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Abstract

This paper outlines the non-linear transient and stationary dynamics due to friction induced vibrations in a disc brake
model. Using a finite element model and the Continuous Wavelet Transform, the contributions of fundamental frequencies
and harmonic components in non-linear transient and stationary dynamics are investigated for disc brake system subjected
to single and multi instabilities. Results from these non-linear analyses demonstrate the complexity of the contributions
of different harmonic components in transient friction-induced vibrations with the coexistence of multi-unstable modes.
One of the most important contributions of this study is to illustrate the limitation of stability analysis related to transient
and stationary non-linear behaviors. Stability analysis around an equilibrium point can only be used as the first step in
providing information on the onset and increase of self-excited disc brake vibrations. Consequently, a complete non-linear
analysis is necessary to fully predict non-linear vibration and the contribution of unstable modes. This study shows that
an under-estimation of the unstable modes observed in the nonlinear time simulation can be calculated by the stability
analysis. During transient vibrations, an additional unstable mode can appear. This instability is not predicted by the
complex eigenvalues analysis due to the fact that linear conditions (i.e. the linearised stability around an initial equilibrium
point) are not valid during transient and stationary oscillations. So new fundamental frequencies (linked to the appearance
of the new unstable mode) can emerge in the signals due to the nonlinear contact and loss of contact interactions at the
frictional interface. Therefore non-linear transient andstationary self-excited vibrations can become very complex and
include more unstable modes than those predicted by a linearized stability analysis around a non-linear equilibrium point.

1 Introduction

The detection of disc brake squeal instabilities and the prediction of amplitudes during squeal events are com-
plex tasks that have been studied for many years and continueto be a major concern in the automotive in-
dustry [1, 2]. Nowadays, finite element models are classically used to perform two kinds of analysis for disc
brake squeal: eigenvalue analysis to detect squeal frequencies and time analysis to determine self-excited vi-
brations during the squeal event. One of the greatest advantages of a brake finite element model is that the
different parts of the brake system are modeled realistically. Therefore complex parametric studies based on
an eigenvalue analysis can be extensively investigated to detect brake squeal in relation to different physical
parameters [3,4]. For example, Massi et al. [5] proposed performing both stability analysis to detect system in-
stabilities and non-linear analysis during brake simulations to reproduce squeal phenomena in the time domain.
They demonstrated that the numerical and experimental results obtained are in good agreement. Chen and
Zhou [6] provided time–frequency analysis of experimentalresults and concluded that friction vibration sys-
tem is generally a linear system in the phase of vibration initiation and then becomes a nonlinear system in the
phases of vibration being bounded and disappearance. They also indicated that generation of friction-induced
vibration nonlinearity is attributed to the friction contact change at the interface. Lorang et al. [7] provided
a theoretical discussion on the prediction of the brake squeal phenomenon based on a finite element analy-
sis. They performed comparisons between numerical resultsbased on the prediction of squeal frequencies (i.e.



eigenvalue analysis), and experimental tests on squeal frequencies (based on the frequency response functions
of the brake disc). The authors concluded that the numericaland experimental analyses are in good agreement
regarding frequency instabilities. However, they explained that the squeal phenomenon is not yet completely
understood and that it is necessary to obtain the complete non-linear dynamic responses of the squeal event.
However, only few studies based on finite element models consider the transient non-linear behaviors of brake
systems subjected to multi-instabilities or propose the detection of different harmonic contributions during
the squeal event. As a consequence, it is difficult to track the evolutions of the fundamental frequencies and
harmonic components during transient and stationary self-excited vibrations in order to better understand the
mode coupling phenomenon and the coexistence of multi instabilities in non-linear transient signals.
Therefore this paper focuses on non-linear transient vibrations in brake systems by considering the Continu-
ous Wavelet Transform. The main contribution of the presentstudy is to explore not only the evolutions of
transient non-linear quasi-periodic vibrations with multi-instabilities but also to illustrate the limitations of a
local stability analysis around a given equilibrium point.The possible emergence of a additional unstable mode
under transient and stationary quasi-periodic vibrationswill be demonstrated even in the case where this insta-
bility and its associated unstable mode have not been previously predicted by the stability analysis of the initial
equilibrium point.
Firstly, the brake system under study and the brief basic theory of the wavelet analysis with the Continuous
Wavelet Transform are presented. Secondly, the stability analysis of an equilibrium point for the brake system
is given. Then, parametric studies are used to investigate the different contributions of the multi-harmonic com-
ponents during transient vibrations (versus the evolutionof the friction coefficient). Three cases are highlighted
and studied in-depth: firstly, the classical single instability phenomenon, followed by the coupling patterns that
involve multi instabilities and, lastly, the emergence of anew instability not previously detected by the stability
analysis around a non-linear equilibrium point. The lattercase will illustrate the limitations of stability analy-
sis (i.e. an under-prediction of the unstable modes) relating to transient and stationary non-linear self-excited
vibrations.

2 Finite element model of the brake system

The brake system considered in this paper represents a simplified brake consisting of a disc and a pad, as
illustrated in Figures 1(a-b). Hydraulic pressure is directly applied to the backplate of the pad. The friction
interface is modeled by introducing contact elements between the disc and pad. Firstly, contact and loss of
contact configurations at the friction interface are taken into account so that the pad and disc can separate at
several local nodes during vibration. Moreover, a formulation of cubic contact force at the friction interface
between the disc and the pad has been chosen to approximate the first and the third order of pad compression
curves obtained from experimental tests, as shown in Figure1(c). The friction coefficientµ is assumed to be
constant for the sake of simplicity and the classical Coulomb law is applied. Therefore the non-linear contact
force vectors at the friction interface along the normal direction are defined by

F dcontact,X = kl (xd − xp) + knl (xd − xp)
3 if (xp − xd) > 0 (0 otherwise) (1)

F
p
contact,X = −F dcontact,X (2)

whered andp define the disc and the pad, respectively.kl andknl correspond to the linear and non-linear
stiffnesses at the friction interface between the disc and the pad.xd andxp are the displacements of the disc
and pad, respectively, in the direction normal to the contact surface. Then the non-linear contact force vectors
at the friction interface along the tangential direction are defined byF pcontact,Y = µF

p
contact,Xsign (vr) and

F dcontact,Y = µF dcontact,Xsign (vr) wherevr is the relative velocity between the pad and disc. As previously



(a) Disc (b) Pad (c) Experimental pad compression

Figure 1: Finite element of the brake system ((a) Disc and (b)Pad) and experimental tests ((c) Pad compression)

explained by Kang et al. [8,9], the radial component of friction force can change the formation of the limit cycle
if an equilibrium point of the brake system becomes unstable. However, this contribution has been neglected
in this study for the sake of simplicity. For more details about the effect of additional radial components of
friction force, those interested can refer to [10].
Finally, the brake system (disc and pad) is reduced by using aCraig and Bampton technique, keeping the
contact nodes at the disc/pad interface and retaining the first fifty eigenmodes of each component of the brake
system [11]. The equation of motion for the brake system is

Mẍ+Cẋ+Kx = FNL + Fext (3)

whereM, C andK are mass, damping and stiffness matrices, respectively, and x is the generalized displace-
ment vector while the dot denotes derivative with respect totime. FNL contains the linear and non-linear
contact forces at the frictional interface. It can be noted that the nonlinearities at the friction interfaces are both
the cubic nonlinear terms and the possible loss of contact between nodes on the disc surface and nodes on the
pad surface.Fext is the vector force due to brake pressure applied on the pad.

3 Continuous Wavelet Transform

It is well known that the conventional fast Fourier transform (FFT)-based spectral analysis method is suitable
for analyzing steady-state vibration signals, but provides poor representation of signals well localized in time.
Consequently, time-scale signal processing tools have to be used to provide a good description of non-linear
contributions during the non-stationary transient signalof a brake system. In 1983, Morlet [12] proposed apply-
ing the wavelet approach to analyze the vibration of systems. Newland [13] proposed applying the Continuous
Wavelet Transform (CWT) to obtain the characteristics of transient responses and changes in the properties of
non-stationary signals of mechanical structures. A theoretical background can be found in [14–16] for readers
interested in the subject.
The wavelet analysis transforms a signal into wavelets thatare well localised both in frequency and time. The
Continuous Wavelet Transform (CWT) of a functionf (t) is a wavelet transform defined by

W (a, b) =

∫ +∞

−∞
f (t)ψ∗

a,b (t) dt where ψa,b (t) =
1√
a
ψ

(

t− b

a

)

(4)

ψa,b (t) are the daughter wavelets (i.e. the dilated and shifted versions of the ”‘mother”’ waveletψ that is
continuous in both time and frequency).a defines the scale parameter, andb corresponds to the time parameter.



The asteriskψ∗
a,b indicates the complex conjugate ofψa,b. The following admissibility condition has to be

satisfied0 < Cψ < +∞ whereCψ defines the admissibility constantCψ =
∫ +∞
−∞

|ψ̂(ω)|2

|ω| dω and ψ̂ is the

Fourier transform ofψ. It can be given byψ̂ =
∫ +∞
−∞ f (t) eiωtdt. For a time signalf (t) represented by

N sampled data points (with uniform time stepδt), the Continuous Wavelet Transform of equation (4) is a
convolution of the data sequencef (n′) (with n′ = 1, . . . , N ) with a scaled and normalized wavelet. It can be
represented as follows:

C (a, n) =
N−1
∑

n′=0

f
(

n′
)

√

δt

a
Ψ∗

0

(

(n′ − n) δt

a

)

(5)

wheren defines the localized time index andδt is the sampling interval. One of the most important points is
the specification of an appropriate type of the mother wavelet that serves as the source function from which
scaled and translated basis functions are constructed. In this paper, the Morlet mother wavelet has been chosen
due to the fact that it is one of the most commonly used CWT wavelets (quite well localized in both time and

frequency space). It is defined as the following in the time domain: ψ0 (η) = π−
1

4 eimηe−
η2

2 wherem is the
wavenumber andη is a non-dimensional time parameter. The wavelet function contains unit energy at every
scale due to the normalization of the mother wavelet. The wavelet power is then defined as|C (a, n) |2.
For this study, part of the Continuous Wavelet Transform software includes code originally written by C. Tor-
rence and G. Compo [17].

4 Numerical study

4.1 Instability of the equilibrium point

The non-linear oscillations of the brake system are due to the frictional interface that generates self-excited
vibrations: the friction-induced vibrations lead to the divergence of an equilibrium point of the non-linear
brake system, called ”‘system instability”’. Therefore the first step is to estimate the stability of the equilibrium
points for a given set of parameters [18]. Considering the previous non-linear system (3), stability is calculated
by considering the linearized system at the equilibrium point x0 (i.e. Kx0 = FNL + Fext). The linearized
system can be written in the following way

M¨̄x+C ˙̄x+ (K−KL (x0)) x̄ = 0 (6)

wherex̄ defines the perturbation around the equilibrium point (i.e.x = x0 + x̄), andKL is the linearized

expression of the non-linear frictional contact (i.e.FNL (x̄) ≈ ∑

i

∂FNL(x̄)
∂x̄i

∣

∣

∣

∣

x0

x̄i = KL (x0) x̄). The complex

eigenvalue analysis then provides the stability of the equilibrium points: if the real part of all the eigenvalues of
the system (6) remains negative, the equilibrium pointx0 under study is stable. If at least one of the eigenvalues
has a positive real part, an instability of the system is generated for the equilibrium pointx0 under study (i.e.
this equilibrium point is unstable, leading to oscillations of the non-linear brake system). Figures 2 show the
complex eigenvalue analysis as a function of the friction coefficientµ. It can be seen that increasing the friction
coefficient increases the number of instabilities. The firstinstability is detected for a friction value ofµ = 0.26.
The value of the associated unstable mode is1510Hz, as indicated in Figure 2(a). The second instability occurs
for a friction value higher thanµ = 0.28. The associated unstable mode is detected at920Hz.

4.2 Transient dynamics of the brake system

As explained previously, if an equilibrium point becomes unstable, non-linear transient and/or stationary self-
excited vibrations can be generated. In this section, transient non-linear vibrations are investigated in relation
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Figure 2: Stability analysis of the brake system (a) Frequencies (b) Real parts

Friction coefficient Frequencyf1 (Hz) Frequencyf2 (Hz)

0.26 (case 1) - 1512
0.29 898 1497
0.3 897 1495
0.35 904 1495

0.26 (case 2) 896 1499

Table 1: Fundamental frequencies of the nonlinear responses

with the contribution of the harmonic components of the fundamental unstable frequencies. This second step
is essential in a design process aimed at clearly understanding the evolutions of the non-linear behavior for a
brake system with an unstable equilibrium point. In this paper, the time history responses of the nonlinear brake
system defined in equation (3) are solved by using the Adams-Bashforth-Moulton PECE solver.
In this section, it will be demonstrated that the transient non-linear friction-induced vibrations can be more or
less complex. It will be illustrated that only considering the stability analysis around an equilibrium point is not
sufficient for predicting the possible number of unstable modes (i.e. the fundamental frequency components)
of the complete non-linear transient and stationary self-excited vibrations. It will be shown that an under-
prediction of the unstable modes (that are present in the time simulation) can be estimated by the linear analysis.
In the following, the wavelet power spectrum and frequency analysis of the nonlinear transient responses are
carried out to compare the dynamic behavior obtained by timesimulations with the complex eigenvalues calcu-
lated in the previous sectionStability analysis. We remind that the linear stability analysis and the linearization
around an initial equilibrium point are not valid for the transient analysis. However, the main purpose of this
”‘comparison”’ is only to characterize all the resonances peaks of the non-linear transient vibrations and to
check the dynamic similarities between the linear analysis(for the detection and prediction of instabilities) and
the time analysis (for the characterization of the non-linear dynamic behavior in time domain).
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Figure 3: Transient non-linear responses of the brake system for µ = 0.26 (a) Time history fort = [0; 5]s(b)
Wavelet power spectrum fort = [0; 5]s

4.2.1 Case 1: the single instability

First of all, Figure 3(a) illustrates the transient responses for one of the most simple and classical non-linear be-
haviors observed during a single instability phenomenon. The displacement chosen corresponds to one degree-
of-freedom of the pad in the direction normal to the contact surface. Moreover, the value of the constant friction
coefficient for this case isµ = 0.26.
It can be seen that the displacement increases until the periodic non-linear oscillations are obtained. The
associated wavelet power spectrum during the transient oscillations is given in Figure 3(b). It clearly appears
that the resonance peaks can be compared with the contribution of the fundamental frequencyf2 corresponding
to the unstable frequency of the mode (as previously indicated in sectionStability analysis) and its2× harmonic
component. The values off2 (for the stationary self-excited oscillations) are indicated in Table 1.
Both the1× and2× harmonic components are present for all the time history responses. However, it can be
reminded that, theoretically, the stability analysis of the linearized system around an initial equilibrium point
cannot predict the fundamental frequencies of the transient and stationary signals (i.e. the eigenvalues calcu-
lated in the previous sectionStability analysishave been estimated for an equilibrium point that is not valid for
the non-smooth system during transient and stationary vibrations).
Therefore this first case illustrates the fact that the transient non-linear oscillations due to an unstable equilib-
rium point can be very simple: this study gives an example of the transient non-linear self-excited oscillations
of the brake system with the participation of a ”‘single instability”’ (i.e. with only one fundamental frequency
and its harmonics in the non-linear vibrations generated bya single unstable equilibrium point). In this first
case, the appearances of harmonic components are only due tothe non-linear stiffness: loss of contact between
nodes on the disc surface and nodes on the pad surface is not observed.

4.2.2 Case 2: the classical case of ”‘multi-instabilities”’

As previously shown in sectionStability analysis, the brake system under study can be affected by two ”‘insta-
bilities”’ if the friction coefficient is greater thanµ = 0.28. In this part of the paper, the transient vibrations
generated for different friction coefficients (withµ > 0.28) will be investigated.
First, Figures 4(a) illustrates the non-linear transient oscillations in the case ofµ = 0.29. The associated
wavelet power spectrum and the contributions of combinations of harmonics for the pad in the direction normal
to the contact surfaces are given in Figure 4(b).
As indicated in Figure 4(a), the highest amplitudes are observed during the transient oscillations, just before



the quasi-periodic oscillations of the brake system. This first observation is very important because it illustrates
the fact that a brake system cannot be thoroughly validated in a design process if all the transient self-excited
vibrations are not examined in detail. Even if the brake system can perform properly during the final quasi-
periodic vibrations (i.e. the stationary self-excited vibrations are assumed to be small enough), the transient
behavior of the brake system can be a key issue in brake development for predicting dangerous or favorable
conditions.
Figure 4(b) shows the resonance peaks during the transient vibrations by using the Continuous Wavelet Trans-
form. Even if the stability analysis is not sufficient and valid to estimate the fundamental frequencies of the
non-linear system under study (i.e. a non-smooth system), it appears that the modes involved in the mechanism
of friction induced vibrations have been previously ”‘predicted”’ under the stability analysis. The fundamental
frequency of the first instability (i.e.f2) and the fundamental frequency of the second instability (i.e. f1) are
both present in the wavelet power spectrum of the non-lineartransient signal. The values off1 andf2 (for the
stationary self-excited oscillations) are indicated in Table 1. In addition of the two fundamental frequencies
(f1 andf2), the harmonics (nfi for i = 1, 2 andn positive integer) and combination harmonics (±nf1 ±mf2
with n andm positive integers) are indicated in Figure 4(b) by using theContinuous Wavelet Transform. This
fact clearly illustrates the interactions of the two instabilities that generate sum and difference frequencies
±nf1 ±mf2 with n andm positive integers. The component−f1 + f2 is prominent. Moreover, the wavelet
power spectrum indicates the combination harmonicsf1 + f2, 3f1 − f2, −6f1 + 4f2, 4f1 − 2f2, −3f1 + 2f2,
2f1 − f2 and7f1 − 4f2. However, all these combination harmonics are less significant than fundamental com-
ponentsf1 andf2, and the combination component−f1 + f2. It should be noted that the presence of these
combination harmonics is indicative of ”‘strong”’ coupling of the two unstable modes leading to quasi-periodic
self-excited vibrations of the non-linear brake system. Finally, the second harmonic component of the first and
second instabilities (i.e.2f1 and2f2) are also observed. As explained previously, the occurrence of harmonic
components and combination harmonics is due to the non-linear stiffness and contact and loss of contact inter-
actions at the frictional interface between disc and pad. The number of loss of contact between nodes on the
disc surface and nodes on the pad surface are indicated in Figure 5.
Showing Figure 4(b), the initial increase (fort = [0; 1]s)of the oscillations (around the unstable equilibrium
point) is harmonic Oscillations are governed by the fundamental frequencyf1: the main harmonic coincident
with the ”‘most unstable frequency”’ predicted by the linear model (i.e. the unstable frequency associated with
the highest real part). The fundamental frequencyf1 can be clearly distinguished in the wavelet power spectrum
for t = [0; 1]s. Figure 5 shows that all the nodes at the frictional interface of the disc and the pad are in contact.
When the amplitudes of the brake system become more significant, oscillations become more complex with
contact and loss of contact. One or two nodes at the frictional interface separate (see Figure 5 - zoom 1 for
t = [1.04, 1.08]s ). Occurrences of the second fundamental frequencyf2 and of the combination component
−f1 + f2 are detected. Finally, the stationary oscillations are still complex with contact and loss of contact
between nodes on the disc surface and nodes on the pad surface(see Figure 5 - zoom 2). All the combination
harmonics described previously appear. What is more, it canbe seen that the transient non-linear oscillations
and stationary quasi-periodic signals are always mainly governed byf1, f2 and−f1 + f2.
In conclusion, the transient non-linear vibrations are notonly composed of fundamental frequenciesf1 and/or
f2 but also the harmonic combinations that correspond to the coexistence of the two instabilities in the brake
system. Moreover, it can be noted that the frequency components observed in the wavelet power spectrum do
not indicate the presence of a new ”‘instability”’ but illustrate the harmonics of fundamental frequenciesf1 and
f2 that can contribute to the overall vibration during the transient and stationary periods.
Secondly, Figures 6(a) and (b) illustrate the transient andstationary quasi-periodic vibrations for the case of
µ = 0.3. Although the variation of the friction coefficient is not very significant (less than4%), the wavelet
power spectrum appears to be very complex with the presence of many new harmonic combinations. The initial
increases of oscillations (fort = [0; 0.5]s) are composed by the first fundamental frequencyf1 and its second
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Figure 4: Transient non-linear responses of the brake system for µ = 0.29 (a) Time history fort = [0; 5]s (b)
Wavelet power spectrum fort = [0; 5]s
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Figure 5: Number of loss of contact during the transient vibration forµ = 0.29

and third harmonic components (i.e.2f1 and3f1). This can be explained by the fact that the initial increase
of the friction-induced vibrations is governed by the ”‘most unstable”’ mode at the unstable equilibrium point
(i.e. the mode that corresponds to the eigenvalue with the greater positive real part, as indicated in Figure
2). Then, the second fundamental frequencyf2 and interactions of the two instabilities that produce harmonic
combinations±nf1±mf2 (with n andm positive integers) appear when the non-linear transient vibrations are
maximal (att = 0.8s). Then, all these contributions are present for the stationary quasi-periodic oscillations
(that are observed fort > 2s). Even if certain harmonic combinations appear to be very close (see for example
frequency ranges[200 − 400]Hz or [500 − 800]Hz), they are clearly distinguishable. Figure 6(b) shows that
fundamental frequenciesf1 and f2 and harmonic components (2f1, 3f1 and 2f2), as wel as the harmonic
combinations (see for example−f1 + f2, −6f1 + 4f2, −4f1 + 3f2,4f1 − 2f2,−4f1 + 3f2, 2f1 − f2, −3f1 +
2f2 and7f1 − 4f2) correspond to the most significant contributions in the complex non-linear transient and
stationary quasi-periodic vibrations. Therefore these strong participations of the harmonic combinations of the
two instabilities (i.e.±nf1 ±mf2 with n andm positive integers) are indicative of strong “coupling” of the
two unstable modes that lead to complex transient and stationary quasi-periodic oscillations. Moreover, other
combinations of less significance are also observed, as indicated in Figure 6(b). These harmonic combinations
correspond to the upper orders of the sum and difference frequencies (see for example12f1−7f2, −8f1+5f2,
−13f1 + 8f2, 14f1 − 8f2 and9f1 + 5f2). The values off1 andf2 (for the stationary self-excited oscillations)
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Figure 6: Transient non-linear responses of the brake system for µ = 0.3 (a) Time history fort = [0; 5]s (b)
Wavelet power spectrum fort = [0; 5]s

are indicated in Table 1.
Finally, Figures 7(a), (b), (c) and (d) illustrate the transient and stationary quasi-periodic vibrations for the case
of µ = 0.35. As explained previously, the transient and stationary oscillations are composed of fundamental
frequenciesf1 andf2, harmonic components2f1 and3f1, and harmonic combinations2f1 − f2, −f1 + f2.
Other combinations (f1 + f2, −3f1 + 2f2, 4f1 − 2f2, −2f1 + 2f2 and3f1 − f2) of less significance can also
be detected. Thus all the harmonic combinations correspondto the lower orders of the sum and difference
frequencies.
Two behaviors can be observed when examining the time history of the non-linear responses (see Figures 7(a)
and (c)): firstly, a very fast increase of the transient oscillations fort = [0; 0.1]s followed by a decrease for
t = [0.1; 1]s. During this first part of the system’s non-linear behavior,the fundamental frequencyf1 and the
associated harmonic components2f1 and3f1 are predominant. These observations can be explained by the
fact that the non-linear transient vibrations are first governed by the most unstable mode (i.e. the mode with
the greater real part at the unstable equilibrium point). A small contribution of the combination frequencies
4f1 − 3f2 and4f1 − 2f2 is observable. Then, during the second part of the transientoscillations (fort =
[1; 5]s), an increase of the transient amplitudes is seen while increases of the resonances satisfy relationships
±nf1 ±mf2 (with n and m positive integers). These interactions between the two unstable mode combination
frequencies are clearly identified by considering harmoniccombinations−f1+f2 and2f1−f2. As indicated in
Figure 7(d), harmonic combination−f1+f2 is prominent, being equal tof1. Then, fort > 2s, the fundamental
frequencyf2 and other combinations of less significance appear (see for example3f1−f2,−2f1+2f2, 4f1−2f2
andf1 + f2). Moreover, the stationary quasi-periodic amplitudes of the brake system is composed of the two
fundamental frequenciesf1 andf2, the harmonic componentsnfi (for i = 1, 2 andn positive integer) and
combinations±nf1 ±mf2 (with n andm positive integers). Finally, harmonic combinations4f1 − 3f2 and
4f1 − 2f2, which are present in the first part of the transient vibrations (for t = [0 : 1]s), disappear in the
second part of the transient oscillations fort > 1s. Therefore it can be concluded that the non-linear transient
vibrations are complex, with increasing or decreasing harmonic combinations that illustrate the coexistence and
strong interaction of the two unstable modes of fundamentalfrequenciesf1 andf2, respectively. The values
of f1 andf2 (for the stationary self-excited oscillations) are indicated in Table 1. In comparison with the two
previous cases (forµ = 0.29 andµ = 0.3), the maximum transient non-linear amplitudes are obtained more
rapidly for t = 0.05s, as illustrated in Figure 7(a). Thus in this sectionCase 2: the classical case of ”‘multi-
instabilities”’ , it is shown that transient and stationary non-linear behaviors can be composed by not only the
fundamental frequencies of the unstable modes but also the associated harmonic components and associated
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Figure 7: Transient non-linear responses of the brake system for µ = 0.35 (a) Time history fort = [0; 1]s
(b) Wavelet power spectrum fort = [0; 1]s (c) Time history fort = [0; 5]s (d) Wavelet power spectrum for
t = [0; 5]s

combination of frequency components. It is also shown that the harmonic components and combinations of
frequencies (that correspond to ”‘strong coupling”’ or theinteraction of the two unstable modes) cannot be
neglected when attempting to avoid defective brake system design.
For the last two cases (µ = 0.3 andµ = 0.35), the number of loss of contact is indicated in Figures 8(a) and
(b). Forµ = 0.3, the phenomenon of contact and loss of contact is observed during the transient and stationary
vibrations. Due to the ”‘complex”’ non-linear behavior generated by this non-smooth nonlinearity, strong
participations of the harmonic combinations of the two instabilities (i.e.±nf1 ±mf2 with n andm positive
integers) are present, as previously explained (see the previous paragraph and Figure Figures 6(d)). Forµ =
0.35, loss of contact between nodes on the disc surface and nodes on the pad surface is only observed during
the first part of the system’s non-linear behavior (previously defined in Figure 7(a) and (b)). So, the stationary
vibrations appear to be ”‘less complex”’ (i.e. the number ofharmonics combinations is less important).
In conclusion, the nonlinear transient and stationary vibrations for the last two cases (µ = 0.3 andµ = 0.35)
can be complex due to the presence of not only the fundamental”‘unstable”’ frequencies, but also their har-
monic components and the combination of frequency components. The main resonances for the initial growth
are coincident with the two unstable modes predicted by the linearized stability analysis around the initial equi-
librium point. However, we remind that the stability analysis can not be used to predict the resonance peaks
during the transient and stationary non-linear vibrations.



(a)

0 2 4 6 8 10
0

1

2

Time (s)

9.2 9.4 9.6 9.8
0

1

2

Time (s)

Zoom 1

9.495 9.5 9.505 9.51
0

1

2
Zoom 2

Time (s) (b)

0 2 4 6 8 10
0

1

2

3

Time (s)

0.066 0.068 0.07
0

1

2

3

Time (s)

Zoom 1

0.28 0.282 0.284
0

1

2

3

Time (s)

Zoom 2

Figure 8: Number of loss of contact during the transient vibration for (a)µ = 0.3 and (b)µ = 0.35

4.2.3 Case 3: limitation of the local stability analysis of the equilibrium point

This aim of this section is to illustrate that the stability analysis (presented in sectionInstability of the equilib-
rium point) cannot be used as a robust indicator of brake system design.More particularly, it will be shown that
an eigenvalue analysis around an equilibrium point cannot prevent all the unstable frequencies in the non-linear
transient and stationary responses for a given friction coefficient and so cannot be used for detecting all the
fundamental frequencies and multi-harmonic components.
To illustrate this fact, the non-linear transient vibrations of the system are investigated forµ = 0.26, as previ-
ously done in sectionCase 1: single instability. However, in this part of the section, the initial perturbations
introduced in the non-linear system are bigger than those ofthe first case. This new initial condition is chosen
as being ”‘far”’ or very different from the initial non-linear equilibrium point, by keeping ”‘local instability”’
(defined by the fundamental frequencyf2).
To aid the reader’s understanding, it should be noted that only one unstable mode (with the fundamental fre-
quencyf2) has been detected previously by eigenvalue analysis around the non-linear equilibrium point (defined
in sectionInstability of the equilibrium point).
Therefore Figures 9(a) and (b) give the transient and stationary quasi-periodic vibrations for the case ofµ =
0.26, by considering this new disturbance of the equilibrium point. By taking into account the time history of
the non-linear responses (see Figure 9(a)), two dynamic behaviors for the brake system are observed: firstly,
a ”‘simple”’ increase of the transient oscillations fort = [0; 7]s. Secondly, a ”‘complex”’ non-linear transient
behavior fort = [7; 11]s until the stationary amplitudes are reached fort = 11s. As indicated in Figure 9(b),
only the fundamental frequencyf2 and its harmonic components2f2 are present during the first part of the
non-linear behavior of the system (fort = [0; 7]s).
As explained previously, the stability analysis performedin sectionInstability of the equilibrium pointis inves-
tigated by determining the eigenvalues of the linearized equations (6) around the equilibrium points obtained
by solving the static non-linear equations. Thus this initial rate of increase of non-linear amplitudes is in agree-
ment with the eigenvalue analysis performed previously in section Instability of the equilibrium point. The
increasing non-linear transient amplitudes are governed only by the fundamental frequencyf2 (corresponding
to the unstable mode) and its second harmonic component2f2. Therefore it should be recalled that even if the
initial disturbances were chosen as being ”‘far”’ or different from those chosen for the first caseCase 1: the
single instability, these initial disturbances do not affect the eigenvalue analysis (i.e. we are at the same local
non-linear equilibrium point with a stability analysis that indicates the occurrence of an instability governed by
unstable modef2. This is why the onset of the non-linear transient vibrationis in agreement with the first case
Case 1: single instability: the initial oscillation starts under linear conditions with the main resonance coinci-



dent with the unstable frequencyf2, and then the emergence of its second harmonic component2f2. However,
for the second part of the transient and stationary non-linear behavior (fort = [7; 12]s), the non-linear signal
appear to be more complex is composed by the fundamental frequencyf2 and its harmonics, as well as the
fundamental frequencyf1 with its harmonics and harmonic combination±nf1 ±mf2 (with n andm positive
integers). The values off1 andf2 (for the stationary self-excited oscillations) are indicated in Table 1.
It clearly appears that all the transient and stationary non-linear oscillations can become more complex and
be governed by both the initial unstable mode and by the contributions of the nonlinearities that may lead to
new instabilities in the brake system. Therefore the previous local stability of the equilibrium point cannot be
considered during the transient vibrations of the non-linear system. Moreover, it is shown that the new funda-
mental frequencyf1 corresponds to the unstable mode previously obtained forµ > 0.28. Now, the fundamental
frequencyf1 and the combination harmonics−f1 + f2 are predominant in the transient and stationary signal.
The contribution of the fundamental frequencyf2 appears to be less significant. Moreover, other contributions
such as2f1, 3f1, 2f1 − f2, −3f1 + 2f2, −2f1 + 2f2, −f1 + 2f2 andf1 + f2 are now detectable. It may be
concluded that the non-linear transient behavior of the brake system has changed drastically. Thus in the case
under study, the transient and stationary amplitudes are composed by both the two fundamental frequenciesf1
andf2, harmonic componentsnfi (for i = 1, 2 andn positive integer) and harmonic combinations±nf1±mf2
(with n andm positive integers), despite the fact that the unstable modeassociated with the frequencyf1 was
not predicted previously by the stability analysis for the given friction coefficientµ = 0.26.
Finally, Figures 11 show the evolution of the average of the self-excited vibrations during the transient non-
linear behavior ofCase 1, Case 2andCase 3. As illustrated, the emergence of the new fundamental frequency
f1 (with its harmonic components and harmonic combinations±nf1±mf2) and the global modification of the
non-linear vibration behavior is the consequence of the variation of the average non-linear vibration, which is
no longer comparable to the equilibrium point of the non-linear system (previously defined in sectionInstability
of the equilibrium point). This fact clearly demonstrates that transient non-linear behavior and modification of
the ”non-linear equilibrium point”’ during self-excited vibration are keys for predicting and identifying the
fundamental frequencies that govern both the increase of oscillations and transient and stationary vibrations.
It can be observed that the global modification of the emergence of non-linear components with the evolution
of the average of the self-excited vibrations can be observed in all cases (i.e.µ = 0.26-case 1,µ = 0.3 and
µ = 0.35) even if emergence of new instability does not appear in the three cases.
Thus it clearly appears that different non-linear behaviors can be obtained for the same friction coefficient
(µ = 0.26) by only introducing a different initial disturbance around the non-linear equilibrium point. As
explained previously, in both cases (Case 1and Case 3), the onset of the non-linear transient vibrations is
similar to the emergence of only the fundamental frequencyf2 and its second harmonic component2f2. Hence
the emergence of the new instability of fundamental frequency f1 is due only to the ”‘history”’ of the increase
in the self-excited vibrations and the evolutions of contact and loss of contact interactions at the frictional
interface. The number of loss of contact is indicated in Figure 10. The phenomenon of contact and loss of
contact is only observed during the transient responses fort = [7; 8]s with the appearance of the new unstable
mode and the ”‘high”’ evolution of the average transient vibration. We remind that the stability analysis is not
able to predict all the instabilities for this last case the due to the evolution of the average responses (even if no
local detachment between the pad and the disc is observed forthe stationary responses).
It can be concluded that considering only a stability analysis is not sufficient to predict the full contribution
of fundamental frequencies: an under-estimation of the number of unstable modes observed in the nonlinear
time simulation can be predicted by the stability analysis.The determination of a non-linear equilibrium point
and its stability can only be used as the first step in a global non-linear analysis (i.e. squeal starts under linear
conditions around an initial equilibrium point). It is thennecessary to calculate the non-linear self-excited
vibrations in order to define all the fundamental frequencies (i.e. unstable modes governing the non-linear
behavior of the brake system) and the associated harmonics or harmonic combinations.
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Figure 9: Transient non-linear responses of the brake system for µ = 0.26 (a) Time history fort = [0; 12]s (b)
Wavelet power spectrum fort = [0; 12]s
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Figure 10: Number of loss of contact during the transient vibration forµ = 0.26

5 Conclusion

A non-linear model of a disc brake system was developed to study transient and stationary non-linear self-
excited vibrations. The Continuous Wavelet Transform is used to determine the different fundamental frequen-
cies and harmonic combinations of the non-stationary amplitudes of the system. It is demonstrated that when
two instabilities occur, the resonance peaks during the transient and stationary vibrations are composed of not
only fundamental frequenciesf1 andf2 but also of harmonic componentsnfi (for i = 1, 2 andn positive
integer) and combinations of frequency components±nf1 ±mf2 (with n andm positive integers). It is ob-
served that the contributions of the harmonic components and the combination of frequency components are
essential and cannot be neglected when attemting to avoid poor design. It is also shown that the fundamen-
tal frequencies and the lower orders of the harmonic components and harmonic combinations of frequency
are generally predominant during transient and stationaryvibrations. When only one instability occurs, it is
shown that the fundamental frequency and its harmonics can occur during transient and stationary self-excited
vibrations. However, it is also illustrated that new fundamental frequencies can appear in the signals, and so
non-linear transient amplitudes can become more complex with new contributions due to the coexistence of
two instabilities of fundamental frequencies. These results illustrate that the stability analysis of an equilibrium
point (classically used as the first step for friction-induced vibration problem) only gives information about the
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Figure 11: Evolution of the average vibration during test (a) X-direction (b) Y-direction (... µ =
0.26 for case 1; − µ = 0.26 for case 3; −− µ = 0.3; −.− µ = 0.35)

initial rate of increase of disc brake amplitudes. It was demonstrated that an under-estimation of the unstable
modes observed in the nonlinear time simulation can be predicted by the stability analysis. During transient
vibrations, new fundamental frequencies can be added in thesignals due to the contributions of nonlinearities
(i.e the nonlinear contact characteristics in the present study) and so the non-linear transient and/or station-
ary amplitudes can become more complex. Finally it is shown that the transient non-linear amplitudes can be
greater than those of the stationary oscillations. Therefore the study of the transient-state behavior has to be
taken into account to predict the dynamical response for robust brake system design.
Finally, it is well-known that automobile brakes do not squeal persistently. Generally, self-excited vibrations
can occur briefly or intermittently. Thus these facts clearly illustrate that the present study cannot reproduce
”‘real-world situations”’ exactly. Although extensive studies have been performed in the past decade, many
questions in the field of friction-induced vibration remainunanswered and future research is required to increase
the reliability and safety of complex automotive brakes. Itis not possible to give an exhaustive list of topics
of interest for future developments though one of the most crucial steps for future studies is to propose more
practical non-linear models capable of considering more realistic physical contributions at friction interfaces.
That is to say that variations of friction coefficients and evolutions of nonlinear contact stiffnesses, roughnesses,
and contact and loss of contact configurations at the friction interface are essential for studying non-linear self-
excited vibrations (even if all these aspects have been considered in the present study). These variations are
capable of modifying the stability of limit cycles and new periodic and non-periodic behaviors can appear.
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