we have

f(71, 21,72, 22)

(o (e 1
= dg, (11, 21) +d@(7'2,22) + %!(71721) — (12, 22)|2

1

= |(11,21) — (t1,71)]o + (72, 22) — (t2,72)[0 + %Kﬁ,zl) — (72,222
1

> |(t1, 1) = (t2, 22)|0 — [(11,21) — (T2, 22) |0 + %Kﬁ,zl) — (72,222,

where (t1,21) € C; and (t2,z2) € 6’\2 are the points for which the distances
dg, (11,21) and d% (19,29) are achieved. It follows that f(7,21,72,22) >
2

€—0/2 since |(t1, 1) — (t2,72)|, > € and since, for all r > 0, —r +12/(25) >
—4§/2. Finally, (71, 21, T2, Z2) is & minimum for f.

Since the semi-concave function f has a minimum at (71, Z1, 72, Z2), Jensen
maximum principle [[[9] (see also [[4]) states that one can find a sequence
of points (71, Z1,n, T2,n, Z2,n) Which converges to (7i, z1, T2, Z2) and a non-

negative symmetric matrix A € Son o such that the functions d"l, d% and
2

f are twice differentiable at (71, Z1.n), (Ton, Z2.n) and (Tin, Z1.n, T2.n, 22.n)

respectively and such that

Df(%l,na 21,717 77'2,n7 22,71) — 0 and D2f(77-1,n7 21,717 77'2,n7 22,71) — A > 0.
(35)
In particular, since Ddg, (71, 21,,) and Dd‘é\ (To,n, Zo,n) exist, the projec-
2

tions of (7, Z21,,) onto C; and 6’; respectively are unique, and equal to
some (515, Y1,n) and (52, ¥2,). Note that (51,71) is the unique projection
onto Cy of (¢, ), and therefore (51, 91,,) converges to (51,%1). For the same

reason, (525, Y2,n) converges to (52, y2). Since dg, and d%\ are semi-concave
2

functions, the matrices DQd(é1 (T1,n, Z1,n) and DQd(éA (T2,n, Z2,n) are bounded
2
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from above: namely (see for instance [f], Proposition 22.2])

1

D2,d% (Fin,Z1n) € ————
Lz Cl( o ,n) d‘él(Tl,n,Zl,n)

In (36)

and 1
D2 de(Fy, . 50, )< ———— In. 37
oo 02(T27n72'27n) >~ d%;(%zn,zzn) N ( )

Using (BY), we get

( D2,dE, (T1ns Z10) + 31N —5In )

1 = = 1
_EIN ngd%;(TZn,ZQ,n) + SIN

—~A>0, (38)

where the matrix A € Sy is the restriction to RN x RN of A. In particular,

. (A As
1fvvesetA—<A3 Ay ),then

2
Dixd%& (77_17"7 21,71) + D?zmd%«; (77-277“ 22771) + EIN — A1+ A2 >0

and therefore D%xda (T1,ns Z1,n) and D%md%; (T2,n, Z2,n) are in fact bounded.
So, after relabelling all the sequences, we can assume that the restriction
of —=D2,dZ. (T1n: Z1,n) t0 (Dzdd, (T1n, Z1,n)) " converges to some matrix X
while the restriction of Dfmd‘é\ (T2,n, Z2.n) tO (Dxd%; (To.n, Za.n)) L converges

to some X5. Note that, from (Bg) we have

( —X11+%IN—1 _%I{V—l > -
—3IN-1 Xo+4tInog ) &
Moreover, since
dg, (Tin, Z1n) = di, (T1,21) = 6(12— J)
and 7
A% (Ton, Zon) = A% (T2, 22) = e(12— 5) |

we get from (B6, B7)

-X1 0 2 1
< 0 Xy > < mfz(zv—n < sTav-1)

because § < &/(é + 2). So we have proved ([L9).
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We now apply Proposition B.§ to the sets C; and ¥;. Assumption (B3)
holds since the set ¥ is externally tangent to C; at (51, %1). Moreover, the
point (81,%1) is the unique projection of the point (71,z1) onto C;. The
points (71, Z1,,) are points of twice differentiability of dg,, converge to
(71, Z1) and have a unique projection (81, ¥1,,) onto Ci. Therefore we can
find a sequence of sets ¥y ,, with CH! boundary, such that Y1 ,n is externally
tangent to Cy at (814,%1,,) and has a C? boundary near (51,,%1,,). Note
that, since ¥ is a Cb! regular tube and since the sets Y1, converge to ¥
in the C" sense, Y1, are also Cb! regular tubes provided n is sufficiently
large.

From Proposition B.§(ii), we also have that the curvature matrix of X1 ,
at (51n,Y1,n) is equal to the restriction of —(DQd(é1 (T1ns Z10) + %INJA) to
the tangent space of X1 ,, at (51,5, 1,n). Let us denote by X1 ,, the restriction
of this curvature matrix to R". We notice that X1, converges to X.

In the same way, applying Proposition/@ to the complementary of the
tube Yo which is externally tangent to Cy at (S2,92), we can find a se-
quence of C1! tubes Yo, which are externally tangent to 6’; at some points
(82,ns Y2.n), such that 3, are of class C2 near (82, %2.), and such that the
curvature matrix Xo ,, to 32 ,(52,) at g2, converges to Xs.

QED

4 The inclusion principle

4.1 Statement of the main theorem. Existence, uniqueness
and stability

Theorem 4.1 (Inclusion principle) Let 0 < Ay < Ao be fized, K1 be a
subsolution of the FPP (§) with speed hy, on the time interval [0,T) for
some T > 0 and Ky be a supersolution on [0,T") with speed hy,. If

K1(0) N K2(0) =0,

then, for all t € [0,T),

JR— —

,Cl(t) N ,Cg(t) =0.

Before proving Theorem [, we recall some applications of such inclusion
principle, omiting the proofs which are easy adaptations of those of [[] and

-

Concerning the existence of solutions, we have the following
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Proposition 4.2 For any initial position Ky, with S C int(Ky) and Ky
bounded, there is (at least) one solution to the FPP () for hy.

Moreover, there is a largest solution and a smallest solution to this prob-
lem. The largest solution has a closed graph while the smallest solution has
an open graph in Rt* x RN . The largest solution contains all the subsolu-
tions of the FPP (8) with initial condition K, while the smallest solution
s contained in any supersolution.

In general, one cannot expect to have a unique solution, i.e., the closure
of the minimal solution is not necessarily equal to the maximal solution.
However, uniqueness is generic:

Proposition 4.3 Let (K))xso be a strictly increasing family of initial po-
sitions (i.e., Ky CC Ky for 0 < X < \) such that Ky € D for all A > 0.
Then the solution of the FPP () for hy with initial position K\ is unique
but for a countable subset of the \’s.

Stability of solutions is expressed by means of Kuratowski upperlimit of
sets. Let us recall that, if (Ay,)nen is a sequence of sets in RM | then the
Kuratowski upperlimit A* = Limsup,, A,, is the subset of all accumulation
points of somes sequences of points in (Ay,)nen, namely

A* = {ze RM :3(ny)rey increasing sequence of integers, 3(z;)pen,
2z, € Ap, and z = lilgn Yk - (39)

We define A, as the complementary of Lim sup,, ;1;

Proposition 4.4 If IC,, is a sequence of subsolutions for hy, locally uni-
formly bounded with respect to t, then the Kuratowski upperlimit K* =
Lim sup,, K, is also a subsolution for hy.

In a similar way, if KC,, is a sequence of supersolutions for hy, locally
uniformly bounded with respect to t, then ICi is also a supersolution for hy.

4.2 Proof of Theorem [.1]

Without loss of generality, we assume that Ky has a closed graph. We argue
by contradiction, assuming there exists 0 < T < T such that

K1(T*) N ICo(T™) # 0. (40)
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For 0 > 0 and ¢ > 0, we consider

po(t) = min dx; (t, )

and we set
T =inf{t >0 : py(t) <ee'}.
Recall that the notations | - |, and d% were introduced at the beginning
2

of subsection B.3. Let r > 0 sufficiently small such that S + rB has a C>
boundary and S+ rB CC K1(t) and S+ rB CC Ky(t) for all t € [0,T]. We
also fix R > 0 sufficiently large such that

sup |z| + sup lz] <R —1.
(t,x)eKq, t<T (t,x)eq, t<T

We denote by 6 the constant defined in Proposition R4 for R and r. Let
us recall that 6 > 1/r and that, for any compact set K with C*! boundary
such that S, C int(K) and K C B(0, R—r), for any v € RY with |v| < 1/6
and any x € 0K, we have

h(z+v,K +v) > (1—0Jv])*h(z,K) . (41)

We refer the reader to Figure ] for an illustration of the proof.

IR N

ZR+

g
S
Ao

=5

Figure 3: Illustration of the proof of Theorem [T

Lemma 4.5 We can choose € > 0 and o > 0 sufficiently small so that
(i) Aa(1—0€)* >\ andeo <1,
(ii) T > e,

28



(i) pol(T57) = e~ 1"
(iv) for any y1 € K1(T7) and any (s2,y2) € Ko such that

poT0) = i A (T 9) = (T ) = (sales (42)

we have y1 # yo and so > 0.

The proof of the lemma is postponed to Section [.3.
From now on we fix € and ¢ as in Lemma [i.] and we set s; = 7. Let
us also set

Ky = {(s,y) e R* x R" :
(7, 2) € Ky with 7 < sy and |(s,y) — (7,2)]c <e(e™” —e 1)}

Recall that, for any two subsets A; and Ay of RNT!, we define the minimal
distance between A; and As by

e(Ay, Az) = (tl7ml)€Ailf71(ft2’x2)eA2 |(t2, 22) = (t1,21)lo -
Lemma 4.6 The set K77 is closed, with K{°(s1) = K1(s1) and
e(lCi’o,l/C\g) = ee L.
Moreover there exist yy € K (s1) and (s2,y2) € Ka, such that
[(s1.91) — (s2.92)l0 = (K77, ), (43)
and, for such points y1 and (s2,y2), we have y; # ys.

The proof is postponed. Lemma [ is a kind of refinement of Lemma
B.5.(iv). Note that the proof of Lemma . and Lemma [L.g only use the fact
that K1(0) N ,/C\Q(O) = () and that K; and K are left lower semicontinuous.

Next we give an estimate of the normal velocity of the tube K1 in terms
of the normal velocity of K77:

Lemma 4.7 Assume that a C1'! tube X is externally tangent to K77 at some
point (3,y) € OK{°. Let (7,z) € K1 be such that

7<s1 and |[(5,9) — (7,2)|, <ele”™ —e ).
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Then there is a C! tube ¥ which is externally tangent to the tube K1 N
([0,7] x RN) at (7,%) and such that

P
Vea 2

7E) =

ZyFee™ and X(F) = 3(5) + (2 - 9).

If furthermore ¥ is of class C? in a neighbourhood of (5,7), then S is also
C? in a neighbourhood of (7,%).

We postpone the proof. We are now ready to use the interposition Theorem
that we apply to C; := K77 and Cy := Ky. Note that condition ([I§)
holds thanks to Lemma [.§. Let us fix (s1,y1) € K77 and (s2,y2) € K2 with

(s1,31) — (s2,52)] = e(KS7, K2) .

From Theorem B.J we know that there exists a regular tube ¥; with C1:!
boundary such that X; is externally tangent to K77 at (s1,31) and X :=

Y1 + (s2,y2) — (s1,y1) is internally tangent to Ko at (s2,y2) (see Figure fj).

Futhermore, there exist Cb! regular tubes 21,, and X9, converging re-
spectively to X1 and X9 in the CLP sense, there exist (S1m,Y1,0) € /Ci’o and
(S2,m,Y2,n) € I/C\g converging respectively to (s1,y1) and (s2,y2), and there
exist (N — 1) x (N — 1) matrices X, X», such that

(i) X1, is externally tangent to K77 at (s1,n,y1,n) and Xo, is internally
tangent to Ko at (s2,n,Y2,n),

(ii) For i =1,2, 3; , is of class C? in a neighbourhood of (Sim, Yin) With

: Z1,n(51,n) : Y2,n(52,n) Y 3
hyrln Vyll,n - - hrrln Vy22,n > = Vyll(SI) - Vy22(82)7 (44)
. Zl,n 1 E2,n _ 21 _ E2
h,]in V(S1,my1,n) - hrrln V(82,n,y2,n) - V(817y1) - V(827y2)’ (45)
and, for i = 1,2,
lim Hoo"y = X, with X1 — X5 <0 . (46)
- Vi,

Since K2 is a supersolution for hy, and X, is internally tangent to Ko
at (s2,n,Y2,n), we have

VE2,n > F(VE2,n(52,n) H£2,n(82,n)) —i—)\gil(yQ,naEQ,n(SQ,n))'

(32’",y2’n) - Y2,n Y Y2,n
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Letting n — +oo gives, from the continuity property of h, from (f4), ({)

and (§d)
V2 > F(yyzj(s?),XQ) + Aah(y2, X2(s2)) (47)

(52,92) =

We now establish a symmetric inequality for 3. For any n, let (71, z1,n) €
JC1 be such that

Tin <51 and  (S10,Y10) — (Tin, 210)]e < €(e” ™ —e™°1).

Note that (71,0, 21,n) — (s1,91) because (s1,4,y1,,) — (s1,41) and K77 has a
closed graph with K77 (s1) = K(s1) (see Lemma [£.§). In particular, 71, > 0
for large n. Since ¥, is externally tangent to K77 at (s1,y1,,), Lemma
[i.7 states that one can find a C™! tube ilm externally tangent to K1 N
([077'1,n] X RN) at (Tl,n7zl,n) with

il,n > VZLn
(Tl,nyzl,n) - (Sl,nvyl,n

)+ ee 1 and i(ﬁm) =X(s10) + (21,0 — Y1,n)-

Moreover ilm is also C? in a neighbourhood of (71 ,,, 21.,). Lemma [L.g, given
below, states that the tube K1 N ([0, 71.,] x RY) is still a subsolution to the
evolution equation for hy,. Therefore,

i n i n n i n n 7 =
(Tll,’nle,n) < F(Vz:;b n )’ HZIT;L . )) + )‘lh(zl,n, El,n(ﬁ,n)) .
Since X1 p(s1,n) = E},n(ﬁ,n) — (21,0 — Y1,n), We have Vyi;L (s1.0) l/zlz (T1.n)
and Hyzlf;f(sl’") = Hi%;f(ﬁ’"). Therefore
X n - by n n ) n n A
(S:,;Lyyl,n)—i_ee < F(vy, (o1, )7Hy1%;1 s, ))‘i‘)\lh(yl,n,21,n(s1,n)—(z1,n—y1,n)) )

Letting n — 400 we get

Vé]iyl) +ee 1 < F(Vyzll(sl), Xl) + )\JL(yl, 21(81)) . (48)

The difference between ([7) and ([i§) gives
0 > F(VZ%(SQ)’XQ) + Xoh(y2, Ta(s2))
—F(I/il(sl),Xl) — )\JL(yl, 21(81)) + ee” !

> (A2l = 0e)* = \)h(y1, S(F) — e1z) + ee™™!, (49)
because, on the one hand, V(il,yl) = V(i?’yg)’ yyzll(sﬂ — yy222(s2) and X; < X»

(from (4, f3/4G)) and F is elliptic and because, on the another hand, from
(E1)) and the definition of X,

h(y2, Ba(s2)) = h(y2, B1(s1) + y2 — y1) = (1 = Olyz — y1))* Ay, S1(s1)),
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where |yo — 31| < ee™*t < e. Since h > 0 and \y(1 — f¢)? > A\; from Lemma
[.5, there is a contradiction in () and the proof is complete.

QED

4.3 Proofs of Lemmas {.5, .6, §.7 and £.§

Proof of Lemma [.5. The proof of this lemma is close to the one of [,
Proposition 4.2]. We provide it for reader’s convenience.

The assertion (i) is obvious.

To prove (ii), we first note that, since &1 (0) N I/C\Q(O) = () and K; and Ks
are closed, there exists 7 > 0 such that Iy (¢) ﬂl/C\g(s) =0 forall0<s,t <7
Therefore

po=inf{ly —z[:0< st <7, xeki(t), y €Kals)} > 0.

Let € < g and o < 7/(2¢€). Then, for s € [0,7/2] and y € Ki(s) and for any
(t,x) € Kq, we have

poift <,
— >
’(Say) (tw%')‘a — { QL iftZT.
loa
Hence di (s, y) > €, which proves that 797 > 7/2 > e.
We prove (iii). From the definition of p,(7¢7), there exists ¢, | T
with py(t,) < ee~tn. Therefore there exists y, € K1(t,) such that p,(t,) =

d% (tn,yn) and, up to extract a subsequence, we can assume that y, — y €
2

K1(T%?) (since K; is closed). It follows
po(tn) = d-(tn, yn) = dz-(T7,y) = po(T°7).

Thus, we obtain the inequality p, (T97) < ee=7"" (note that we prove by the

way that p, is a lower-semicontinuous function). It remains to prove that

the equality holds. If not, there exists y € K1(T%?) such that dz- (T, y) <
2

ee T From the left lower-semicontinuity of the subsolution i, for all

sequence t, T (T%7)”, there exists y, € Ki(t,) which converges to y. It
follows that

po(tn) < d%Q (tn,yn) < ce”' at least for n large.

We get a contradiction with the definition of T and conclude for the proof

of (iii).
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We turn to the proof of (iv). For this we fix € > 0 as in the proof of (ii)
and we note that 7%? is noncreasing with respect to o. Since T < T™,
lim,_,o+ 177 exists and we denote it by 5. Note that 5 > e.

We now argue by contradiction, assuming that there is a sequence o, —
0, y1.n € K1 (T), (S2m,Y2,0) € I/C\g such that

Pon (T7) = |(T€70nay1,n) - (52,n,?/2,n)|0n =ee " )
with either s, = 0 or y1,, = y2.,. Since K1 and I/CE have closed graphs, up
to extract subsequences, there exist y; € K1(5) and (s2,y2) € K2 such that
Yin — Y1 and (S2.n,Y25) — (S2,92). From the inequality

1
1 2
€> <_(T670n - 32,n)2 + ‘yl,n - y2,n’2> s

On

we deduce that 79" — 59, — 0. But T — 5 > ¢, and so s2, > 0 for n
sufficiently large, which implies that ¥, = y2, and thus y; = y».

We now use the left lower-semicontinuity of K1 and ,/C\QZ Let ¢, = 5™.
Since y; = y2 € K1(8) N Ka(8), there exist z1, € Ki(t,) and xa,, € Kao(ty)
which converge to y; = y2. Then

pan(tn) < d% (tnaxl,n) < ‘(tnwxl,n) - (tn7x2,n)‘a - ‘xl,n - xQ,n‘ < feitn

as soon as n is sufficiently large. This is in contradiction with the definition
of T4,

QED

Proof of Lemma [.6. The set K77 is closed because so is K;. Let y €
K{7(s1). There is some (7, z) € Ky such that 7 < s1 and |(7, 2) — (s1,9)|s <
e(e”™ —e*1). Then

1

(T =) <|(1,2) = (s1,9)l5 S (77 — e < E(r - 1)
Since e0 < 1 (from Lemma [L.5), we have 7 = s; and thus y = z. So we
have proved that K77 (s1) C K1(s1). The other inclusion being obvious, the
equality holds.

Let (s,y) € K{7. Then there exists (1, z) € K1 with 7 < s and |(s,y) —
(1,2)|s < €(e”"—e~*1). From the definition of p, and s1, we have dZ- (1,2) >
2

po (1) > €e 7. Tt follows

07 (s,9) > d% (1.2)  |(5.) — (1. D)o > ce ™. (50)

33



Taking the infimum over (s,y) € K77, we get e(lCi’U,l/C\g) > ee 51,
Let us prove the opposite inequality. From Lemma [L.5, we can choose
y € Ki(s1) such that dZ- (s1,y) = ee 51 But Kq(s1) € K7 (s1). Therefore
2
e(K{7,K2) < dZ-(s1,y) = ee”*.
2

To prove the second assertion, let y; € Kq(s1) and (s2,y2) € I/C\g be such
that (f2) in Lemma [L.5 holds. Then obviously () also holds. For such
points, let (7,z) € K1 be such that 7 < s; and

(s1,91) = (1, 2)0 < e(e” —e™™). (51)
If 7 < s1, then, by definition of s;, we have p,(7) > ee™". From the com-
putation (50) with (s,y) := (s1,y1), it follows d%(sl,yl) > ee”T > ee” !

2
which is a contradiction with ({J). Hence 7 = s; and therefore (F1]) gives
(s1,71) = (7,2) € K1. We conclude by Lemma [L3.

QED
Proof of Lemma [I.7. Let df be the signed distance to 9%:
o _ | &(rz) i (1,2) €%,
di(r,2) = { —dg(r,2) it (t,2) € % (52)

Since ¥ is of class Ch!, one can find 7 > 0 such that dg is of class C1! in
{Id$| <n}, with D,d§, # 0 in this set.
Let us define ¥ by

S ={(r,2) e R* x RV : d%((7,2) + (5,9) — (7,2)) < —e(e " — e )},

We first show that the tube ¥ is externally tangent to Kq N ([0, 7] x RYN)
at (7,z). At first, if (7,2) € Ky with 7 < 7, then by definition of K77,
we have B,((7,2),e(e™™ — e %1)) C K77, where B, is the usual open ball
related to the norm | - |,. In particular, since K77 C X, we have d§(, z) <
—e(e™™ — e~ *1). Therefore

So we have proved that K1 N ([0,7] x RY) C 5. Moreover, we obviously
have that (7, z) € O because (5,y) € 0.
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Let us show that ¥ is a regular tube in an open interval containing 7.
For this, recall that bd(X) is defined by (R9). If (7, z) belongs to bd(X) with
ele”™ —e 7| < n, then

A% ((7.2) + (5,9) = (7.2)] el —e7[<n
and so df is differentiable in a neighbourhood of (7,2) + (5,y) — (7, Z) with
D,d¥, # 0. Thus ¥ is as smooth as ¥. Finally,
~ 8d% (5 7 —T
i (5,) —ce _
Ve, =% > VZ o e,
(7,2) |D,d%(5,9)] (5,9)

since | D,d3,(5,7)| < [Ddg(s,9)| = 1.

QED

Lemma 4.8 If Ky is a subsolution to the evolution equation for hy,, then,
for any t >0, K1 N ([0,t] x RY) is also a subsolution for hy,.

Proof of Lemma 8. Let us set K; = K; N ([0,¢] x RY). It is clear
that I/Cvl is a left lower-semicontinuous tube because so is ;. Let ¥ be a C?
tube defined on some open time-intervall I and which is external tangent to
K1 at some point (s,y) with s > 0. If s < ¢, then, assuming without loss
of generality that I C (0,t), ¥ is also externally tangent to Ky and thus
VE,) < ha (3, 3(5))

We now suppose that s = ¢ and, without loss of generality, that 3Eﬂlva1 =
{(s,y)}. Let d{ be the signed distance to 0% defined by (p2). Note that,
since 9L NK; = {(s,y)}, d{ has a strict maximum on Ky at (s,y) (at least
on the interval I). For v > 0 we introduce the mapping

py(7,2) = d%(7,2) + v log(t — 7)

of class C? for 7 € I N (0,¢) and when |dg(7,2)| is small. From standard
arguments (see for instance the proof of Lemma 4.2 of [{]), ¢, has a maxi-
mum on K; at some point (s, y,) € K; which converge to (s,y) as v — 0T
and such that s, <t. Moreover, the set

Sy ={(r,2) € IN(0,)) x BN : (7, 2) < 0y(54,97)}

is a C% tube on some open interval I, C I N (0,t) with s, € I, and X,(s,)

converges in the C? sense to ¥(s). Now we note that 3., is externally tangent
to ICq at (sy,yy) and thus

b

Visra S ol By(57))
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with

0
S, a—f(sy,yy) »
Virw) = " Thore i 2 Visyw) -
7Yy |Dp(8+,97) v

Hence
Vv(?—y,yﬂ,) < h)\1 (y’“{a E"/(S’Y)) )

which gives the desired inequality as v — 07: V(? g < hy, (y, 2(s)) .
QED

5 Convergence to equilibria

In this section we investigate the asymptotic behavior of the solutions of
our front propagation problem (). More precisely, we show, under suitable
assumptions on the source S and on F', that the solution converges as t —
+00o to the (weak) solution of the free boundary value problem:

Find a set K € D such that hy(z, K) =0 for all z € 0K (53)

(recall that D is defined by ([[I])). This problem is a generalization of the
Bernoulli exterior free boundary problem we recalled in the introduction.
Let us first introduce a notion of weak solution:

Definition 5.1 We say that the set K € D is a viscosity subsolution (re-
spectively supersolution, solution) of the free boundary problem (in short
FBP) (53) for hy if the constant tube K(t) = K for all t > 0 is a subsolu-
tion (respectively supersolution, solution) of the FPP (@) for hy.

Remark 5.1 There are many other definitions of weak solutions for such
FBP: see for instance the survey paper [[[§]. The one we introduce here is
the more suitable to our purpose. The idea of using sub- and supersolution
in this framework comes back to Beurling [f].

In order to ensure that the FBP (E3) has a solution, we assume in the
sequel the following:

VA >0, 3R > 0 such that Vr > R, Vo € B(0,r), hy(z,B(0,r)) < 0. (54)

This assumption states that B(0,r) is a strict classical supersolution of the
free boundary problem for hy for r sufficiently large. It is in particular
fulfilled (i) when F'(v,A) = Tr(A) + Fi(v), where Fi(v) < 0, or (ii) when
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F = F(v) <0 for any v with |v| = 1, because of the behavior of h for large
balls (see Lemma P.9). Note also that the assumption implies that, for any
ball B,

F(wB HP) <0 VzeodB,
since F is elliptic and h > 0.
Proposition 5.2 We assume that ({14) and (54) hold. Then, for any A > 0,
there is a largest and a smallest solution of the FBP (53) for hy, the largest
being closed and containing any subsolution for hy, while the smallest is
open and is contained in all the supersolutions.

Proof of Proposition [.2. The proof can be achieved by a direct applica-
tion of Perron’s method. Existence and bounds for sub- and supersolutions
are ensured by assumption (f4) and by Lemma .3 below.

QED

Lemma 5.3 We assume that ([I4) and ([54) hold. Let X\ > 0 be fized. Then
there exist € > 0 and R > 0 such that, if K is a subsolution (respectively
a supersolution) of the FBP (B3) for hy, then K C B(0,R) (respectively
S. C K where S, is defined by (14)).

Proof of Lemma [.3. Let 7 be the smallest nonnegative real such that
K C B(0,r). Then there is some point x € 9K N 9(B(0,r)). Using the
constant tube B(0,7) x IR as a test-tube and the fact that K is a subsolution,
we have hy(z, B(0,7)) > 0, which implies that » < R where R is given by
(b4). Therefore we have K C B(0, R).

The assertion for the supersolution can be proved in a similar way, by
using assumption ([[J) and Lemma P-J saying that h(z, S) is large for € > 0
small and x € 05,.

QED

Next we address the uniqueness problem. The main assumption for this
is that S is starshaped. We also suppose that F' = F(v, A) satisfies the
subhomogeneity condition:

F(v,yA) 2vF(v,A) vy =1, (55)
and that the following compatibility condition between F' and S holds:

F(S HY) <0 VYreds. (56)
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Assumption (B5) is fulfilled for instance if (i) F(v, A) = Tr(A) + Fi(v),
where Fi(v) < 0, or if (ii) F = F(v) < 0 for any v with |v| = 1, while
assumption (p@) is always satisfied for F' as in (ii), and is satisfied for sets

with negative mean curvature if F' is as in (i).

Theorem 5.4 Let us assume that S is strictly starshaped at 0, with 0 €
int(S), g =1 and that ({1d), {54), (53) and (54) hold. Then, for any X > 0,
the FBP @) for hy has a unique solution denoted K. Moreover, K) is
starshaped at 0 for any X\ > 0 and the map \ — K is continuous for the
Hausdorff topology.

Remark 5.2

1. Uniqueness of solution means that, if K1 and K5 are two solutions of the
FBP for hy, then K1 = Ks and int(K;) = int(Ka).

2. Such a uniqueness result is classical in the literature, see in particular
Beurling [[j], Tepper [27] and the survey paper [[[J].

In order to prove Theorem .4 we need three Lemmas. The first one explains
that the homothetic of a subsolution is still a subsolution. The second one
allows to compare sub and supersolutions of the FBP. The last one shows
that subsolutions of the FBP for hy when A is small are necessarily close

to S.

Lemma 5.5 Assume that S is starshaped at 0, g = 1 and that (53) holds.
If K is a subsolution of the FBP (B3) for hy, then pK is a subsolution of
the FBP for h,y for any p € (0,1) such that S CC pK.

Proof of Lemma [.§. For sake of clarity, we do the proof in a formal
way, by assuming that K is smooth. If not, it is enough to do the same
computations for the test-surfaces. We first notice that

= 1

p h(=,K)  Vpe(0,1), Vz € 9(pK) . (57)

RS

Indeed, if u is the solution to (f) with K instead of €, then v(z) = u(z/p)
is a subsolution of equation (f) with pK instead of Q (we use here the fact
that S is starshaped, that g = 1 and, thus, that 0 <« < 1). Then

. pK) = [Do(a)f* = | Dula/p)* = —5h(a/p.K) Vo d(pK) .
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Next we also notice that v2X = I/£</p and HLE = %H ﬁp. Hence, for any
x € 0(pK), we have

FEE HEEY + pAh(z, pK)
Fggpr pHijp) + 50/, K)
(1/p)ha(z/p, K) = 0

because K is a subsolution for hy. Hence pK is a subsolution for hy.

hp)\(x’ pK)

(AVARAVAR|

QED

Lemma 5.6 We assume that (f) holds. Let 0 <X < A, R >0 and v > 0
be fixed. Then, there is a constant £ > 0, such that for any A < A\; < Ay <A,
for any subsolution Ky of the FBP (53) for hy, and any supersolution K
for hy, with

S, CcC Ky cCc Ky cC B(O,R—7),

we have
K1 + k(A2 —A1)B(0,1) C Ky,

where the sum in the above inclusion denotes the Kuratowski sum between
sets.

Proof of Lemma [.§. Let 6 > 0 be the constant given by Lemma P.4.
From theﬁsumption K, cC Ko, we have K1 N RN\K2 = () and we can
find y; € K7 and yo € RN\ K> such that

ly1 — yo| = min |21 — 22| .
21€K1,220€ RN\ K>

Without loss of generality we can assume that |y; —y2| < 1/6, since otherwise
the result is obvious.

Using now the interposition and approximation results (see Proposition
and Theorem B.9), the fact that K is a subsolution for hy, and Ks a
supersolution for h),, and proceeding as in the proof of Theorem [L.1], one
can find an open set ¥ C RY with CY'! boundary and (N — 1) x (N — 1)
matrices X7 < X5 such that

0< F(y,, X1) + Mh(y1,%) (58)

and
0> Fu, ™27 Xo) + Aoh(y2, S + y2 — 1) - (59)
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Since yyzl = ny;Lyryl and X; < X, we get by subtracting () to (b9) and
using Lemma

0> [Xa (1= 6lyr — gal)® = M By, =) (60)

In order to complete the proof, we have now to check that h(y;, ) is posi-
tive. By Hopf maximum principle, we just have to show that the connected
component ¥’ of ¥ which contains y; has a non empty intersection with the
source S. For this, we argue by contradiction, by assuming that X' NS = ()
(see Figure [f] for an illustration). Let K] := K1 NY’. Note that

[
&

K,

Figure 4: Illustration of the proof of Lemma [5.64.

e(K],S\Y) > e(¥, £\Y) > 0 (61)

since ¥ is bounded with a smooth boundary. Let z € S and ] be a point
of maximum of the euclidean norm |- —z| on Kj. Note that |y] — z| > 0.
The ball B := B(z, |y} — z|) is externally tangent to K{ at y}. Thanks to
(B1), one can build an open set X} with a C? boundary, such that K| C %,
YIAX\Y =0, y| € 9%}, and for which there is a neighboourhood O of v}
with ¥, 1O = BN O. Note that ¥, NS = § since S cC \¥'. Let us set
¥ =X U(E\Y). Note that 3 is externally tangent to K at y}. Moreover

Py}, B1) = F@E ) + Myl B1) = F(uf, HE)

since h(y},%1) = 0. By (F4), for all » > R and all z € 9B(0,r), we have
ha(z, B(0,7)) < 0. Therefore F(v2 "), HE ")) < 0 since h(z, B(0,7)) > 0.

)
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B(0,r")

By ellipticity, we have F(I/f,(o’rl), H ") < 0even for ' < Rand |2/| =7/

X
since fo(ox ) . It follows
T ra’ /|2’

Py, £1) = F(vf HYY) <0

which is a contradiction since K is a subsolution. So h(y;,%) > 0.
Then (6() leads to inequality

ly1 — y2| > k(A2 — A1)

where x := 1/(20A), which completes the proof.
QED

Lemma 5.7 Under the assumptions of Theorem [5.4, for any ¢ > 0, there
is Ao > 0 such that, for any subsolution K of the FBP (63) for hy with
A € (0,)\g), we have K C S, (see (L) for a definition of S.).

Proof of Lemma p.7. From assumption (bf) and the regularity of the
boundary of S, there is some « > 0 such that

F(v3,HY) < —a Vo e oS .
Let us notice that a similar inequality also holds for p.S, for p > 1, because

1 o
)S ;F(Vms/paHS )<__

1
F(Vgs’Ha’és) = F(Vf/p’ _HS x/p/) = P ’

p z/p

thanks to assumption (Bj).
Let us now fix € > 0 and pg > 1 such that ppS C S.. Note that
S CC poS since S is strictly starshaped. We set \g = a/(8po), where
B = SuPea(po9) h(z,poS). Let K be a subsolution for hy with A € (0, \g).
We denote by p > 1 the smallest real such that K C pS. In order to prove
that p < pg, we argue by contradiction and assume that p > pg. Since pS is
externally tangent to K at some point x € 0K and K is a subsolution, we

have

0 < hy(z, pS) = F(vP%, HPY) 4+ Ah(x, pS) < 2y Ah(z, pS)
p

where, from inequality (57),

2 2
Bz, pS) < (@) BT poS) < <@> 8.
p p p

2
Hence 0 < —% + A <%°) 3, which implies that p < A\gp2B/a = po, a contra-
diction. So we have proved that p < pg. Therefore K C pgS C S..

41



QED

Proof of Theorem .4l Let us denote for any A > 0 by K the maximal
solution of the BFP for h). Note that A\ — K is nondecreasing since K
contains all the subsolutions for hy.

We first check that K is starshaped at 0. Indeed, from Lemma .5, for
any p € (0,1) sufficiently close to 1, the set pK) is a subsolution for h,y,
and thus for hy. Since K, contains all the subsolutions, we have pK) C K
for any p € (0, 1) sufficiently close to 1, which implies that K is starshaped.

Next, we show that the map A — K is continuous for the Hausdorff
topology. From the stability property of solutions (Proposition @), the
decreasing limit of the Ky converges to Ky when N — AT. Hence we
only have to show that Lim,,_,y- Ky equals K, where Lim denotes the
Kuratowski limit (see (BY)).

Since, for any p € (0, 1) sufficiently close to 1, the set pK is a subsolution
for h,x, we have pK) C K,). Therefore

K, = Lim pK, C Lim Ky C K.
p—1- N —=A—
So we have checked that A — K is continuous.

Let us finally prove that, for any A > 0, K is the unique solution of for
hy. Let K be another solution. Note that K C K. From Lemma f.7, we
can find some \; > 0 such that KXl CC K because S CC K. Let us set

A=sup{\N | Ky cC K}.

We now use Lemma p.q with 7 > 0 and R such that S, C KX1 and K, C
B(0, R). There is a constant £ > 0 such that for any A\; < X' < A,

Ky +r(A=XN)BCK.
The continuity of the map A — K then implies that
Kx—FK()\—X)B CF.

Therefore A = \ since, otherwise, the continuity of ' — Ky would also
imply the existence of € > 0 such that K5 , CC K, a contradiction with
the definition of X. Therefore K, C K.

In order to prove that int(K) = int(K)), we notice that int(K)) =
Ux < Ky, because Ky CC Ky for X' < A, and therefore the equality A=A
implies that int(K) C int(K). Since the converse inequality is obvious, the
proof of Theorem .4 is complete.
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QED

Corollary 5.8 (Asymptotic behavior) Under the assumptions of Theo-
rem [5.4, if K is a solution of the FPP (§) for hy, then K(t) converges, for
the Hausdorff metric as t — 400, to the unique solution Ky of the FBP
©3) for hy while K (t) converges to RN\K.

Remark 5.3

1. Note that the above result holds for any solution K(t) of the FPP (f)
with any initial position (0) € D.

2. The proof of the asymptotic behavior which follows relies strongly on the
uniqueness of the solution of the limit problem (53J).

Proof of Corollary f.§. Let us fix \; < A < Ag. From lemma P.J and
(p4), there are r > 0 and R > 0 such that S, and B(0, R) are respectively
sub- and supersolution to the FBP for hy, and h),. We can also choose
r > 0 sufficiently small and R > 0 sufficiently large so that S, CC K(0) CC
B(0, R). The inclusion principle then states that

S, CC K(t) cc B(0,R) Yt > 0.

Let K* be the Kuratowski upperlimit of K(t) as t — +oc (see (BY)). Note
that S, C K* C B(0, R) and that the constant tube R x K* is actually the
upperlimit of the solutions K(- + 7) as 7 — +oo. From the stability of
solutions (see Proposition [.4), the constant tube R x K* is a subsolution
of the FPP for hy. Hence, K* is a subsolution of the FBP (BJ) for h) and
we have K* C K.

In the same way, if we set L* to be the Kuratowski upperlimit of I?(t)
as t — 400, then RV\L* is a supersolution to FBP (F9) for hy. Since K)
is the unique solution for Ay, K is also the smallest solution, which implies
that K, ¢ RN\L*. Hence

K*C Ky C RN\L*.
Since RN\ L* C K*, the proof is complete.
QED
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