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Abstract

We present, for both minkowskian and euclidean signatures, short derivations of
the diagonal Einstein metrics for Bianchi type II, III and V. For the first two cases we
show the integrability of the geodesic flow while for the third case a somewhat unusual
bifurcation phenomenon takes place: for minkowskian signature elliptic functions
are essential in the metric while for euclidean signature only elementary functions
appear.



1 Introduction

Modern cosmology [23] has led to a strong development of models based on Bianchi coho-
mogeneity one metrics. A large amount of information was gathered, mainly for Ricci-flat
Bianchi type A metrics (see [17]) either in minkowskian or in euclidean signature. However
the need for a cosmological constant leads to consider rather Einstein metrics and not just
Ricci-flat ones, leading to more difficult problems.

For the minkowskian signature a complete list of the algebraically special and hyper-
surface-homogeneous Einstein metrics, using spinors, is given in [12] and many others
appear in [13]. For the euclidean signature the most impressive progresses came from Weyl
tensor self-duality and culminated with the tri-axial Bianchi type IX self-dual Einstein
metrics of Tod and Hitchin [19], [10]. However these ideas give only limited results for
the type B metrics as observed in [20]. Another difficulty linked to the type B studies is
that even for Ricci-flat geometries there is no need for the metric to be diagonal in the
invariant one-forms. Despite these difficulties, quite recently new results were derived for
type III [6], type V [5] and type VIIh [18] for which the most general vacuum minkowskian
metrics, i. e. non-diagonal ones, were derived.

Our aim is to give very simple derivations of some Einstein metrics, for both euclidean
and minkowskian signatures, under the simplifying hypothesis that the metric is diagonal
with respect to the invariant spatial one-forms. These metrics are examined for Bianchi
metrics of type II, III and V. As we shall see they both exhibit interesting features: the
types II and III have an integrable geodesic flow and the type V presents an interesting
“bifurcation” between the minkowskian and the euclidean regime.

As pointed out by a Referee, the basic integrability of the Einstein equations in the
cases considered in this article, which results in our work from an appropriate fixing of
the time coordinate, is best understood in a unified and systematic approach if one uses
the hamiltonian formalism developed by Uggla et al in [21]. They have shown that the
existence of Killing tensors is a key tool leading to a sytematic display of the cases leading
to integrability, even if one considers matter and not merely a cosmological constant. This
approach is in some sense reminiscent of Carter’s derivation of Kerr metric by imposing
that it must have a Killing tensor [4].

The content of this article is the following: in Section 2 we present background informa-
tions and the field equations for the bi-axial Bianchi type II metrics (they have one extra
Killing vector). The metrics are then constructed and, being of type D, their geodesic flow
is shown to be integrable.

In Section 3 we present the corresponding construction for the type III metrics. They
all share one extra Killing vector. All these metrics are of type D with an integrable
geodesic flow. However, in some special cases, there is a strong symmetry enhancment
leading to de Sitter, anti de Sitter and H

4 in somewhat unusual coordinates
In section 4 we present the corresponding construction for the type V metrics. Spe-

cial cases include again de Sitter, anti de Sitter and H
4. However in general one needs

elliptic functions to express the minkowskian metrics whereas for the euclidean ones only
elementary functions appear.

We give in Appendix A more details on the curious forms of de Sitter metric en-
countered in the analysis of the Bianchi type III and V Einstein metrics, in Appendix B
some technicalities related to elliptic functions and in Appendix C some checks involving
curvature computations.
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2 Type II metrics

The Bianchi type II Lie algebra is defined as

[L1,L2] = 0, [L2,L3] = L1, [L3,L1] = 0. (1)

One can choose “spatial” coordinates (x, y, z) such that

L1 = ∂x, L2 = ∂y − z ∂x, L3 = ∂z , (2)

and the invariant 1-forms

σ1 = dx+ ydz, σ2 = dy, σ3 = dz. (3)

We will look for diagonal metrics of the form

g = β2 σ2

1 + γ2(σ2

2 + σ2

3) + ǫ α2 dt2. (4)

The bi-axial character of this metric gives a fourth Killing vector

L4 = y ∂z − z ∂y −
1

2
(y2 − z2)∂x, (5)

and the algebra closes according to

[L4,L2] = −L3, [L4,L3] = L2. (6)

2.1 Integration of the field equations

The Einstein equations 1

Ric ν
µ = λ δ ν

µ

give 4 independent equations

(I)
β̈

β
+

β̇

β

(
2
γ̇

γ
− α̇

α

)
− ǫ

α2β2

2γ4
+ ǫλα2 = 0,

(II)
γ̈

γ
+

γ̇

γ

(
β̇

β
+

γ̇

γ
− α̇

α

)
+ ǫ

α2β2

2γ4
+ ǫ λ α2 = 0,

(III)
β̈

β
+ 2

γ̈

γ
− α̇

α

(
β̇

β
+ 2

γ̇

γ

)
+ ǫλα2 = 0.

The last relation, using the first two, simplifies to

(IV ) 4
β̇γ̇

βγ
+ 2

γ̇2

γ2
+ ǫ

α2β2

2γ4
+ 2ǫλα2 = 0.

Subtracting (IV) to twice (II) we get

2
γ̈

γ
− 2

γ̇

γ

(
β̇

β
+

α̇

α

)
+ ǫ

α2β2

2γ4
= 0, (7)

1In our notations the spheres have positive curvature.
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which suggest to fix up the time coordinate arbitrariness by imposing αβ = 1. The
previous relation decouples to the integrable equation

γ̈

γ
+

ǫ

4γ4
= 0 =⇒ γ̇2 − ǫ

4γ2
= E. (8)

Defining ρ = β2γ2, and combining (I) with (II) we get

ρ̈ = −4ǫλ γ2, (9)

and relation (IV) reduces to

ρ̇

ρ

˙(γ2)

γ2
+

ǫ

2γ4
+ 2ǫλ

γ2

ρ
= 0. (10)

So we need to integrate (8) for γ, then compute ρ and impose (10). Let us discuss separately
the two signatures.

2.2 Minkowskian signature

In this case E cannot vanish. One gets

γ2 = E

(
t2 +

1

4E2

)
, ρ = ρ0 +mt + λE

(
t2

2E2
+

t4

3

)
. (11)

Imposing (10) we get ρ0 = − λ

16E3
and m remains free. In order to get rid of the factor E

in λE it is sufficient to divide the metric by E. To compare to previous work let us define
4l2E2 = 1. After obvious algebra we end up with





g = 4l2
u

c
σ2

1 −
c

u
dt2 + c(σ2

2 + σ2

3),

c = t2 + l2, u = mt+ λ

(
−l4 + 2l2t2 +

t4

3

)
.

(12)

First obtained by Cahen and Defrise [3], see formula (13.48) with e = k = 0 in [17]. It has
Petrov type D.

2.3 Euclidean signature

In this case E = 0 is possible. Let us first dispose with this case. Using t = γ2 as a new
variable we have ρ = l+mt− 2

3
λ t3. This time (10) requires m = 0. So the metric can be

written

g = ∆ σ2

1 +
dt2

∆
+ t(σ2

2 + σ2

3), ∆ =
l

t
− 2λ

3
t2. (13)

This metric was obtained by Dancer and Strachan [9]. It is Kähler, with complex structure
J = dt ∧ σ1 + t σ2 ∧ σ3.
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For E 6= 0 there are 2 cases, according to its sign. Since the derivations are rather
similar to the minkowskian case, let us just state the results. For E > 0, with the same
relation between l and E, we obtain






g = 4l2
u

c
σ2

1 +
c

u
dt2 + c(σ2

2 + σ2

3),

c = t2 − l2, u = mt + λ

(
l4 + 2l2t2 − t4

3

)
.

(14)

The metric for E < 0 follows from (14) by the changes c → −c and λ → −λ.
Let us first observe that the parameter l is not essential: one can get rid of it by the

changes

g → g

l4
, τ =

t

l
, x → x

l2
, y → y

l
, z → z

l
.

Therefore the metric displays two essential constants: m and λ which are expected for the
general solution.

The metric (14) was first derived by Lorenz-Petzold in [11]. The Weyl tensor is

W+ =
3m+ 8λl3

6(t− l)3
M, W− =

3m− 8λl3

3(t+ l)3
M, M = diag (−2, 1, 1), (15)

so there is room for metrics with self-dual Weyl tensor. Let us consider the case

W+ = 0 → u = −λ

3
(t+ 3l)(t− l)3, t ≥ l. (16)

Positivity requires λ < 0, so that defining

s

l
=

t− 2b

t+ 2b
, −8b =

3

2|λ|l2 ,

the metric becomes

gSD =
3

2|λ|(t+ 2b)2

(
t+ b

t
σ2

1 +
t

t+ b
dt2 + t(σ2

2 + σ2

3)

)
, (17)

which was derived in [22], and shown to be complete for b = −1.

2.4 Integrable geodesic flow

It is known [24], [8] that most Petrov type D vacuum metrics (the C metric being a notable
exception) exhibit at least one Killing-Yano tensor, the square of which induces a Killing-
Stäckel tensor (following the same terminology as in [22]) and this last one is essential to
the integrability of the geodesic flow. However we suspect that this property could remain
true for many type D Einstein metrics. Writing the metric

g = 4l2
u

c
σ2

1 + ǫ
c

u
dt2 + c(σ2

2 + σ2

3), (18)

with

c = t2 − ǫ l2, u = mt + λ

(
ǫl4 + 2l2t2 − ǫ

t3

3

)
, (19)
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and taking the obvious tetrad, we found the following Killing-Yano tensor

Y = ǫ l e0 ∧ e1 + t e2 ∧ e3, (20)

the square of which produces the Killing-Stäckel tensor

S = c
(
(e2)2 + (e3)2

)
. (21)

Taking for hamiltonian

2H = gij ΠiΠj =
1

4l2
cǫ
uǫ

Π2

x + ǫ
uǫ

cǫ
Π2

t +
1

cǫ

(
Π2

y + (Πz − yΠx)
2

)
, (22)

the Killing vectors induce observables linear in the momenta

L̃1 = Πx, L̃2 = Πy − zΠx, L̃3 = Πz, L̃4 = yΠz − zΠy −
1

2
(y2 − z2)Πx, (23)

which are conserved
{H, L̃i} = 0, i = 1, . . . 4, (24)

while the Killing-Stäckel tensor induces a conserved observable which is quadratic in the
momenta

S = Π2

y + (Πz − yΠx)
2, {H,S} = 0, (25)

which is not reducible to a bilinear form with respect to the Killing vectors (23).
This dynamical system is therefore integrable since H, S, Πx, Πz are in involution for

the Poisson bracket. Writing the action as

S = Et+ p x+ q z + A(t), p = Πx, q = Πz, (26)

the Hamilton-Jacobi equation separates and we end up with

ǫ
u

c

(
dA

dt

)2

=
c

u

p2

4l2
+

S
c
− 2E. (27)

3 Type III metrics

In this case the Lie algebra is defined as

[L1,L2] = 0, [L2,L3] = 0, [L3,L1] = L3. (28)

A representation by differential operators is

L1 = ∂x + z ∂z, L2 = ∂y, L3 = ∂z , (29)

and the invariant Maurer-Cartan 1-forms are

σ1 = dx, σ2 = dy, σ3 = e−x dz, =⇒ dσ1 = dσ2 = 0, dσ3 = σ3 ∧ σ1. (30)

We will look for diagonal metrics of the form

g = β2 σ2

1 + γ2 σ2

2 + δ2 σ2

3 + ǫα2 dt2. (31)

If β2 = δ2 the metric exhibits a fourth Killing vector

L4 = z ∂x +
1

2
(z2 − e2x)∂z, (32)

and the algebra closes up to

[L1,L4] = L4, [L3,L4] = L1. (33)
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3.1 Flat space

For future use let us look for flat space within our cooordinates choice. An easy computa-
tion shows that it is given by

g0 = σ2

2 + t2(σ2

1 + σ2

3)− dt2 = dy2 + t2
(dz2 + dr2)

r2
− dt2, r = ex. (34)

The flattening coordinates are

x1 = y, x2 =
tz

r
, x3 =

t

2r
(−1 + z2 + r2), τ =

t

2r
(1 + z2 + r2),

which gives
g0 = d~r · d~r − dτ 2, ~r = (x1, x2, x3).

3.2 Integration of the field equations

Following the same procedure as for the type II case, we obtain for independent equations

(I)
δ̇

δ
=

β̇

β
,

(II)
β̈

β
+

β̇

β

(
β̇

β
+

γ̇

γ
− α̇

α

)
+ ǫ

(
1

β2
+ λ

)
α2 = 0,

(III)
γ̈

γ
+

γ̇

γ

(
2
β̇

β
− α̇

α

)
+ ǫ λ α2 = 0,

(IV )
β̇2

β2
+ 2

β̇γ̇

βγ
+ ǫ

(
1

β2
+ λ

)
α2 = 0.

Relations (I) and (II)-(IV) integrate up to 2

β̇ = c α γ, c ∈ R, δ = β. (35)

The time coordinate choice

α =
β

γ
=⇒ δ = β = β0 e

ct.

To determine γ we have to use (III) which becomes

γ̈

γ
+

γ̇2

γ2
+ c

γ̇

γ
+ ǫλβ2

0

e2ct

γ2
= 0. (36)

This equation does linearize in γ2 to

¨(γ2) + c ˙(γ2) + 2ǫλβ2

0 e
2ct = 0, (37)

and the remaining relation (IV) becomes

c ˙(γ2) + c2 γ2 + ǫ(1 + λ β2) = 0. (38)

Let us organize the discussion according to the values of c.

2The coefficient between β and δ can be set to 1 by rescaling the coordinate z.
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3.3 The metrics

We will consider first the special case c = 0. Relation (38) gives β2 = −1/λ and (37) is
easily integrated to γ2 = γ0 + γ1t + ǫt2. By a translation of t we can set γ1 → 0 and by a
rescaling of z we can set c2 → 1, so we can write the metric

g =
1

|λ|
[
σ2

1 + σ2

3 + γ2 σ2

2 + ǫ
dt2

γ2

]
, γ2 = γ0 + ǫt2, λ < 0. (39)

Let us emphasis that all the metrics will have negative Einstein constant.
For the minkowskian signature we must have γ0 > 0. By a scaling of the variables y

and t we can set γ0 = 1. This leaves us with

g =
1

|λ|

{
dx2 + e−2x dz2 + (1− t2) dy2 − dt2

(1− t2)

}
. (40)

The change of coordinates

µ =
1

2

[
ex + (1 + z2) e−x

]
, tanφ =

1

2z

[
e2x − (1− z2)

]
, (41)

leads to

g =
1

|λ|

{
dµ2

µ2 − 1
+ (µ2 − 1) dφ2

}

︸ ︷︷ ︸
g0

+
1

|λ|

{
(1− t2) dy2 − dt2

1− t2

}

︸ ︷︷ ︸
g1

, (42)

on which we recognize a product of 2-dimensional Einstein metrics with the same scalar
curvature: the euclidean g0 = H

2 and the lorentzian g1 = AdS2, so we end up with 6
Killing vectors. Let us notice that this it is a well known fact [1][p. 44] that for a product
to be Einstein, it is mandatory that both two dimensional metrics in the product have the
same Einstein constant.

For the euclidean signature, according to the sign of γ0 we have 3 cases:

γ0 > 0 g =
1

|λ|

{
σ2

1 + σ2

3 +
1

cos2 τ

[
σ2

2 + dτ 2
]}

,

γ0 = 0 g =
1

|λ|

{
σ2

1 + σ2

3 +
1

τ 2

[
σ2

2 + dτ 2
]}

,

γ0 < 0 g =
1

|λ|

{
σ2

1 + σ2

3 +
1

sinh2 τ

[
σ2

2 + dτ 2
]}

,

λ < 0.

We have again decomposable Einstein metrics made up of two copies of H2.
Let us consider the more general case for which c does not vanish. We obtain

f̃(t) ≡ c22 γ
2 = −ǫ+ γ1 e

−ct − ǫλβ2
0

3
e2ct. (43)

Taking as variable s = β0 e
ct, and cleaning up the irrelevant parameters, we eventually

obtain the Einstein metric

g = s2(σ2

1 + σ2

3) + f(s) σ2

2 + ǫ
ds2

f(s)
, f(s) = −ǫ+

γ0
s

− ǫλ

3
s2. (44)
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The metric exhibits the extra Killing vector (32) but is no longer decomposable. It contains
two essential constants: γ0 and λ which are expected for the general solution.

For ǫ = −1 it was first obtained by Stewart and Ellis [15] and by Cahen and Defrise
[3] and re-discovered later on in [14], [13] and more recently in [7]. In [17] the metric is
given by formulas (13.9)and (13.48) in which one has to take e = l = 0 and k = −1. The

Weyl tensor has a single non-vanishing component Ψ2 = − c

2s3
giving Petrov type D.

For ǫ = +1, this metric was obtained by Lorenz-Petzold [11]. Using the obvious
vierbein, we obtain for the Weyl tensor

W+ = W− =
γ0
2s3

M, M = diag(1,−2, 1), (45)

giving Petrov type (D+, D−).The Weyl tensor is self-dual if and only if γ0 = 0.
In this case, for negative λ, we obtain a complete Einstein metric in the following way:

let us change the variable s into u =
√

|λ| s. Then

f(s) → h(u) =
1

3u
(u3 − 3u+ 2c), 2c = 3

√
|λ| γ0,

so that the choice c = −1 gives a double root and for metric :

g =
1

|λ|

(
u2(σ2

1 + σ2

3) + |λ| h dy2 + du2

h

)
, h(u) =

(u− 2)

3u
(u+ 1)2. (46)

Positivity requires u > 2 and the metric becomes singular for u = 2. That this singularity
is only apparent follows from a local analysis. If we take as new variables:

ξ ≈
√

8

3
(u− 2) → 0, ỹ =

3

4

√
|λ| y,

the local form of the metric becomes a product metric H
2 × R

2

g ≈ 1

|λ|
(
4(σ2

1 + σ2

3) + ξ2 dỹ2 + dξ2
)
, ỹ ∈ [0, 2π].

The u = 2 singularity is therefore a removable polar-like singularity.

3.4 The special case γ0 = 0

From (45) we see that for γ0 = 0 the metric is conformally flat, so we must recover
symmetric spaces with 10 Killing vectors instead of 4.

Let us first consider the minkowskian signature for λ > 0. We can write the metric

g+M =
3

λ

[
t2(dx2 + e−2x dz2)− dt2

1 + t2
+ (1 + t2) du2

]
, t =

√
λ

3
s, u =

√
λ

3
y. (47)

The coordinates




z1 = tz e−x, z2 = t(sinh x+ e−x z2/2), z3 =

√
1 + t2 cosu,

z0 = t(cosh x+ e−x z2/2), z4 =
√
1 + t2 sin u,

(48)
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are constrained by (z1)2 + (z2)2 + (z3)2 − (z0)2 + (z4)2 = 1 and

g+M =
3

λ

(
(dz1)2 + (dz2)2 + (dz3)2 − (dz0)2 + (dz4)2

)
, (49)

which is de Sitter metric, with isometry group enhanced to O(4, 1).
For λ < 0 we start from

g−M =
3

|λ|

[
t2(dx2 + e−2x dz2)− dt2

1− t2
+ (1− t2) du2

]
, t =

√
|λ|
3

s, u =

√
|λ|
3

y. (50)

The coordinates




z1 = tz e−x, z2 = t(sinh x+ e−x z2/2), z3 =

√
1 + t2 cosh u,

z0 = t(cosh x+ e−x z2/2), z4 =
√
1 + t2 sinh u,

(51)

are constrained by (z1)2 + (z2)2 − (z3)2 − (z0)2 + (z4)2 = 1 and

g−M =
3

λ

(
(dz1)2 + (dz2)2 − (dz3)2 − (dz0)2 + (dz4)2

)
, (52)

and the isometry group is enhanced to O(3, 2).
For the euclidean signature, positivity requires λ < 0. We start from

g−E =
3

|λ|

[
t2(dx2 + e−2x dz2)− dt2

t2 − 1
+ (t2 − 1) du2

]
, t =

√
|λ|
3

s, u =

√
|λ|
3

y. (53)

The coordinates




z1 = tz e−x, z2 = t(sinh x+ e−x z2/2), z3 =
√
t2 − 1 cosu,

z0 = t(cosh x+ e−x z2/2), z4 =
√
t2 − 1 sin u,

(54)

are constrained by (z1)2 + (z2)2 + (z3)2 − (z0)2 + (z4)2 = −1 and

g−M =
3

λ

(
(dz1)2 + (dz2)2 − (dz3)2 − (dz0)2 + (dz4)2

)
, (55)

and the metric lies on the manifold H
4.

The de Sitter metric (53) is written in quite “exotic” coordinates. Since this metric is
of some importance, we give in appendix A, the explicit form of its Killing vectors.

3.5 Integrable geodesic flow

With the obvious tetrad, we found the following Killing-Yano and Killing-Stackel tensors

Y = s e3 ∧ e1, ⇒ S = s2
(
(e1)2 + (e3)2

)
. (56)

Let us consider the geodesic flow induced by the Hamiltonian

2H ≡ gij Πi Πj =
1

f(s)
Π2

y +
Π2

x + e2xΠ2
z

s2
+ ǫ f(s) Π2

s. (57)

9



The KS tensor S gives for conserved quantity

S = Π2

x + e2xΠ2

z, {H,S} = 0. (58)

It cannot be obtained from symmetrized tensor products of Killing vectors because their
corresponding linear conserved quantities are

L̃1 = Πx + zΠz, L̃2 = Πy, L̃3 = Πz, L̃4 = zΠx +
1

2

(
z2 − e2x

)
Πz, {H, L̃i} = 0.

The dynamical system with hamiltonian H is therefore integrable, since it exhibits 4
independent conserved quantities: H, S, Πy, Πz in involution for the Poisson bracket.
Writing the action as

S = E t+ p y + q z + A(s), p = Πy, q = Πz (59)

we get for separated Hamilton-Jacobi equation
(
dA

ds

)2

= ǫ

(
2E

f
− S

s2 f
− p2

f 2

)
. (60)

Let us consider now the Bianchi V case.

4 Type V metrics

In this case the Lie algebra is

[L1,L2] = L2, [L2,L3] = 0, [L3,L1] = −L3, (61)

with the Killing vectors

L1 = ∂x − y∂y − z∂z , L2 = ∂y, L3 = ∂z, (62)

and the invariant Maurer-Cartan 1-forms

σ1 = dx, σ2 = ex dy, σ3 = ex dz, ⇒ dσ1 = 0, dσ2 = σ1 ∧ σ2, dσ3 = σ1 ∧ σ3. (63)

We will look again for a diagonal metric of the form (31).

4.1 The flat space

Let us first determine the flat space Bianchi V metric. It is easy to check that it is given
by

g0 = t2(σ2

1 + σ2

2 + σ2

3)− dt2 = t2 γ − dt2, (64)

where the metric γ is the Poincaré metric for H3:

γ ≡ σ2

1 + σ2

2 + σ2

3 =
dy2 + dz2 + dρ2

ρ2
, ρ = e−x,

which has 6 Killing vectors. The flattening coordinates for (64) are

x1 =
ty

ρ
, x2 =

tz

ρ
, x3 =

t

2ρ
(−1 + y2 + z2 + ρ2), τ =

t

2ρ
(1 + y2 + z2 + ρ2), (65)

leading to

g0 ≡ t2(σ2

1 + σ2

2 + σ2

3)− dt2 = d~r · d~r − dτ 2, ~r = (x1, x2, x3). (66)
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4.2 Integration of the field equations

The independent equations are now

(I)
β̈

β
+

β̇

β

(
γ̇

γ
+

δ̇

δ
− α̇

α

)
+ ǫ(2 + λ β2)

α2

β2
= 0,

(II)
γ̈

γ
+

γ̇

γ

(
β̇

β
+

δ̇

δ
− α̇

α

)
+ ǫ(2 + λ β2)

α2

β2
= 0,

(III)
δ̈

δ
+

δ̇

δ

(
β̇

β
+

γ̇

γ
− α̇

α

)
+ ǫ(2 + λ β2)

α2

β2
= 0,

(IV )
β̇γ̇

βγ
+

γ̇δ̇

γδ
+

β̇δ̇

βδ
+ ǫ(3 + λ β2)

α2

β2
= 0,

(V )
δ̇

δ
− 2

β̇

β
+

γ̇

γ
= 0. (67)

The differences (I)-(II) and (I)-(III) integrate to

γ̇

γ
− β̇

β
= c

α

βγδ
,

δ̇

δ
− β̇

β
= c2

α

βγδ
,

and (V) implies c2 = −c.
This suggests to fix up the time coordinate by imposing

α = βγδ =⇒ γ = γ0 e
ct β, δ = δ0 e

−ct β, α = γ0 δ0 β
3.

By a rescaling of the coordinates y and z, we may set γ0 = δ0 = 1 and relation (I) becomes

Dt

(
β̇

β

)
+ ǫ β4(2 + λ β2) = 0, =⇒ β̇2

β2
+ ǫ β4(1 + λ β2/3) = E.

Eventually relation (IV) gives E = c2/3 ≥ 0. Summarizing, we have obtained for the
Einstein metric

g = β2

(
σ2

1 + e2ct σ2

2 + e−2ct σ2

3 + ǫ β4 dt2
)
,

β̇2

β2
=

c2

3
− ǫ β4(1 + λ β2/3). (68)

For the minkowskian signature, this result was first obtained by Schücking and Heckmann
[16] and written, in [17][p. 192] as

g = −dτ 2 + S2(τ)
(
σ2

1 + F
√
3 σ2

2 + F−
√
3 σ2

3

)
,

with the relations

3

(
dS

dτ

)2

= 3 +
Σ2

S4
+ λS2, F

√
3 = exp

(
2Σ

∫
dτ

S3(τ)

)
.

Upon the identifications

dτ = β3(t) dt, S(τ) = β(t), Σ = c,

the differential equation for S(τ) gives the differential equation for β(t) and for F we get

F
√
3 = e2ct showing full agreement with (68).
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4.3 The special case E = c = 0

This special case leads to metrics with enhanced symmetries, namely non-compact sym-
metric spaces with 10 Killing vectors. Among these, as mentioned in [17], we expect de
Sitter metrics.

The differential equation (68) becomes

dt =
dβ

β3
√

−ǫ− ǫλβ2/3
. (69)

Taking β → s as a new variable, we get the metric

g = s2
(
σ2

1 + σ2

2 + σ2

3

)
− ds2

1 + λ s2
3

. (70)

The minkowskian or euclidean character of the metric does depend solely on the range
taken by the variable t, and in the λ → 0 limit we recover, as it should, the flat space
metric (64).

For λ > 0, we can have only a minkowskian metric. As explained at the beginning

of this section, we expect a higher symmetry. Defining

√
λ

3
s =

2t

1− t2
we can write the

metric:

g+M =
12

λ

1

(1− t2)2

(
t2(σ2

1 + σ2

2 + σ2

3)− dt2
)
,

on which we recognize a symmetric space, since by using the flattening coordinates (65),
we have

g+M =
12

λ

d~r · d~r − dτ 2

(1 + ~r 2 − τ 2)2
.

Indeed, using the constrained coordinates

z0 =
1− ~r 2 + τ 2

1 + ~r 2 − τ 2
, ~z =

2~r

1 + ~r 2 − τ 2
, z4 =

2τ

1 + ~r 2 − τ 2
, z20 + ~z 2 − z24 = 1,

we see that we end up with de Sitter metric

g+M =
3

λ

(
dz20 + d~z · d~z − dz24

)
,

and the isometry group enlarges to O(4, 1). As for Bianchi type III, we get de Sitter metric
in some “exotic” coordinates. Since this could be perhaps useful for other applications,
we give in Appendix A the form of its Killing vectors.

For λ < 0 we have, for Minkowskian signature, anti de Sitter metric

g−M =
12

|λ|(1 + t2)2

(
t2(σ2

1 + σ2

2 + σ2

3)− dt2
)
.

For the euclidean signature we get

g−E =
3

|λ|
[
ch 2θ(σ2

1 + σ2

2 + σ2

3) + dθ2
]
,

12



which is also a locally symmetric space. To give the embedding in R
5 let us first define a

set of 4 coordinates (~r, x0) by

~r =
(
ex y, ex z, − sinh x+ ex(y2 + z2)/2

)
, x0 = cosh x+ ex(y2 + z2)/2,

which are constrained by ~r 2 − (x0)2 = −1. One can check that

σ2

1 + σ2

2 + σ2

3 = dx2 + e2x(dy2 + dz2) = d~r · d~r − (dx0)2.

Then, defining the coordinates (~z, z0, z4) by

~z = cosh θ ~r, z0 = cosh θ, z4 = sinh θ,

we conclude to

g−E =
3

|λ|
(
d~z · d~z − (dz0)2 + (dz5)2

)
, ~z 2 − (z0)2 + (z4)2 = −1, (71)

which shows that the metric g−E lives on the manifold H
4.

4.4 The general case E 6= 0

In relation (68), let us introduce as a new variable

ρ =
|c|
β2

> 0 =⇒ ρ dρ√
P (ρ)

= ±2c dt√
3
, P (ρ) ≡ ρ(ρ3 − 3ǫ ρ− ǫλ|c|), (72)

which gives for the metric

g =
|c|
ρ

(
σ2

1 + γ2 σ2

2 +
1

γ2
σ2

3 +
3

4
ǫ
dρ2

P (ρ)

)
, γ2 ≡ e2|c|t. (73)

Remark: Due to the symmetric role played by (σ2, σ3), the coefficients of σ2
2 and of σ2

3

may be interchanged and this corresponds to the exchange (c ↔ −c) or
(
γ ↔ 1

γ

)
. This

means that if the metric (73) is Einstein, then

g =
|c|
ρ

(
σ2

1 +
1

γ2
σ2

2 + γ2 σ2

3 +
3

4
ǫ
dρ2

P (ρ)

)
, (74)

will be Einstein too. We will use this observation to get rid of the sign in relation (72)
and to take c > 0.

4.5 Minkowskian signature

In [16] the results are given up to the quadrature for β(t). For the Einstein metric of
interest this quadrature requires the use of elliptic functions. The technical details are
given in the appendix; using these results we get the final form of the metrics, according
to the sign of the Einstein constant.

We have to take ǫ = −1. In this case the cubic polynomial P (ρ) = ρ(ρ3+3ρ+λc) has,
no matter what the value of c is, always 2 real and 2 complex conjugate roots (recall that
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we exclude λ = 0). So we fix c = 1 and, to express most conveniently the roots of P , we
parametrize the Einstein constant according to

λ = 2 sinh(θ), θ ∈ R\{0}.

We will use now the results from appendix B to give the explicit form of the metric.

1. For λ < 0 :

In this case the roots are

a = −2 sinh(θ/3) > b = 0, a1 =
√
3 cosh(θ/3), b1 = sinh(θ/3),

so we have





A =

√
3 + 12 sinh2(θ/3),

B =

√
3 + 4 sinh2(θ/3),

k2 =
(A +B)2 − 4 sinh2(θ/3)

4AB

and

sn v0 =

√
2B

A+B − 2 sinh(θ/3)
.

In formula (73) we have to transform dρ into dv to get eventually

gM =
1

ρ

(
σ2

1 + γ2 σ2

2 +
1

γ2
σ2

3 −
3

AB
(dv)2

)
, v ∈ [0, v0), (75)

where ρ and γ2 are given respectively by

ρ =
aB cn2 v

B cn2 v −A sn2 v dn2 v
, (76)

and by

γ2 =

(
e−ξvH(v0 + v) Θ1(v0 + v)

H(v0 − v) Θ1(v0 − v)

)√
3

, ξ = 2

(
Θ′

Θ
(v0) +

H ′
1

H1

(v0)

)
. (77)

2. For λ > 0 :

In this case the roots are

a = 0 > b = −2 sinh(θ/3), a1 =
√
3 cosh(θ/3), b1 = sinh(θ/3),

so we have





A =

√
3 + 4 sinh2(θ/3),

B =

√
3 + 12 sinh2(θ/3),

k2 =
(A+B)2 − 4 sinh2(θ/3)

4AB
.
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The parameter k2 remains unchanged while A and B are interchanged and v0 becomes

sn v0 =

√
2B

A+B + 2 sinh(θ/3)
.

The metric is still given by (75), where now ρ and γ2 are respectively

ρ =
|b|A sn2 v dn2 v

B cn2 v −A sn2 v dn2 v
, (78)

and by

γ2 =

(
e−ξvH(v0 + v) Θ1(v0 + v)

H(v0 − v) Θ1(v0 − v)

)√
3

, ξ = 2

( |b|
AB

+
Θ′

Θ
(v0) +

H ′
1

H1

(v0)

)
. (79)

Using the complex null-tetrad 3

m =
1√
2
(ect β σ2 + ie−ct β σ3), k =

1√
2
(β3 dt− β σ1), l =

1√
2
(β3 dt+ β σ1), (80)

and defining µ = 1/β2, one has to use the differential equation (68) which gives

µ̇2

4
=

c2

3
µ2 + 1 +

λ

3

1

µ
. (81)

Just using these informations one can check, computing the curvature, the Einstein prop-
erty of this metric. For the Weyl tensor we have obtained

Ψ0 = c µ2

(
1− µ̇

2

)
, Ψ2 =

c2

3
µ3, Ψ4 = −c µ2

(
1 +

µ̇

2

)
, Ψ1 = Ψ3 = 0, (82)

which establishes the Petrov type I of the metric.

4.6 Euclidean signature

In this case P (ρ) = ρ(ρ3 − 3ρ− λc). It has two real roots for λc ∈ (−∞,−2)∪ (+2,+∞),
four real roots for λc ∈ [−2, 0)∪(0,+2] and a double root for λc = ±2. Since the parameter
c is free, we can collapse (−∞, 0) ∪ (0,+∞) to two points by taking c = 2/|λ|. Therefore
in this case elliptic functions are no longer required!

We have to discuss two cases:

1. λ < 0 :

We have P (ρ) = ρ(ρ+ 2)(ρ− 1)2 and

2c√
3
dt =

ρ dρ

|ρ− 1|
√
ρ(ρ+ 2)

.

3We follow strictly the notations of [17].
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The change of variable ρ =
2s2

3− s2
simplifies to

2c dt =
4s2 ds

(1− s2)(3− s2)
.

We obtain

γ2 ≡ e2ct =
1 + s

|1− s|

(√
3− s√
3 + s

)√
3

, (83)

and the Einstein metric

gE =
(3− s2)

|λ| s2
(
σ2

1 + γ2 σ2

2 +
1

γ2
σ2

3 +
ds2

(1− s2)2

)
. (84)

In fact we have two different metrics, according to the interval taken for s: either s ∈
(−1, 1) or s ∈ (1,

√
3).

2. λ > 0 :

We have P (ρ) = ρ(ρ− 2)(ρ+ 1)2 and

2c√
3
dt =

ρ dρ

(ρ+ 1)
√

ρ(ρ+ 2)
, ρ > 2.

The change of variable ρ =
2

1− s2
simplifies to

2c√
3
dt = − 4 ds

(1− s2)(3− s2)
, s ∈ (−1,+1).

Deleting the sign we obtain

γ2 ≡ e2c t =

√
3− s√
3 + s

(
1 + s

1− s

)√
3

(85)

and the Einstein metric

gE =
(1− s2)

λ

[
σ2

1 + γ2 σ2

2 +
1

γ2
σ2

3 +
3 ds2

(3− s2)2

]
. (86)

Some remarks are now in order:

1. We have checked, using the obvious vierbein, the vanishing of the matrix B and
that TrA = λ, which proves the Einstein character of both metrics and computed the
Weyl tensor: it has Petrov type (I+, I−) and is never self-dual.

2. It is interesting to compare with the results in [20] for the Bianchi type A Einstein
metrics with self-dual Weyl tensor: except for Bianchi type II, they all involve Painlevé
transcendents.

3. Let us observe that the difference in structure between the minkowskian and eu-
clidean type V case is quite unusual. Indeed we have seen for the Bianchi type II and III
metrics that the change in the signature brings rather small variance.
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5 Conclusion

We have been giving very simple derivations of the “diagonal” Bianchi type II, III and
V Einstein metrics. The first two exhibit an integrable geodesic flow, while the third
one gives rise to new euclidean metrics which can be expressed in terms of elementary
functions. Let us observe that there is little room for diagonal type B euclidean metrics
with self-dual Weyl tensor: we have seen that the corresponding metrics are conformally
flat, in agreement with [19]. A question of interest is to what extent one could work out
the tri-axial type II metric or the more general Bianchi VIh and Bianchi VIIh metrics, a
rather difficult aim to say nothing of the non-diagonal ones!

Acknowledgements: we are greatly indebted to Dr Lorenz-Petzold and Pr MacCallum
for having provided me with the references prior to this work.

Appendix

A De Sitter metric re-visited

A.1 de Sitter from Bianchi type III

Let us consider the de Sitter metric (47) written as

g+M =
3

λ

[
t2

dz2 + dv2

v2
+ (1 + t2)du2 − dt2

1 + t2

]
, u =

√
λ

3
y, v = ex. (87)

The four standard Killing vectors are now

K1 = v ∂v + z ∂z , K2 = ∂u, K3 = ∂z, K4 = zv ∂v +
(z2 − v2)

2
∂z. (88)

The remaining ones appear by pairs

−sin u

vf
∂u +

f cos u

v
(v ∂v + t ∂t),

cosu

vf
∂u +

f sin u

v
(v ∂v + t ∂t),

−z sin u

vf
∂u +

f cosu

v
(zv ∂v − v2 ∂z + zt ∂t),

z cosu

vf
∂u +

f sin u

v
(zv ∂v − v2 ∂z + zt ∂t),

and




(v2 + z2) sin u

vf
∂u +

f cosu

v

(
(v2 − z2)v ∂v + 2v2z ∂z − (v2 + z2)t ∂t

)
,

−(v2 + z2) cosu

vf
∂u +

f sin u

v

(
(v2 − z2)v ∂v + 2v2z ∂z − (v2 + z2)t ∂t

)
,

f =

√
1 + t2

t
.

Despite the simple form of the metric in these coordinates, the symmetries are somewhat
wild.
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A.2 de Sitter from Bianchi type V

We have shown that the metric

g = s2
(
σ2

1 + σ2

2 + σ2

3

)
− ds2

1 + λ s2
3

, λ > 0, (89)

is de Sitter. Taking sinh θ =
√

λ
3
s and v = e−x as new variables the metric becomes

g =
3

λ

(
sinh2 θ

dy2 + dz2 + dv2

v2
− dθ2

)
, λ > 0. (90)

The first 3 dimensional piece in the metric is H
3 in Poincaré coordinates, so we have 2

sub-algebras:

A1 =
{
P1, P2, M3

}
, A2 =

{
Q1, Q2, L3

}
. (91)

The first one is e(2) (M3 is a rotation)

P1 = ∂y, P2 = ∂z, M3 = −z ∂y + y ∂z , (92)

and the second one is ẽ(2) (L3 is a dilatation)





Q1 =
1

2

(
− y2 + z2 + v2

)
∂y − yz ∂z − yv ∂v,

Q2 = −zy ∂y +
1

2

(
y2 − z2 + v2

)
∂z − zv ∂v,

L3 = −y ∂y − z ∂z − v ∂v, (93)

We need 4 extra Killing vectors to get the 10 dimensional so(4, 1) Lie algebra for de Sitter
metric. They are given by

C1 = − 1

tanh θ
∂v −

1

v
∂θ,

C2 =
1

tanh θ
(v ∂y − y ∂v)−

y

v
∂θ, C3 =

1

tanh θ
(v ∂z − z ∂v)−

z

v
∂θ,

C4 = − v

tanh θ
(y ∂y + z ∂z) +

(y2 + z2 − v2)

2 tanh θ
∂v +

y2 + z2 + v2

2v
∂θ.

(94)

B Elliptic functions: some tools

There are plenty of books on elliptic function theory, but we used mainly the books by
Byrd and Friedman [2] and by Whittaker and Watson [25]. We use Jacobi rather than
Weierstrass notation for elliptic functions. Similarly we use earlier Jacobi notation for
the theta functions which is best adapted to our purposes. They are related to the more
symmetric notations used in [25] according to

H(v) = θ1(w), H1(v) = θ2(w), Θ1(v) = θ3(w), Θ(v) = θ4(w), w =
πv

2K
.

Let us start from the relation (72)

2dt√
3
=

ρ dρ√
P (ρ)

. (95)
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If the quartic polynomial P (ρ) has 2 real roots, and therefore two complex conjugate ones,
we will write it

P (ρ) = (ρ− a)(ρ− b)[(ρ− b1)
2 + a21], a > b.

In this case, the positivity of ρ and P (ρ) requires ρ ≥ a. One defines

A =
√

(a− b1)2 + a21 > B =
√
(b− b1)2 + a21, k2 =

(A+B)2 − (a− b)2

4AB
< 1,

where k2 will be the parameter of the elliptic functions involved. Let us define the change
of variable

sn2 v =
2B(ρ− a)

D+

, cn2 v =
D−
D+

, dn2 v =
D−

2A(ρ− b)
, (96)

with

D± = A(ρ− b)±B(ρ− a) + (a− b)
√

(ρ− b1)2 + a21, (97)

and the parameters

s0 ≡ sn v0 =

√
2B

A+B + a− b
< 1, s1 ≡ sn v1 =

√
2B

A+B − a + b
> 1,

for which the reader can check that v1 = K + iK ′ + v0.
The change of variable (96) transforms ρ ∈ [a,+∞) into v ∈ [0, v0) ⊂ [0, K0). The

inverse relation is 4

ρ =
aB c2 − bA s2d2

B c2 − As2d2
. (98)

Using
ρ− a

a− b
=

As2d2

B c2 − As2d2
,

ρ− b

a− b
=

B c2

B c2 − As2d2
,

√
(ρ− b1)2 + a21 = AB

d2 − c2 + c2d2

B c2 − As2d2
,

straightforward computations give

dρ√
P (ρ)

=
2√
AB

dv.

It remains to give the explicit form of γ2 = e2t as a function of v by integrating (95), which
becomes now:

2dt√
3
=

2√
AB

aB c2 − bA s2 d2

B c2 − As2 d2
dv. (99)

The relation

c20
s2 − s20

= − c0
2s0d0

(
H ′

H
(v0 − v) +

H ′

H
(v0 + v)− 2

Θ′

Θ
(v0)

)
,

4From now on we will use the simplified notations s ≡ sn (v, k2), c ≡ cn (v, k2), d ≡ dn (v, k2) as well
as s0 = sn v0, s1 = sn v1 etc...
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and a similar one, obtained by the substitution v0 → v1 = K + iK ′ + v0:

c21
s2 − s21

=
c0

2s0d0

(
Θ′

1

Θ1

(v0 − v) +
Θ′

1

Θ1

(v0 + v)− 2
H ′

1

H1

(v0)

)
,

allow us to integrate up to

γ2 ≡ e2t =

(
e−ξvH(v0 + v) Θ1(v0 + v)

H(v0 − v) Θ1(v0 − v)

)√
3

, ξ = 2

(
− b√

AB
+

Θ′

Θ
(v0) +

H ′
1

H1

(v0)

)
.

(100)
As the reader may notice, in [2][p. 135] a different change of variables is given, which
differs from ours. It is

cn u =
(A−B)ρ− bA + aB

(A +B)ρ− bA− aB
.

As a consequence we get in the metric (73) the term

−3

4

dρ2

P (ρ)
= − 3

AB

(du
2

)2
.

To avoid the 1/2 factor we have used a duplication transformation to switch to our variable
by u = 2v, having in mind that in the limit λ → 0 we have 3/AB → 1.

C Curvature computations

Taking the obvious vierbein eA, we define the connection ω and its self-dual components
by

deA + ωAB ∧ eB = 0, A = 0, 1, 2, 3 ω±
a = ω0a ±

1

2
ǫabc ωbc, a, b, c = 1, 2, 3. (101)

The self-dual components of the curvature follow from

R+

a = dω+ − 1

2
ǫabc ω

+

b ∧ ω+

c , R−
a = dω− +

1

2
ǫabc ω

−
b ∧ ω−

c . (102)

Using the 2-forms

λ±
a = e0 ∧ ea ±

1

2
ǫabc eb ∧ ec,

the curvature can be expressed in terms of a triplet of 3× 3 matrices

(
R+

a

R−
a

)
=

(
Aab Bab
tBab Cab

)(
λ+

b

λ−
b

)
, tA = A, tC = C. (103)

Notice that the self-dual components of the Weyl tensor, defined by

W+

a = W+

ab λ
+

a , W−
a = W−

ab λ
−
a ,

are

W+ = A− trA

3
I, W− = C − trC

3
I. (104)
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For the diagonal Bianchi type V metrics considered here the matrices W± have the general
structure

W± =




w11 0 0
0 w22 ±w23

0 ±w23 w33


 . (105)

For the case λ > 0 we get:





w11 =
8λ

3(1− s2)3
, w23 = − 2λ

(1− s2)2
,

w22 =
2λ

3

(
√
3s3 − 3

√
3s− 2)

(1− s2)3
,

w33 = −2λ

3

(
√
3s3 − 3

√
3s+ 2)

(1− s2)3
,

(106)

The eigenvalues are all different hence we have a “Petrov-like” type of the form (I+, I−).
The conclusions are the same for the case λ < 0 for which we have





w11 =
−8λs6

(3− s2)3
, w23 =

2λs4

(3− s2)2
,

w22 =
2λ

3

s3(2s3 − 9s2 + 9)

(3− s2)3
,

w33 =
2λ

3

s3(2s3 + 9s2 − 9)

(3− s2)3
.

(107)
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