Functional Ito calculus and stochastic integral representation of martingales

Abstract : We develop a non-anticipative calculus for functionals of a continuous semimartingale, using an extension of the Ito formula to path-dependent functionals which possess certain directional derivatives. The construction is based on a pathwise derivative, introduced by B Dupire, for functionals on the space of right-continuous functions with left limits. We show that this functional derivative admits a suitable extension to the space of square-integrable martingales. This extension defines a weak derivative which is shown to be the inverse of the Ito integral and which may be viewed as a non-anticipative ''lifting" of the Malliavin derivative. These results lead to a constructive martingale representation formula for Ito processes. By contrast with the Clark-Haussmann-Ocone formula, this representation only involves non-anticipative quantities which may be computed pathwise.
Type de document :
Article dans une revue
Annals of Probability, Institute of Mathematical Statistics, 2013, 41 (1), pp.109-133. <10.1214/11-AOP721>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00455700
Contributeur : Rama Cont <>
Soumis le : mardi 27 septembre 2011 - 15:45:10
Dernière modification le : mardi 11 octobre 2016 - 14:05:07
Document(s) archivé(s) le : mercredi 28 décembre 2011 - 02:49:20

Fichier

AOP271.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Rama Cont, David-Antoine Fournié. Functional Ito calculus and stochastic integral representation of martingales. Annals of Probability, Institute of Mathematical Statistics, 2013, 41 (1), pp.109-133. <10.1214/11-AOP721>. <hal-00455700v4>

Partager

Métriques

Consultations de
la notice

369

Téléchargements du document

354