N

N
N

HAL

open science

Algorithms For Extracting Timeliness Graphs

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Mikel Larrea

» To cite this version:

Carole Delporte-Gallet, Stéphane Devismes, Hugues Fauconnier, Mikel Larrea. Algorithms For Ex-

tracting Timeliness Graphs. 2010. hal-00454388v2

HAL Id: hal-00454388
https://hal.science/hal-00454388v2

Preprint submitted on 25 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00454388v2
https://hal.archives-ouvertes.fr

Algorithms For Extracting Timeliness Graphs

Carole Delporte-Gallet Stéphane Devismes
University Paris Diderot University Joseph Fourier (Grenoble)
Carole.Delporte@liafa.jussieu.fr Stephane.Devismes@imag.fr
Hugues Fauconnier Mikel Larrea
University Paris Diderot University of the Basque Country
Hugues.Fauconnier@liafa.jussieu.fr Mikel.Larrea@ehu.es
Abstract

We consider asynchronous message-passing systems in sdmehlinks are timely and processes
may crash. Each run definesimeliness graptamong correct processe3,) is an edge of the time-
liness graph if the link fronp to ¢ is timely (that is, there is bound on communication delagsfp to
q). The main goal of this paper is to approximate this timedgigraph by graphs having some properties
(such as being trees, rings,...). Given a fanfilpf graphs, for runs such that the timeliness graph
contains at least one graphsithen using amxtraction algorithmeach correct process has to converge
to the same graph ifi that is, in a precise sense, an approximation of the timgdigeaph of the run. For
example, if the timeliness graph contains a ring, then uaimgxtraction algorithm, all correct processes
eventually converge to the same ring and in this ring all sad# be correct processes and all links will
be timely.

We first present a general extraction algorithm and then amjpecific extraction algorithm that is
communication efficientife., eventually all the messages of the extraction algorithenardy links of
the extracted graph).

1 Introduction

Designing fault-tolerant protocols for asynchronous exyst is highly desirable but also highly complex.
Some classical agreement problems sucltasensusand reliable broadcastare well-known tools for
solving more sophisticated tasks in faulty environments. (§17,[15]). Roughly speaking, with consensus
processes must reach a common decision on their inputs, iimdeliable broadcast processes must deliver
the same set of messages.

It is well known that consensus cannot be solved in asyncusisystems with failureg JlL14], and sev-
eral mechanisms were introduced to circumvent this impdigi result: randomization[f], partial syn-
chrony[[L],[12] and(unreliable) failure detectorf].

Informally, a failure detector is a distributed oracle thaes (possibly incorrect) hints about the process
crashes. Each process can access a local failure deteatitertbat monitors the processes of the system
and maintains a list of processes that are suspected oftherdashed.

Several classes of failure detectors have been introdecgdP, S, €2, etc. Failure detectors classes can
be compared by reduction algorithms, so for any given proldfe a natural question isA’hat is the weakest
failure detector (class) that can solve?”. This question has been extensively studied for severdlpms
in systemswith infinite process memorge.g, uniform and non-uniform versions of consens[is[[§, 13],

*This work has been supported in part by the ANR pr§jeiAMAN

non-blocking atomic commif]9], uniform reliable broadcf 9], implementing an atomic register in a
message-passing systefh [9], mutual excludioh [10], begstbstruction-freedon{ []L6], set consendu$ [21,
R3], etc.). This question, however, has not been as extlgstudied in the context of systemath finite
process memory

In this paper, we consider systems where processes hawerfirinory, processes can crash and links
can lose messages (more precisely, links are fair lossy E©fJF: Such environments can be found in many
systems, for example in sensor networks, sensors are liygcaipped with small memories, they can crash
when their batteries run out, and they can experience medssges if they use wireless communication.

In such systems, we consider (the uniform versions of)bldiaroadcast, consensus and repeated con-
sensus. Our contribution is threefold: First, we estallistt the weakest failure detector for reliable broad-
cast isP~ — a failure detector that is almost as powerful than the perfiglure detectorP | Next, we
show that consensus can be solved using failure detSctinally, we prove thaP~— is the weakest failure
detector for repeated consensus. Sifcs strictly weaker thaP—, in some precise sense these results
imply that, in the systems that we consider here, consemsseasier to solve than reliable broadcast, and
reliable broadcast is as difficult to solve as repeated cmuse

The above results are somewhat surprising because, wheasges have infinite memory, reliable
broadcast is easier to solve than consdhsasd repeated consensus is not more difficult to solve than
consensus.

Roadmap. The rest of the paper is organized as follows: In the nexi@ecive present the model con-
sidered in this paper. In Secti@?, we show that in case of process memory limitation and pisgibf
crashesP~ is necessary and sufficient to solve reliable broadcastetti@ ??, we show that consensus
can be solved using a failire detector of tyfén our systems. In SectidP?, we show thafP~ is necessary
and sufficient to solve repeated consensus in this context.

For space considerations, all the proofs are relegated eptaonal appendix.

2 Informal Model

Graphs. We begin with some definitions and notations concerning ligagd-or a directed grapy =
(N, E), Node(G) and Edge(G) denoteN andE, respectively. Given a graphi and a sef\/ C Node(G),
G[M] is the subgraphof G induced byM/, i.e, G[M] is the graph(M, Edge(G)[M]) where(p,q) €
Edge(G)[M] ifand only ifp,q € M and(p, q) € Edge(G).

The tuple(X,Y) is adirected cut(dicut for short) of G if and only if X andY define a partition of
Node(G) and there is no directed edgg,) € Edge(G) such thatz € X andy € Y. We say that’
is adicut reductionfrom G if there exists a dicutX,Y") of G such that?’ = G[X]. A setS of graphs is
dicut-closedif and only if it is closed under dicut reduction, namehdGfe S then all the graphs obtained
by a dicut-reduction ofs are inS.

Processes and Links. We consider distributed systems composed pfocesses which communicate by
message-passing through directed links. We denote thd pedbaesses byl = {p1,...,p,}. We assume
that the communication graph is complete,, for each pair of distinct processés, q), there is a directed
link from p to q.

1 The FIFO assumption is necessary because, from the relsli]l if lossy links are not FIFO, reliable broadcast reqsi
unbounded message headers.

Note thatP C P~ andP~ is unrealisticaccording to the definition irﬂ[8].

3With infinite memory and fair lossy links, (uniform) reliabbroadcast can be solved us'@tqﬂ], and® is strictly weaker than
(X, Q) which is necessary to solve consensus.

A process may fail by crashing, in which case it definitivalgps its local algorithm. A process that
never crashes is said to berrect faulty otherwise.

The (directed) links areeliable, i.e. every message sent through a lipk ¢) is eventually received by
q if ¢ is correct and if a message from p is received by, m is received byy at most once, and only jf
previously senin to q.

The links being reliable, an implementation of tieéiable broadcasf[[] is possible. A reliable broad-
cast is defined with two primitivesr br oadcast (m) andrdel i ver (m). Informally, after a correct
proces invokesr br oadcast (m), all correct processes eventuallgel i ver (m); after a faulty process
p invokesr br oadcast (m), either all correct processes eventuallgel i ver (m) or correct processes
neverr del i ver (m).

Timeliness. To simplify the presentation, we assume the existence oferate global clock. This is
merely a fictional device: the processes do not have accésdNe take the rangg of the clock’s ticks to
be the set of natural numbers.

We assume that every correct process timely, i.e., there is a lower and an upper bound on the
execution rate op. Correct processes also have clocks that are not necgssardhronized but we assume
that they can accurately measure intervals of time.

Alink (p, q) istimelyif there is an unknown boundisuch that no message sentjbto ¢ at timet may
be received by after timet + 0.

A timeliness graplis simply a directed graph whose set of nodes are a subBetTie timeliness graph
represents the timeliness properties of the links. Ineligj for timeliness grapld, Node(G) is the set of
correct processes ait, ¢) is in Edge(G) if and only if the link (p, ¢) is timely.

Runs. An algorithm.4 consists of: deterministic (infinite) automata, one for each processatitomaton
for procesy is denotedA(p). The execution of an algorithmd proceeds as a sequence of procg#eps
Each process performs its steps atomically. During a stema@ess may send and/or receive some messages
and changes its state.

A run r of algorithm A is a tupler = (T, I, E, S) whereT is a timeliness graph, is the initial state
of the processes ifl, F is an infinite sequence of steps df and.S is a list of increasing time values
indicating when each step iB occurred. A run must satisfy usual properties concerninglisg and
receiving messages. Moreover, we assume that (1) all ¢grecesses make an infinite number of steps:
p € Node(Q) if and only if p makes an infinite number of steps lhand (2) the timeliness of links is
deduced from the timeliness graphy;, q) € Edge(G) if and only if the link (p, ¢) is timely in E.

In the following for runr = (T, 1, E, S), T'(r) denotesI” the timeliness graph of, andCorrect(r)
is the set of correct processes for the rumamely,Correct(r) = Node(T(r)). Note that by definition,
(p,q) is a timely link if and only if(p, q) € Edge(T).

Remark that in the definition given here a link may be timelgreif no message is sent on the link.
If link (p,q) is FIFO (.e., messages from to ¢ are received in the order they are sent) anegularly
sends messagesdpothen the timeliness of these messages implies the tinssliofthe link itself. So in the
following we always assume that links are FIFO.

2.1 Some Systems

We say that timeliness grapfi is compatible with timeliness grap&’ if and only if (1) Node(G) =
Node(G') and (2)Edge(G) C Edge(G"). By extension, timeliness graggh is compatible with run- if G
is compatible withT'(r), the timeliness graph of. Hence, timeliness grapfi is compatible with run- if
Node(@G) is the set of correct processesriand if (p, ¢) is an edge of7 then(p, ¢) is timely inr.

A systemX’ is defined as a set of timeliness graphs. The set of runs @reystdenotedR(X) is the
set of all runs- such that there exists a timeliness grapin X’ compatible withr.
Below, we define the systems considered in this paper:

e ASYNC is the set of all timeliness graphs such thatEdge(G) = (. In ASYNC there is no
timeliness assumption about links aR4ASYNC) is the set of all runs in an asynchronous system.

e COMPLETE is the set of all complete graphs whose nodes are the sulidéts o

e ST AR is the set of all timeliness graphs witlsaurcei.e, G € ST AR ifand only if Node(G) C II
and there existgy € Node(G) (the center of the star or the source) such Biége(G) = {(po,q)|q €
Node(G) \ {po}}. Clearly arunris in R(ST AR) if and only if there is at least orgourcein .

e TREE isthe setof all imeliness graplisthat are rooted directed treé®,, | Edge(G)| = [Node(G)|—
1 and there existgy in Node(G) such that/q € Node(G), there is a directed path 6f from p, to q.
Clearly arunris in R(TREE) if and only if there is at least one timely path from a correcgess
to all correct processes.

e RING is the set of all timeliness graplissuch that7 is a directed cycle (a ring). Clearly a runs
in R(RZNG) if and only if there is a timely (directed) cycle over all cect processes.

e SC is the set of all timeliness graphs that are strongly comukdClearly, a rumr is in R(SC) if and
only if there exists a (directed) timely path between eadhgdalistinct correct processes.

e BIC is the set of all timeliness graplis such that for allp, ¢ € Node(G), there exist at least two
distinct paths fronp to ¢q. BZC corresponds to the set of 2-strongly-connected graphsirigle runr
isin R(BZC) if and only if there exists at least two distinct timely patietween each pair of distinct
correct processes.

e PAZR is the set of all timeliness grapli$ such thatEdge(G) = {(po,p1), (p1,p0)} With pg, p1 €
Node(G) andp; # po. Clearly, arun-isin R(PAZR) if and only if there exists two distinct correct
processep, andp; such thatpy, p1) and(p1, po) are timely links.

3 Extraction Algorithms

Given a systemY, the goal of arextraction algorithmis to ensure that in each runin X, all correct
processes eventually agree on the same elemeiftt afid that this element is, in some precise sense, an
approximation of the timeliness graph of run

For example, inRZN G, all processes have to eventually agree on some ring andirigidhias to be
compatible with the timeliness graph of the run. In pargécuhis ring contains all the correct processes.
However, the compatibility relation may be too strong: Innpaystems, it is not possible to distinguish
between a crashed process and a correct one, so the @raptwhich the processes eventually agree may
contain crashed processes and then the graph is not exaantlyatible with the run. Then we weaken the
compatibility and impose only that the subgraphoinduced by the set of correct processes of the run is a
dicut reduction of the timeliness graph of the run.

We now formally define what an extraction algorithm is. Firgtsuch an algorithm, every process
maintains a local variablé’, which contains a timeliness graph. Then, we say that anitiigoextracts a
timeliness graph it if and only if for every run- in X’ there is a timeliness graph (called theextracted
graph) such that:

e Convergencefor all correct processgsthere is a time after whichG), = G

4

e Compatibility: G[Correct(r)] is compatible withl'(r)
e Closure: G[Correct(r)] is a dicut reduction o€ or is equal to&
e Validity: Gisin X

Remark that for all systems that contaitlSY N C there is a trivial extraction algorithm: for each run
processes extract the graghsuch thatVode(G) = II and Edge(G) = (.

A more constrained version of the extraction problem is tileding: an algorithmA extracts exactly
timeliness graphs ifx if for every runr in systemX, the extracted grapty is compatible withZ’(r). In
this case, all correct processes eventually know the exaafsorrect processes: it is the set of nodes of
the extracted graph.

Some Results about Extraction Algorithms. First we show that an extraction algorithm may help to
route messages using only timely links:

Lemma 3.1 LetG be a graph extracted from run if (p, ¢) is in Edge(G) andq is a correct process then
p is correct.

Proof. By contradiction, assume thatis not correct, thefiCorrect(r), Node(G) — Correct(r)) is not a
dicut becausép, q) € Edge(G), p € Node(G) — Correct(r) andg € Correct(r), which contradicts the
Closure property. O

From this lemma and the Compatibility property, we deduceatliy:

Proposition 3.2 If (p = po,...,p:i.--,q = pm) IS @ path in the extracted graph andand ¢ are correct
processes, then for eveiguch thatd < i < m the link (p;, p;+1) is timely and process; is correct.

From a practical point of view, this proposition shows that extracted graph may be used to route
messages between processes using only timely links: the fiaum p to ¢ is a path in the extracted graph
(if any). All intermediate nodes are correct processes gnekson the extracted graph and then on the path.

For example with/ REE, the tree extracted by the algorithm enables to route mesdagm the root of
the tree to any other processes and the routing uses onlly flimies.

Generally, the main goal of the extraction algorithm is nolydo extract a grapldz in X’ but also to
ensure thatG[Correct(r)] is in X (even if the processes do not know the set of correct prosesde
particular, this property is ensuredif is dicut-closed: the Closure property implies tiidtC orrect(r)] is
in X.

Among the systems we consider, only syst®tdZR is not dicut-closed:H = ({z},0) is a dicut
reduction ofG = ({z,y,z},{(v,2),(z,y)}) butis not inPAZR. Itis easy to verify that every other
previously introduced system is dicut-closed. For thes¢esys we obtain:

Proposition 3.3 Consider any extraction algorithm for the systém
o If X = ST AR, then the center of the extracted star is a correct process.
e If X = T'REE, then the root of the extracted tree is a correct process.

o If ¥ € {SC,COMPLETE, RING,BIC}, then the extraction is exact.

Proof. ForST AR and7TREE, all the dicut reductions of the extracted graph contairast respectively
the center and the root, then the restriction of the extdagtaph contains at least these nodes, proving that
they are correct processes.

There is no dicut for a strongly connected graph. Hencgdnthere is no dicut reduction then by the
Closure property the subgraph induced by the set of correcepses of the extracted graph is the extracted
graph itself. COMPLETE, RING, andBZC are particular cases of systems only composed of strongly
connected timeliness graphs. O

An immediate consequence of Propositior} 3.3 is that anyetin algorithm gives an implementation
of eventual leader election (failure detecfdrfor systemsST AR and7 REE as well as an implementation
of failure detectok)P for systemLOMPLETE, RING, SC andBZC.

Due to the lack of space, the proofs of the two following piipons have been moved in the appendix.
In the first proposition we show that extraction is not alwagssible. Actually, in the proof we exhibit
some non dicut-closed systems, nanBIMZ R, where no extraction algorithm can be implemented.

Proposition 3.4 There exist some systeisfor which there is no extraction algorithm.

In the next section we show that for all dicut-closed systtdrage is an extraction algorithm. For systems
like STAR, TREE andPATR, there exists nexactextraction algorithm.

Proposition 3.5 There exist some systeridor which there is an extraction algorithm and there is no@xa
extraction algorithm.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed prypaf a system is sufficient to solve the extrac-
tion problem. To that end, we propose in Figllre 1 an extraaigorithm, calledA(X), for dicut-closed
systemsY.

The basic idea of AlgorithmA(X') is to make processes select a graph that is compatible wath th
timeliness graph of the run. For this, each process mamfaineach graph in X anaccusation counter
Acc[z]. This counter infinitely grows if some correct process isinat or if some directed edge ofis not
timely. Then,Acc[z] is bounded if and only if: contains all correct processes and all timely links between
pairs of correct processes.

We implement accusation counters as follows. A procesdadyguilames all the graphs it in which
it is not a node: it increments the accusation counters dhafie graphs. Note that if the process is correct
this accusation is justified and if the process is not corr@ter some time, the process being dead stops
to increment the accusation counters. Moreover, each ggaegularly sends on its outgoing linkGve
messages. Each process maintains an estimate of the cocatmemidelays for each incoming link\(g]
for the incoming link(q, p)). If it does not receivelive messages within these estimates on some incoming
link it blames all timeliness graphs it containing this link i(e., increments the accusation counters for
these graphs). As the estimate of the communication delgybmdoo short, each time it is exceeded the
process increases it for the link. In this way, if the linkira¢ly, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable braaddzsech time a process receives a new value
of accusation counter it updates its own accusation cotatdre maximum of the received values and its
current values. Hence, if some timely graph stops to be hdaimen all correct processes eventually agree
on the value of its accusation counter.

By selecting the grapt¥ with the lowest accusation value (to break ties, we assuragbdrder among
the graphs oft) if any, correct processes eventually agree on the samérigse graph oft’, moreover we
can prove that this graph contains (1) all the correct psEgsand (2) all edges between correct processes
are timely links. As a consequence, the Convergence, thep@iinility and the Validity properties of
the extraction algorithm are ensured. Nevertheless, tlaighgcan also contain faulty processes and edges
between correct and faulty processes.

Consider now the Closure property. df contains only correct processes then the Closure property
is trivially satisfied. Otherwise(containsCorrect(r) and a setF’ of faulty processes. In this case,
(Correct(r), F') is a dicut reduction ofy: Indeed if there is an edge i from a faulty procesg to a
correct procesg, eventually the procegsstops to receive messages frgrand the accusation counter of
G grows infinitively often. Hence, in all cases, the Closureparty is satisfied.

Hence, ifX is dicut-closed, Algorithmd(X') extracts a graph ift’. Moreover from Propositiop 3.3, if
all the graphs oft” are strongly connected then the algorithm exactly extacigph int'.

In the algorithm, each procegsuses local timers, one per process. The timep didicated toy is
set (by settingset t i mer (¢) to a positive value) to a time interval rather than absolune. The timer is
decremented until it expires. When the timer expiresrer expi r e(q) becomegrue. Note that a timer
can be restarted before it expires.

In the algorithm, we denote by the total order relation o&’ and by<., (see Ling]2) the total order
relation defined as followsiz, y € X, Ve, ¢y € N, (cp, @) <iex (¢y,y) =[x < ¢y V (cz = ¢y Az < y)].

Code for each process p
1: Procedureupdate ExtractedGraph()

2: G + z such tha{ Acc[z], z) = min,_ {(Acc[z'],) such that’ € X'}
3: On initialization:

4: forall z € X do Acc[z] + 0

5: forall ¢ € IT\ {p} do

6: Alg] + 1

7. settimer(q) < Alg]

8: update ExtractedGraph()

9: starttasks 1 and 2

10: task 1:

11: loop forever

12: send(alive) to everyq € II\ {p} every K time

13: rbroadcast (ACC,L,p) every K time /# to accuse graphs that do not contair/
14: task 2:

15: uponr ecei ve(alive) from ¢ do

16: settimer(q) < Alg]

17: upont i ner expi re(q) do

18: rbroadcast (ACC, ¢, p) /* to accuse graphs that contain the lifgk p) */
19: Alg] + Alg] +1

20: settiner(q) «+ Alg]

21: uponrdel i ver (ACC\,q,h)do /«information fromh */

22: forall x € X do

23: if ¢ =1 then

24: if h ¢ Node(zx) then Acc[z] < Acc[z] + 1

25: else

26: if (¢, h) € Edge(x) then Acc[z] + Acc[z] + 1

27: update ExtractedGraph()

Figure 1: AlgorithmA(X") extracts a graph i

A sketch of the correctness proof df(X') is given below. In this sketch, we consider a ruaf A(X)
in dicut-closed syster®’. We will denote byuar]'; the value ofvar of procesg at timet.
We first notice that all variabledcc,[x] are monotonically increasing:

7

Lemma 4.1 For all timest andt’ such thatt > ¢/, for all processe®, for all graphsz in X, Acc;;[x] >
Accg [x].

Let sup(Acc,[z]) be the supremum aflec) [z] for all ¢, we say thatdce,[z] is unbounded ifup(Acc,[x])
is equal tooo and bounded otherwise. Aéccy[z] is also updated by reliable broadcast each time some
process; modifiesAcc,[z] we have:

Lemma 4.2 For all correct processep andg, for all graphsz in X', sup(Accy[z]) = sup(Acey[x])

Letsup(Acc[z]) be the supremursup(Accy[z]) over all correct process of Accy[z], thensup(Acc|z]) is
well-defined. If there is a least onec X’ such thasup(Acc[z]) is bounded, themin{sup(Acc[z])|z’ €
X'} is finite, henceG the graph such thdtdcc[G], G) = min, {(Acc[z’],z')|z" € X'} is well defined.
Then all correct processes converge to the same graph:

Lemma 4.3 If there existsz in X’ such thatsup(Acc[z]) is bounded then there is a time after which for
every correct procesg, G), is G.

Now prove the Compatibility property. Consider any timebs graph compatible withi(r), and assume
thatx € X, then there is a timé&, after which all faulty processes are dead and the estimé@mamuni-
cation delays are greater than the bounds of communicaélaysi of timely links of the run. After time,
(1) asx contains all correct processes, no process will blarbecause it is not a node of and (2) as all
edges ofr are timely, no process will blamefor one of its edges then:

Lemma 4.4 If z in X' is compatible with'(r), thensup(Acc[z]) is bounded.

Reciprocally, letr be a timeliness graph of that is not compatible with the run. If processs not
correct there is a timeafter which it does not send anyive message, and there is a time after the timers on
p expire forever for all correct processes, thepig a node of some € X, Acc,[z] is incremented infinitely
often andsup(Acc[z]) = co. In the same way ifp, ¢) is not timely, by the fifo property of the link, the
timer for p expires infinitely often for procesgand if (p, ¢) is an edge ofc then Acc,[z] is incremented
infinitely often andsup(Acc|z]) = oco.

Then:

Lemma 4.5 For everyz in X, if sup(Acc|z]) is bounded ther[Correct(r)] is compatible withl’(r).

Hence:
Lemma 4.6 (Compatibility) G[Correct(r)] is compatible withl’(r).

It remains to prove thatr satisfies the Closure propertg[Correct(r)] is a dicut reduction o7 or is
equal toG. As G[Correct(r)] is compatible withl'(r), we have:

Lemma 4.7 Correct(r) C Node(G).

Let ' = Node(G) — Correct(r). If F'is empty the Closure property is trivially ensured. Consit®v the
case wherd’ is not empty.F' contains only faulty processes aftorrect(r), F') is a partition ofG(Node).

If there is an edge ivdge(G) from a faulty process to a correct procegs eventually the procegsnever
receives a message frarand the accusation counter Gfwill be unbounded, contradicting the choice of
G. So, we have:

Lemma 4.8 If F # () thenEdge(G) N (F x Correct(r)) = 0.

8

Hence,(Correct(r), F') is a dicut ofG.

Lemma[4.B and Lemn{a 4.4 prove the Convergence property, laddbrproves the Compatibility prop-
erty and Lemmé 4.8 proves the Closure property. Moreaves, clearly in X’ proving the Validity. Propo-
sition [3:3 shows that the extraction is exact when all gragfh¥ are strongly connected. Hence, we can
conclude with the following theorem:

Theorem 4.9 Let X' be a dicut-closed system. Algorithd(X') extracts a graph in¥. Moreover if all
graphs ofX are strongly connected, Algorithtd(X') exactly extracts a graph i&’.

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithiedad 7 (X') (FiguregP andl]3). This algorithm is
efficient meaning that the (correct) processes eventuallysend messages along the edges of the extracted
graph.

AF(X) (exactly) extracts a timeliness graph from syst&mwhere (1)X is dicut-closed and (2) for all
graphsg € X there is some procegs calledroot, such that there is a directed path frprto every node of
g. For exampleJ REE andRZN G systems have this property.

In the following, we refer to these systemsdisut-closed systems with a rodtor every graply in X',
the functionroot(g) returns a root of.

In the algorithm, every procegsstores several values concerning the graphsX’ such that-oot(x) =
p: (1) Acclx] is the accusation counter efwhose goal is the same as in Algoritfin 1, @)op[x] is a
proposition countewhose goal will be explained later, and @&]z] gives the expected time for a message
to go fromp (the root of ther) to all the nodes of.

Every process also maintains a set variaitevdidates. Each element of this set is a 4-tuple composed
of a graphz of X and the newest values dfcc[z]|, Prop[z], and A[z] known by the process (the exact
values are maintained abot(z)). Each element in this set is calledndidateand each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm([3:

(1) Each procesg sendsulive messages on its outgoing links and monitors its incominglitHowever,
we restrain here thelive message sendings: procgssendsalive messages on its outgoing link
(p,q) only if (p, q) is in a graph candidate.

(2) A graph candidate is blamed if (a) a correct process igribie graph or (b) a process receives an out
of date message through one of its incoming links. In botks#se candidate is definitively removed
from the Candidates sets of all processes. To achieve this goal the process sendscusation
message ACC) using a reliable broadcast and uses an affay.rd that ensures that an identical
candidate (that is, the same graph with the same accusattbpraposition values) can never be
added again. Moreover, upon delivery of an accusation rgesta graphz, root[z] increments
Acclz].

We now present different mechanisms used to obtain theeaffiyi

For all graphsz € X, only the processoot(z) is allowed to propose: as a candidate to the rest.
Each procesg stores its better candidate in its variable, that is, the least blamed graphsuch that
root(zx) = p.

e If a process finds ilandidates a better candidate thane, it removesne from Candidates.

e If a process finds thate is better, it addsne to Candidates and sends aew message containing
me (1) to all processes that are notNode(me), and (2) to immediate successorspaf me. The
immediate successors ine addme to their Candidates set and relay theew message, and so on.
By the reliability of the links, every correct process ttahot inme eventually receives this message
and blamesne.

These mechanisms are achieved by the procedpilate ExtractedGraph(). This procedure is called
each time a graph candidate is blamed or a new candidate ppg#d. Note that th€'andidates set is
maintained with the seDiherCand (the candidates of other processes), a booleatal that is true when
the process has a candidate, amel the graph candidate.

A procesgp may give up a candidate without this candidate being blanmatiis casep is the root of the
candidate, it finds a better candidatelnherCand, and removesne from Candidates. Then,p must not
incrementAcc[me] when it receives accusations caused by this removing, éhtfese accusations are not
due to delayed messages. That is the goal of the proposaianter (Prop): in Prop|z|, root(z) counts the
number of times it proposesas candidate and includes this value in each ofét® messages (to inform
other process of the current value of the counter). Hencepwhvants to blamer, it now includes its own
view of Prop[z] in the accusation message. This accusation will be coresidas legitimate byoot|x]
(that is, will cause an increment dfcc[x]) only when the proposition counter inside the message raatch
Prop[z]. Also, wheneveroot|x] removesr from Candidates, root[x] incrementsProp[x] and does not
send the new value to the other processes. In this way agmsalue to this removing will be ignored.

For any timely candidate, the accusation counter will benlled and its proposition counter increased
each time itis proposed. In this way the graph with the sradlecusation and proposition values eventually
remains forever in th€'andidates set of all correct processes and it is chosen as extractpth.gf@his is
done in the procedurepdate ExtractedGraph().) Moreover, eventually all other candidates are given up
and it remains only this graph ifiandidates. In this way, onlyalive messages are sent and they are sent
along the directed edges of the extracted graph ensuringffibency.

Code for each process p

1: Procedureupdate ExtractedGraph()
2 Let (@min, min) = minx,_ {(acc, ¢) such that(c, acc, —, —) € OtherCand} U {(co, 00)}
3 if (@min,min) < (Acc[me], me) A Local then /* Give upme =/

4 r br oadcast (ACC,me,Acc|me],Prop[me],A[mel)

5: Prop|me] < Prop[me] + 1

6: Local + false

7 Candidates < OtherCand

8 me < x such that(a, z) = min<,_, {(acc,) such that € X A root(c) = p}

9

: if (Acc[me],me) < (amin,min) A Local = false then /+ Proposene */
10: Local < true
11: Candidates + Candidates U {(me, Acc[me], Prop[me|, A[me])}
12: send(new,me,Acc[me],Prop[me],A[me]) to every process not itN ode(me)
13: forall h € II\ {p} do
14: if (h,p)€ Edge(me) then
15: Alh]+ max(A[h], A[me])
16: settimer (h) < A[h]
17: if (p,h)€ Edge(me) andh # root(me) then
18: send(new,me, Acc[me], Prop[me], A[me]) to h
19: G « x such that(a, z) min,_ {(a’, 2’) such that(a’, a’, p’, d’) € Candidates}

Figure 2: Procedure updateExtractedGraph of Algorith/(X')

A sketch of the correctness proof dfF (X') is given in the appendix. Then, we can conclude with the
following theorem:

Theorem 5.1 Let X be a dicut-closed system with a root. Algorith#ii ') efficiently extracts a graph in
X. Moreover if all graphs oft” are strongly connected, Algorithtd(X') efficiently and exactly extracts a

10

Code for each process p

20: On initialization:

21: forall z € X such thatroot(z) = p do

22: Acclz] - 0; Prop[z] + 0; Alz] < n
23: forall z € X such thatroot(x) # p do Heard[z] < (—1,—1)
24: forall g e I1\ {p} do Aq] + 1

25: OtherCand <+ 0

26: Local + false

27: me + min{z such thatt € X A root(z) = p}
28: update ExtractedGraph()

29: start tasks 1 and 2

30: task 1:
31: loop forever
32: send(alive) to every procesg such thafl(z,-,-,-)€ Candidates and(p, q¢) € Edge(z) every K time
33: task 2:
34: uponr ecei ve(alive) from g do
35: settimer(q) <+ Alq]
36: upont i ner expi re(q) do /* Link (g, p) is not timely, blame all candidates that contajpsp) */
37: for all (z,a,pr,d) € OtherCand such thatlq, p) € Edge(z) do
38: rbroadcast (ACC,z,a,pr,d)
39: if (g,p) € Edge(me) then
40: r br oadcast (ACC,me,Acc|me],Prop[me],Alme])
41: uponr ecei ve(new,z, a, pr,d) from ¢ do /* Proposition of a new candidate/
42: if p ¢ Node(zx) then /* Blamez that does not contaip */
43: r broadcast (ACC,z,a,pr)
44: else
45: newCand false
46: if (x,—,—,—) ¢ OtherCandandHeard(z) < (a,pr) then /* New candidate:/
47: newCand true
48: if 3(z, ac,pre,dec) € OtherCand with (ac,pre) < (a,pr) then /* New candidate:/
49: OtherCand < OtherCand \ (c,ac,pre,dc)
50: newCand true
51: if newCand then
52: OtherCand < OtherCand U (z, a, pr, d)
53: update ExtractedGraph()
54: Heard[z] < (a,pr)
55: forall h € I\ {p} do
56: if (h,p)€ Edge(z) then
57: Alh]+ max(A[h],d)
58: settiner (h)« Alh]
59: if (p,h)€ Edge(x) andh # root(x) thensend(new, z, a, pr,d) to h
60: uponr del i ver (ACC,x,a,pr,d) do
61: if root(z) = pthen
62: if £ = me A a = Acc[me] A pr = Prop[me] then /* Check if the accusation is up to datg
63: Acc[me] «+— Acc[me] + 1; Alme] < A[me] + 1
64: Local < false
65: else
66: OtherCand < OtherCand \ (z, a, pr,d)
67: if Heard[z] < (a,pr) then Heard[z] < (a, pr)
68: update ExtractedGraph()
Figure 3: Algorithm AF(X) that efficiently extracts a graph it
graph inX.

6 Conclusion
Failure detector implementations in partially synchranmwdels generally use the timeliness properties of

the system to approximate the set of correct (or faulty) ggees. In some way, the extraction problem is
a kind of generalization: instead of only searching the $ebaect processes, here we try to extract also

11

information about the timeliness of links. Besides, ouusohs are based on already existing mechanisms
used in failure detectors implementations agjri]2, 3].

Information about the timeliness of links is useful for e#fitecy of fault-tolerant algorithms. In partic-
ular, in any extracted graph, any path between a pair of coprecesses is only constituted of timely links.
This property is particulary interesting to get efficientitinog algorithms.

We gave an extraction algorithm for dicut-closed set of tiness graphs. Moreover, we proved that the
extraction is exact when all the timeliness graphs are atsagly connected.

Given dicut-closed timeliness graphs that contains a r@etshown how to efficiently extract a graph
from it. By efficiency we mean giving a solution where evelijummessages are only sent over the links of
the extracted graph.

It is important to note that the main purpose of the algorihwe proposed is to show the feasability of
the extraction under some conditions. So, the complexityunfalgorithms was not the main focus of this
paper.

As a consequence, our algorithms are somehow unrealistiube of their high complexity. Giving
more practical solutions will be the purpose of our futurekgo

Acknowledgments

We are grateful to members of tli@RAPHteam of theLIAFA Lab for the helpful discussions and their
interesting suggestions.

References

[1] Marcos K. Aguilera, Sam Toueg, and Boris Deianov. Reiigithe weakest failure detector for uniform reliable ltoast. In
DISC '99: Proceedings of the thirteenth International Sysipm on Distributed Computingages 13-33, LNCS vol. 1693.
Springer-Verlag, September 1999.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hegéauconnier, and Sam Toueg. On implementing omega witk wea
reliability and synchrony assumptions. RODC, pages 306—-314, 2003.

[3] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hagurauconnier, and Sam Toueg. Communication-efficieneftead
election and consensus with limited link synchrony. In S@maudhuri and Shay Kutten, editoBQDC, pages 328-337.
ACM, 2004.

[4] Rida A. Bazzi and Gil Neiger. Simulating crash failureghvmany faulty processors (extended abstract) 6t Interna-
tional Workshop on Distributed Algorithms (WDAG '92blume 647 ol ecture Notes in Computer Scienpages 166—184.
Springer, 1992.

[5] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Tohegveakest failure detector for solving consensiasirnal of
the ACM 43(4):685-722, 1996.

[6] Tushar Deepak Chandra and Sam Toueg. Unreliable failatectors for reliable distributed systendmurnal of the ACM
43(2):225-267, 1996.

[7] Benny Chor and Brian A. Coan. A simple and efficient ranémed byzantine agreement algorithiEEE Trans. Software
Eng, 11(6):531-539, 1985.

[8] Carole Delporte-Gallet, Hugues Fauconnier, and Rachi@rraoui. A realistic look at failure detectors. SN pages
345-353. IEEE Computer Society, 2002.

[9] Carole Delporte-Gallet, Hugues Fauconnier, Rachidréameii, Vassos Hadzilacos, Petr Kouznetsov, and Sam Tolkg.
weakest failure detectors to solve certain fundamentablpros in distributed computing. [Mwenty-Third Annual ACM
Symposium on Principles of Distributed Computing (PODCA0Pages 338—-346, 2004.

[10] Carole Delporte-Gallet, Hugues Fauconnier, Rachiér@oui, and Petr Kouznetsov. Mutual exclusion in asynuobus
systems with failure detectorgournal of Parallel and Distributed Computing5(4):492-505, April 2005.

[11] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. tha minimal synchronism needed for distributed consensus.
Journal of the ACM34(1):77-97, 1987.

[12] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmey@onsensus in the presence of partial synchrdayrnal of the
ACM, 35(2):288-323, 1988.

12

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Jonathan Eisler, Vassos Hadzilacos, and Sam Touegw@&akest failure detector to solve nonuniform consenBistributed
Computing 19(4):335-359, 2007.

Michael J. Fischer, Nancy A. Lynch, and Mike Patersompossibility of distributed consensus with one faulty mes
Journal of the ACM32(2):374-382, 1985.
Eli Gafni and Leslie Lamport. Disk paxo®istributed Computing16(1):1-20, 2003.

Rachid Guerraoui, Michal Kapalka, and Petr Kouznetsdtie weakest failure detectors to boost obstruction-fseedIn
DISC '06: Proceedings of the twentieth International Sysipm on Distributed Computingpages 399-412, LNCS vol.
4167. Springer-Verlag, September 2006.

Rachid Guerraoui and André Schiper. The generic amiseservicelEEE Transactions on Software Engineeri2g(1):29—
41, 2001.

V. Hadzilacos and S. Toueg. A modular approach to ftaléirant broadcasts and related problems. Technical R&por
94-1425, Department of Computer Science, Cornell Unitersd94.

Joseph Y. Halpern and Aleta Ricciardi. A knowledgeetfedic analysis of uniform distributed coordination anifiee detec-
tors. InEighteenth Annual ACM Symposium on Principles of Distedu€omputing (PODC '99pages 73-82, 1999.

Nancy A. Lynch, Yishay Mansour, and Alan Fekete. Daik layer: Two impossibility results. I8ymposium on Principles
of Distributed Computingpages 149-170, 1988.

Michel Raynal and Corentin Travers. In search of theyhgrhil: Looking for the weakest failure detector for waieé set
agreement. In Alexander A. Shvartsman, edi@®PODIS volume 4305 ot ecture Notes in Computer Sciengages 3—19.
Springer, 2006.

Piotr Zielinski. Anti-omega: the weakest failure dettar for set agreement. Technical Report UCAM-CL-TR-69diputer
Laboratory, University of Cambridge, Cambridge, UK, JuB0Z.

13

A Appendix
A.1 Proof of Proposition 3.4

Proposition @There exists some systestigor which there is no extraction algorithm.

Sketch of Proof.

Assume there is an extraction algoritbdrfor P AZR with 5 processes.

Consider arum of A in systemP ATR with T'(r) = ({p1, P2, 3, P4, D5}, {(P1,02), (D2, P1), (P3,P4), (D1, P3)})-

To satisfy the properties of the extractidfip:, p2, p3, p4, ps}, {(p1, p2), (p2,01)}) of ({p1, 2,3, P4, 5}, { (D3, Pa),
(ps, p3)}) must be extracted from the runThere is a time, after whichr converges for example tdp1, p2, ps, pa, ps},
{(p1,p2), (P2, 1) })-

Consider now run’ of A in systemPAZR with T(r") = ({p3,p4, D5}, {(p3,p4), (P, p3)}) such that- andr’
are indistinguishable until timg andp; andp, crash i’ attimet; + 1. There is a time, after whichr’ converges
to a graph with the directed edgé®s, p4), (p4, ps3)}-

Consider now that i all messages from; andps to {ps,p4, ps} sent after timet; are delayed after time
to. Forps, the runsr andr’ are indistinguishable until,. So, at timet,, ps outputs a graph with directed edges
{(p37p4)7 (p47p3)}'

Now consider run”’ of A in systemP AZR with T'(r"") = {({p1, p2, ps }, {(p1,p2), (P2, p1)}) such that- andr”
are indistinguishable until tim& andps andp, crash inr”’ attimet, + 1. There is a time; after whichr’’ converges
to a graph with the directed edgé®1, p2), (p2, p1)}-

Consider again that in the runall messages froms andp, to {p1, p2, ps} sent after time, are delayed af-
ter t3. For ps the runsr andr” are indistinguishable. So, at timg, ps outputs a graph with directed edges
{(p17p2)7 (p27p1)}'

Inductively, we can construct the runin such a way thaps; alternates forever between a graph with directed
edges{(p1,p2), (p2, p1)} and a graph with directed edgé€&s, p4), (p4, ps)} and never converges definitively. This
contradicts the existence of an algorithm that extractaplymP AZR. O

A.2 Proof of Proposition 3.5

Proposition @There exists some systeAigor which there is an extraction algorithm and there is no@extraction
algorithm.

Sketch of Proof. Consider the systemREE with 3 processes. We prove in the next section that thereégimaction
algorithm for this system. Assume there isex@actextraction algorithm4 for this system.

Consider a rum of A in this system withl'(r) = ({p1,p2,p3}, {(p1,p2), (p1,p3)}). To satisfy the properties of
the exact extraction, there is a timeafter which the grapl{p1, p2, ps}, {(p1,p2), (p1,p3)}) is extracted.

Consider now run”’ of A in system7TREE with T'(r') = ({p1,p2}, {(p1,p2)}) such thatr and+’ are in-
distinguishable until time¢; and ps crashes in’ at timet; + 1. There is a time, after whichr’ converges to
{p1, P2}, {(p1,p2)}) -

Consider now that im all messages froms to {p1, p2} sent after time; are delayed after timg. Forp;, the
runr andr’ are indistinguishable until,. So, at timets, p; outputs({p1, p2}, {(p1,p2)}).

Inductively, we can construct the runin such a way thap, alternates forever between a grafdlp:, p2, ps},
{(p1,p2), (p1,p3)}) and a grapti{p1, p=}, {(p1,p2)}) and never converges definitively. This contradicts theterise
of an algorithm that exactly extracts a graptViREE. O

A.3 Proof of Theorem [5.1

In this section, we propose a sketch of the correctness pfabk efficient extraction algorithm 7 (X) (FiguresDZ
and[}). In this sketch, we consider a nuof AF(X) in dicut-closed system with a root,. We will denote byvar},
the value ofvar), at timet.

We first notice that all variabledcc[x] and Prop[z] can only be modified by the processt(x) and are increas-

ing:

14

Lemma A.1 For all timet and#',t > t', for all processeg, for all graphsz in X’ such thap = root(z), Accl[z] >
Acc!] and Prop [x] > Prop, [x].

Consider a graph: such that its roop crashes. Eventually, every processuch thatr € OtherCand and
(p,q) € Edge(x) reliably broadcasts an accusation for This way,z is removed from th&therCand set of any
correct process and never more added (becaisserashed), hence:

Lemma A.2 If p is faulty, there exists a timesuch that for all graphs: of X with root(x) = p, for all correct
processes inr, for all t' > t: = ¢ OtherCandy, .

As r is a run of X, there exists some timeliness grapm X such thab is compatible withT’[r]. In this case,
Nodes(o) = Correct(r) and the processvot (o) is a correct process:

Lemma A.3 There exists a timeliness graphof X' such thato is compatible withT'(r) and root(o) is a correct
process.

Moreover:

Lemma A.4 Leto be a timeliness graph ot such thato[Correct(r)] is a compatible with'(r) and root (o) is a
COITeCt ProcessAcc,.qq1 (o) 0] is bounded.

For all correct processes for all graphse in X' with root(x) = p, let A[z], be the largest value odcc[z], in 7
(o0 if Acc[z], is unbounded). Leg to be the graph with the smalled{g], (break ties by the total order on graphs).
Let C' be the value ofA[g],,.

Note that from Lemm3 and Lem@@,< oo. Moreover, by construction @f, root(g) is a correct process,
root(g) eventually electg forever (ne,..(4) = 9), and as a consequeneop|gl,..:(5) becomes constant:

Lemma A.5 There exists a time after whighe,.,.(4) = g.
Lemma A.6 There exists a time after whidhrop|g],...:(5) Stops changing.

Let P be the largest value of the proposition countey §Prop[g]). The following three lemmas are immediate
consequences of Lemrha A.5:

Lemma A.7 For every correct process # root(g), there exists a time after whighe OtherCand,.
Lemma A.8 There exists a time after whiehe,. () = g and Local,.oe(g) = true andOtherCand,qor(g) = 0.

Lemma A.9 For every correct procesg # root(g), there exists a time after whictherCand, = {g¢} and
Local, = false.

From Lemma$ Al8 anfi A9, the algorithm converges to a graph: of
Lemma A.10 There exists a timeliness graphe X’ (actuallyg) such that every correct proceg®utputse forever.
From Lemmd AB and Lemn{a 4.9, we can deduce that the algoitefiicient:

Lemma A.11 There is a time after which every correct procesends messages only to the proegssch that there
is a directed edgép, ¢) in Edge(g).

From the LemmO, we deduce the Convergence and the tygbidiperties.

It remains to prove thaf satisfies the properties of the approximation:([)orrect(r)] is compatible withl'[r],
and (2)g[Correct(r)] is a dicut reduction of or is equal tag.

Whenroot(g) setsLocal to true andne to (g, C, P, —), it sends a messagew to all processes (recall thatthe
final value of the accusation counterg@nd P the final value of its the proposition counter.). As the liaks reliable,
all correct processes eventually receives this messagecdirect procesgis not in Node(g), it reliably broadcasts
an accusation message’'C'. When processoot(g) delivers such a broadcast, it increments the accusationteou
of g contradicting the fact thatcc[g] is bounded by”, hence:

15

Lemma A.12 Correct(r) C Node(g).

When a correct process receives thisw message, it sendalive) to every procesgsuch tha{p, ¢) in Edge(g).
And it monitors all incoming linkgq, p) such thai(q, p) in Edge(g). If there is a link(a, b) of Edge(g) between two
correct processasandb, thena sends regularly/ive message td. By construction ofy, b never blameg, thenb
receives no out of date message. By the FIFO property ofiketlie link is timely:

Lemma A.13 g[Correct(r)] is compatible withl[r].

By LemmaA.IR Node(g) = Correct(r) U F.

If F'is empty the Closure property is trivially ensured. We nowsider the case wherE is not empty. F’
contains only faulty processes. If there is an edgBdge(¢) from a faulty process to a correct procegs eventually
the procesg stops receiving messages frgmand the accusation counter @Will be incremented, which contradicts
the fact that the accusation counteyaemains equal t¢” forever. So we have:

Lemma A.14 If F' # (thenEdge(g) N (F x Correct(r)) = 0.

We showed the Convergence (Lemma A.10), the Validity (Lerfinid}), the Compatibility (Lemmf A.13), the
closure (Lemm§ A.34), and the Efficiency (LemmaA.11). MeesoPropositiof 3|3 shows the exact extraction when
all graphs of” are strongly connected. Hence, we can conclude with theviolly theorem:

Theorem LetX be a dicut-closed system with a root. Algorittt\Y') efficiently extracts a graph iA’. Moreover
if all graphs of X’ are strongly connected, Algorithp(X') efficiently and exactly extracts a graph.n

16

