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Abstract: Risk assessment requires a description of the probabilistic properties of 

hydrological variables. In a number of cases, this description is made on a single variable, 

whereas most hydrological events are intrinsically multivariate. In this context, copulas have 

recently received attention in order to derive a multivariate frequency analysis. After a 

reminder of the general results in the field of multivariate extreme value theory, the paper 

gives a description of a very simple copula, the Gaussian copula. Four case studies 

demonstrate its usefulness in the contexts of field significance determination, regional risk 

analysis, Discharge-Duration-Frequency (QdF) models with design hydrograph derivation 

and regional frequency analysis. The limitations and potential errors related to this statistical 

tool are also highlighted. 
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I. Introduction 

Extreme value theory (EVT) is widely used by hydrologists, especially for flood and drought 

mitigation. The severity of a hydrological extreme event is expressed as a non-exceedance 

probability, or equivalently, in terms of return period. This can be used to locate an observed 

event at a probabilistic scale and the theory can be used for extrapolation, i.e. for the 

determination of the probability of observing an event, even outside the range of observations. 

In some cases, hydrologists can be interested in several hydrological variables, which would 

lead to use of a multivariate statistical tool. Examples of such a situation in the flood 

mitigation field include the following: • A flood event can be studied in different ways. The most commonly assessed trait is 

the peak flow of the event, but the volume or threshold exceedance duration can also 

be of interest. As an example, an event with a peak of a hundred-years return period 

could be less damaging than an event with a ten-years return period both in peak and 

volume. Unfortunately, these traits are not independent, thus preventing each variable 

from being studied separately. The multivariate distribution of the triplet (peak, 

volume, duration) is needed. Such an analysis has been undertaken by Adamson et al. 

[1] or Grimaldi and Serinaldi [23] as an example. • A flood event at a river confluence can be the result of high discharges in only one or 

both of the upstream flows. If the discharges of these two streams are independent, the 

probabilistic behavior of the downstream flow, equal to the sum of the two upstream 

ones, can be obtained by convolution. Nevertheless, both tributaries can tend to have 

simultaneous high flows. In this case, the preceding calculation can lead to a strong 

underestimation of the risk. Once again, the multivariate distribution of the two 

upstream flows is needed. Some examples are provided by Mousavi [46], Le Clerc 

and Lang [35] and Favre et al. [17]. Coles [6] describes the underlying methodology. • Water resources managers usually have to deal with several rivers in a given 

geographical area. A currently observed phenomenon is that a ten-year flood event is 

observed almost every year at a regional scale: the at-site non-exceedance probability 

is not suitable at the regional scale [62]. This phenomenon can easily be quantified in 

the case of M independent sites: the probability of observing at least one event with 

non-exceedance probability p is equal to 1 1Mp p− ≥ − . In contrast, if all sites are 

perfectly correlated, then the regional and the local probabilities are equal. Between 

these two extreme cases, which are never encountered in practice, the regional 

behavior of flood events is related to the dependence between stations, which has to be 

taken into account through a multivariate distribution. 

Multivariate extreme value theory (MEVT) is studied by mathematicians (see Coles [6] for a 

review of the topic). Unfortunately, theoretical results are often difficult to use in practice, 

compared to the classical EVT. Additional hypotheses therefore have to be made to take into 

account dependence between variables. In this context, copulas have recently received 

particular attention [4, 13, 17, 21, 23, 54, 57], because they are relatively easy to handle and 

they can be used in a wide range of situations. In counterpart, they are based on a model of 

the dependence structure, which has to be checked for adequacy. 

The aim of this article is to present some examples involving a particular copula, the Gaussian 

copula. In the first part, a review of some results of MEVT will be given, with a general 

description of copulas, and a more detailed description of the Gaussian copula (section II). 

The first application deals with the problem of the field significance determination in multi-
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testing problems (section III.1). The second example deals with regional risk estimation, as 

presented in the introduction (section III.2). In section III.3, the Discharge-Duration-

Frequency (QdF) methodology will be studied, and a copula will be used to compute the 

return period of a design hydrograph. The problem of intersite dependence and its 

implications for regional frequency analysis will be explored in section III.4. Examples where 

a Gaussian copula is not able to model properly the dependence structure of observations will 

also be presented (section III.5). Finally, the results obtained in this paper will be discussed 

(section IV), before giving some conclusions about the advantages and drawbacks in using a 

Gaussian copula, and proposing some perspectives for improving multivariate hydrological 

extreme events analysis (section V). 

II. Multivariate extreme value theory 

II.1. Some results of MEVT for componentwise maxima 

Let 1( ,..., )nX X  be independent and identically distributed variables. Let Mn denote the 

maximum of these variables, 
1,...,

max( )n
i n

iM X== . Under regularity conditions, it can be proven 

[18] that the only possible limit distribution of Mn, normalized by suitable values, is the 

general extreme value distribution (GEV), whose density is: 
1 1

1
1 ( ) ( )

( ; , , ) 1 exp 1
x x

f x
ξ ξξ β ξ βα β ξ α α α

−  − −   = − − −        


≤

 (1) 

This theorem justifies the use of the GEV distribution to model annual maximum discharges, 

for example. In the multivariate case, such a theorem is also available. For clarity the bivariate 

case will be described. Let  be independent and identically distributed vectors. 

Let M

1,...,( , )i i i nX Y =

)
1,...,

), max( )i i
i n

X Y= =

n denote the 2-dimensional vector of the componentwise maxima, 
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and H is a distribution on [0;1] with a mean of ½. 

(2) 

Unfortunately, it appears that the limit distribution cannot be expressed in a classical 

parameterized way: an infinity of H distributions is able to validate the mean constraint. The 

choice of this function is the main difficulty of multivariate extreme value analysis. In 

practice, G(x,y) can be chosen in a parametric family of distributions, which will be able to 

model a wide range of dependence structures, ranging from independence to total 

dependence. An example of such a family is the logistic family [6]. Up to this point, it is 

important to notice that this choice is a hypothesis which is not based on theoretical results, in 
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contrast to the use of the GEV in the univariate case. Consequently, it is necessary to check 

the adequacy of the dependence model and to keep in mind that the overall uncertainty is 

made up of the uncertainty related to the estimation of the parameters, which can be 

quantified by standard statistical methods, and of the modeling uncertainty, which is more 

difficult to assess. 

II.2. Copulas 

Copulas are alternative tools for dealing with multivariate extremes, and have become very 

popular in recent years. Let (X
(1)

,…,X
(d)

) be a d-dimensional random vector with a probability 

distribution of:  
(1) ( )

1 1( ,..., ) Pr({ } ... { })d
d dF x x X x X x= ≤ ∩ ∩ ≤  (3) 

A copula is a function c verifying: 

1 1 1

:[0;1] [0;1]

and

( ,..., ) ( ( ),..., ( ))

d

d d

c

F x x c F x F x=

a

d

 (4) 

The c function is used to model dependence between variables, while marginal distributions 

can be described in an usual way, with for example GEV distributions. Consequently, the 

copula function can be used in order to derive a multivariate distribution with the desired 

marginal distributions. Conversely, let F be a multivariate distribution with marginal 

distributions F1,…,Fd. It can then be proven that c exists [56], which means that any 

multivariate distribution can be written in the form of equation (4). Moreover, if the marginal 

distributions Fi are continuous, then c is unique.  

Nevertheless, as with the H distribution, no theoretical results are available to determine the 

copula: given marginal distributions, an infinity of multivariate joint distributions can be 

derived. Once again, a parametric family has to be chosen to model the dependence (see Favre 

et al. [17] for a review). As an illustration, Archimedean copulas can be constructed as 

follows. Let :[0;1] [0; ]ϕ → +∞  be a continuous decreasing function such that (1) 0ϕ =  and 

 for all t in 1( 1)k kϕ − ( ) / 0kd t dt− ≥ ]0; [+∞  and  k=1,…,d, where d is the number of 

dimensions. The following function is then a copula: 

1

1 1 1

:[0;1] [0;1]

( ( ))  if ( ( )) (0)
( ,..., )  

0 otherwise

d

d d

i i i i
d i i

c

F x F x
c x x

ϕ ϕ ϕ ϕ−
= =

   ≤  =   
∑ ∑

a

 (5) 

Classical choices for the ϕ  generator function include ( ) 1t t αϕ −= −  (Clayton copula), 

1
( ) log

1

te
t

e

α
αϕ  −=  −   (Frank copula) or ( ) ( log )t t αϕ = −  (Gumbel-Hougaard copula). The α  

parameter thus summarizes the dependence. Although such copulas are very useful in the 

bivariate case, they are more problematic with a high number of dimensions, because a single 

parameter is not sufficient to describe a random vector with contrasted levels of dependence 

between marginal components. It is thus necessary to generalize the previous generator 

functions, by including additional parameters. Grimaldi and Serinaldi [23] provide an 

example of such a generalization. An alternative family may be easier to handle in highly 

dimensional cases and comprises the Elliptical copulas. These copulas use a symmetric and 

positive definite matrix in order to model dependence. The elements of this matrix can be 

interpreted as dependence measures between couples of variables, leading to an analogy with 
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the correlations used in the case of a multivariate Gaussian distributions. The most well 

known elliptical copulas are the Gaussian copula, which will be described in details later, and 

the Student’s copula. 

Whatever the family chosen, the number of parameters quickly grows with dimension. 

Estimation using standard methods such as maximum likelihood can be impossible because of 

numerical difficulties. A common estimation scheme consists in estimating marginal 

parameters separately as a first step, then estimating copula parameters knowing marginal 

estimations. On the other hand, the efficiency of estimators is not ensured. 

Although appealing, the copula theory also suffers from a number of drawbacks, essentially 

because of its lack of connection with standard multivariate extreme value theory. Although 

specific copulas have been proposed to account for the theoretical properties of extremes [4, 

22], additional developments are still needed, especially in the field of spatial extremes. This 

problem may be a limit for extrapolation, i.e. for the computation of very low probabilities, 

corresponding to multivariate events lying outside the observations range. Mikosh [45] thus 

lists a number of questions that remain unsolved, and provides a skeptical point of view about 

the use of copulas. 

II.3. The Gaussian copula 

The Gaussian copula is a member of the Elliptical copulas family. The dependence is 

modeled by means of a symmetric and definite positive matrix, whose elements are used to 

describe the dependence between couples of variables. This model is thus convenient when 

the number of dimensions is more than two or three, and has been widely studied in finance 

(see Cherubini et al. [5] and references therein). In the hydrology field, the meta-Gaussian 

density studied by Kelly and Krzysztofowicz [32] and Herr and Krzysztofowicz [25] can also 

be viewed as a Gaussian copula. 

The Gaussian copula is defined as follows:  ( )1 1
1 1( ,..., ) ( ),..., ( )d d dc u u u uφ φ− −= Φ  (6) 

where φ  is the cdf of the standard normal distribution N(0,1) and dΦ  is the cdf of a 

multivariate normal distribution with mean 0 and covariance matrix Σ . 

In other words, the multivariate cumulative distribution of the data will have the following 

form: 

( )1 1 1

1 1
1 1

( ,..., ) ( ( ),..., ( ))

( ( )),..., ( ( ))

d d d

d d

F x x c F x F x

F x F xφ φ− −
=
= Φ d

 (7) 

or equivalently, the multivariate density can be written as: 

( ) ( ) ( ) ( )1 1 1

1 1 1 1 1
1 1 1 11/ 2

( ,..., ) ( ) ... ( )

( ) ,..., ( ) ( ) ,..., ( )
exp

2

d d d

T

d d d d

f x x f x f x

F x F x I F x F xφ φ φ φ− − − − −
−

= × × ×
    Σ −    Σ −   



)

 
(8) 

The main advantage of this copula is its simplicity: once the data have been transformed by 

, the well known multivariate normal distribution is used to calculate probabilities. 

Figure 1 illustrates the principle of the copula, while Figure 2 shows the shape of the 

multivariate distribution obtained in a two-dimensional case. It also shows the limit of the 

Gaussian copula: with GEV marginal distributions, the distribution of the data has to be 

suitably described by this V-shaped dependence. In particular, a Gaussian copula will not be 

able to model properly more complex dependence structures. As an example, dependence 

between extreme variables may depend on marginal values. In other cases, it may be 

inappropriate to model the dependence of transformed variables by simple correlations. It is 

1( (.)iFφ −
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therefore necessary to check the adequacy of the dependence structure implied by the 

Gaussian copula. Standard model diagnosis used in multivariate Gaussian analysis can be 

used for this purpose. As an example, Chi-square plots provide a graphical diagnosis for 

multivariate normality. The principle can be described as follows: let (  denote 

the d-dimensional variable of interest, transformed toward standardized marginal normality 

thanks to . Under the assumption of multivariate normality 

(1) ( ),..., )dX X% %

( ; )N 0
1( (.)iFφ − ) Σ , the following 

quadratic form should fit a 2
dχ  distribution: 

(D X T

1,...,( )i i nd =

0.5i

n

−    


Σ

, ,2sin( )
6

i j i jr
π=

(1) ( ) 1 (1) ( ),..., ) ( ,..., )d dX X X−= Σ% % % %  (9) 

In practice, the data are transformed by a normal-score transformation, in order to avoid 

departure from the expected distribution which may be due to marginal estimation errors, and 

the correlation matrix is estimated empirically on the transformed data. The transformed data 

are then used to construct a sample of di, by: 
(1) ( ) 1 (1) ( )ˆ( ,..., ) ( ,..., )d d

i i i i id x x x x−= Σ% % % % T  (10) 

A QQ-plot can finally be constructed: if d(i) denotes the i
th

 sorted value of  and 

2 ( )dχ α  the α-quantile of a Chi-square distribution with d degrees of freedom, then the points 

2
i d ( ) ;d χ

 should remain close to the y=x line. Alternative diagnostic tools may be 

used, for example by using univariate goodness-of-fit tests based on linear combinations of 

the marginal values (see e.g. Mardia [40] for additional methods). 

The next step consists in estimating parameters. The estimation scheme presented in the 

previous section can be used to estimate first the marginal parameters, then the  covariance 

matrix. Phoon et al. [49] proposed an alternative method, which allows the marginal and 

dependence parameters to be estimated independently: 

1. Estimation of Spearman’s rank correlations ri,j between pairs of variables. These 

correlations are invariant by monotonic transformation. 

2. Transformation toward Pearson correlation coefficients by ρ  

3. Estimation of marginal parameters (Maximum likelihood for instance). 

 

The drawback of this method is that the obtained Σ  covariance matrix is not ensured to be 

non-negative definite. If this is not the case, Σ  can be estimated by the classical observed 

covariance matrix between transformed data X%  by 
1ˆ TX X
n

Σ % %= . 

To conclude with this presentation, notice that a Gaussian copula is an easy tool to simulate 

data with prescribed marginal distributions and correlations: as a first step, a multivariate 

normal data set is simulated from Φ ( )d 0,Σ , where the elements of the diagonal of  are 

equal to one. Marginal samples are then transformed by . 

Σ
1( (.))iF φ−

III. Use of the Gaussian copula in Hydrology 

III.1. Field significance 

Field significance determination is a problem encountered in multi-testing studies. It has been 

studied by Livezey and Chen [37], Lettenmaier et al. [36] , Douglas et al. [15], and Yue and 

Wang [63]. In the hydro-meteorological field, a major preoccupation is the determination of 
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the impacts of climatic change on various variables. The method normally consists in testing a 

number of stations for stationarity. As an example, suppose that 100 stations are tested with a 

risk equal to 0.05. Under the hypothesis that all stations are stationary, approximately five 

stations should be detected as non-stationary, because of the 5% risk. But what would be the 

conclusion with 6 significant results? In other words, what is the minimum number of locally 

significant results to conclude, with a risk α’, that all these results cannot be due to chance? In 

order to answer this question, the distribution of N, the number of locally significant tests 

under the hypothesis that all series are stationary, is needed. This distribution can be 

calculated theoretically as follows: let X
(i)

 denote the data recorded at site i, i=1,…, p. Assume 

that all series are tested by comparing a test statistic Si=g(X
(i)

) with a critical value c. Let kΩ  

denote the set of all possible combinations of k elements among p. The distribution of N can 

then be derived as: ( )
( )
( )
( )

1 1

11

11

( )( ) ( )( )

( )( ) ( )( ) 1 1 1 1

Pr( ) Pr ,..., , ,...,

Pr ( ) ,..., ( ) , ( ) ,..., ( )

Pr (] ; [),..., (] ; [), (] ; ]),..., (] ; ])

Pr

k k p

k

pk k

k

pk k

k

k

n n n n

nn nn

nn nn

N k S c S c S c S c

g c g c g c g c

g c g c g c g

+

+

+

Ω

Ω
− − − −

Ω

Ω

= = > > ≤ ≤
= > > ≤ ≤
= ∈ +∞ ∈ +∞ ∈ − ∞ ∈ − ∞
= ∈ℜ

∑
∑
∑

X X X X

X X X X

X

kΩ
∑

c

 

(11) 

where ℜ is defined by: 
kΩ

( ){ }11
( )( ) ( )( )( ) 1 1 1 1,..., (] ; [),..., (] ; [), (] ; ]),..., (] ; ])pk k
nn nnp g c g c g c g+− − − −∈ +∞ ∈ +∞ ∈ −∞ ∈ −∞(1)

X = X X X X X X c  
(12) 

This equation shows that the multivariate distribution of the tested series is needed, except in 

the case of independence. In this case: ( )
( ) ( ) ( ) ( )1 1

1 1

Pr( ) Pr ,..., , ,...,

Pr ...Pr Pr ...Pr

(1 )

(1 )

k k p

k

k k p

k

k

n n n n

n n n n

k p k

k k p k
p

N k S c S c S c S c

S c S c S c S c

C

α α
α α

+

+

Ω

Ω
−

Ω
−

= = > > ≤ ≤
= > > ≤
= −
= −

∑
∑
∑

≤
 

(13) 

If all sites are independent, N follows a binomial distribution. With the preceding example, 

the minimum number of locally significant results to ensure a 5% field significance is thus 

equal to nine under the independence hypothesis, because ( 8) 0.937p N ≤ =  and 

. ( 9) 0.972p N ≤ =
If the tested series are dependent, a Gaussian copula can be used to take into account spatial 

correlations in field significance determination, in the following way: • parameters estimation • do i=1,…, M 

o simulation of a new multivariate data set thanks to the estimated copula 

o test of each series for stationarity 

o computation of Ni, the number of significant results 

The simulated data series are all stationary, and agree with the observed correlations and 

marginal distributions. The sample of (Ni) can thus be used to approximate the distribution of 

N, and to compute a critical value. 
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This method was applied to a set of 13 hydrometric stations in the North-East of France. 

Between 39 and 84 years of daily discharges are available. Annual maxima were extracted 

and a Mann-Kendall test [33, 39] was applied to the 13 series obtained. Five stations showed 

a significant trend at risk 5% (Figure 3). The preceding procedure was then applied in order to 

evaluate the field significance of these five significant results. Marginal distributions are 

assumed to be Gumbel distributions, whose parameters are estimated with the method of 

moments on all available years. The Σ  correlation matrix was directly estimated on 

transformed data by 
1ˆ T

n
=Σ X X% % , because the Phoon method based on rank correlations led 

to a non-definite positive matrix. Only years shared by all stations were taken into account for 

this estimation (30 years). Estimated correlations ranged from 0.051 to 0.976. The adequacy 

of the Gaussian copula model was evaluated with the QQ-plot described in section II.3 

(Figure 4), which shows no strong departure from the expected distribution. The distribution 

of N was finally approximated with M=1000 simulations, as shown by Figure 5. The decision 

depends on the combination of a local risk and a regional risk, which are not necessarily 

equal. Different combinations are summarized in Table 1. As an example, the five significant 

changes obtained with a 5% test were also regionally significant at a risk of 5%, but were not 

at risk 1%. 

III.2. Regional risk estimation 

In this section, the aim will be to estimate the probability of observing at least one event of 

given return period T, in a set of d stations, as explained in the introduction. The return period 

corresponding to this probability will be called the regional return period TR. A similar 

analysis can be found in the paper by Troutman and Karlinger [62]. Let X
(i)

 denote the annual 

maximum discharge of station i. If a Gaussian copula is suitable for modeling the multivariate 

data set, then this probability can be computed as follows: 

(1) (1) ( ) ( )

(1) ( )

(1) ( )
1

1

(at least one event with return period T) 1 (no event with return period T)

1 ({ } ... { })

1 ( ,..., )

1 ( ( ),..., ( ))

1 (1 1/ ,...,1 1/ )

1 (1 1/ ),.

d d
T T

d
T T

d
T d T

d

P P

P X q X q

F q q

c F q F q

c T T

Tφ −

= −
= − ≤ ∩ ∩ ≤
= −
= −
= − − −
= − Φ −( )1.., (1 1/ )

1/ R

T

T

φ − −
=

 
(14) 

This computation is only based on the dependence between stations, and does not depend on 

marginal estimations. More precisely, if the probability to compute was 

, then the uncertainty would have been greater, as it 

would include correlations and marginal parameter estimation uncertainties. 

(1) (1) ( ) ( )({ } ... { })d dP X x X x≤ ∩ ∩ ≤
The preceding equation was applied to the same data set as in section III.1, leading to the 

results presented in Figure 6. The 90% confidence interval was obtained by bootstrapping (i.e. 

years are bootstrapped, and the corresponding data of 13 sites are added to the new data set). 

As an example, the regional return period of the event “observing at least one event of return 

period ten years” is approximately two years. In the same manner, the regional return period 

is approximately 15 years for a local return period of 100 years. It can be noticed that the 

confidence interval for the regional return period does not encompass the two extreme cases 

of independence (
13

1

1 (1 1/ )
R

T
= − −T ) and total dependence (TR = T).  
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Moreover, from a manager’s point of view, an interesting question may be: for the set of 13 

stations, what are the discharges to be protected from in order to obtain a regional return 

period TR, if it is assumed that all local protection levels are identical? Figure 6 can be used to 

compute the local return period T, and the marginal estimations lead to the local quantiles 

with return period T. As an example, with a regional protection level TR = 10 years, the local 

protection level has to be around 70 years. This difference may appear quite large, but once 

the return period has been translated in terms of discharges thanks to the marginal 

estimations, this difference between regional and local risks leads to a difference ranging from 

25 to 33% between the discharge with local return period 10 years and the discharge to be 

protected from in order to obtain a regional return period of 10 years. Finally, the preceding 

computations were processed by using point-estimates of the parameters. Consequently, 

sampling uncertainty has to be kept in mind when interpreting such results. 

III.3. QdF Analysis 

The Discharge-Duration-Frequency (QdF) model has been developed in order to generalize 

the well known Intensity-duration-Frequency (IdF) model used for precipitations analysis [19, 

28-30, 44, 50]. It aims at describing the relationship between quantiles computed for mean 

discharges V(d,T) over a range of durations. More accurately, the model assumes that 

quantiles decrease as a hyperbolic function of duration: 

(0, )
( , )

1 /

V T P
V d T P

d

−= ++ ∆  (15) 

where P and  are parameters which have to be estimated. ∆
One application of the QdF methodology deals with design hydrograph construction. In order 

to estimate the impact of floods on human activities, hydrologists are asked to provide a 

hydrograph with a given return period. Of course, this is an almost intractable problem, 

because a hydrograph can be described in a number of ways, such as peak flow, duration or 

volume. The QdF approach is used here to compute a Mono-Frequency Synthetic Hydrograph 

(MFSH), i.e. a hydrograph whose mean discharges over a given range of durations have the 

same return period. The method used to construct the MFSH can be found in Le Clerc [34].  

It is based on the study of the hydrograph shapes. When the hypothesis of shape invariance 

can be accepted, a design hydrograph is computed using the mean of non-dimensional 

hydrographs, with the discharge divided by peak flow and a synchronization on peak flow. 

The recession is then corrected in order that each mean discharge over duration d matches 

with the various quantiles V(d,T) from a QdF analysis. When the various hydrographs have 

different shapes, Le Clerc [34] proposed dealing with different subsets of hydrographs, related 

to the various flood origins, e.g. snow melt, thunderstorms or frontal rainfall, or various 

spatial flood extents within the catchment.  

Another approach is based on the multivariate analysis of the mean discharges Vd over 

different durations d. The hydrograph shape invariance implies a high rank correlation 

between the mean discharges Vd (the event with strongest peak discharge has also the 

strongest discharges over durations d1, d2,...). On the other hand, if it assumed that the 

discharges over different durations are not so dependent, the constructed MFSH could then 

have a smaller probability than that suggested by the return period used for its construction. A 

Gaussian copula can once again be used in order to estimate this dependency, and to derive 

what we will call the “multivariate MSFH return period” TM. 

Such an evaluation is described below by two case studies. The first deals with the Zorn river 

at Waltenheim (688 km²). Mean discharges were computed over durations d=1, 2, 3, 4 and 5 

days, and annual maxima were then extracted on 80 years of data. Figure 7a shows the 

scatterplot matrix of the data: it appears that mean discharges are very strongly correlated 

over this duration range, which indicates that the shape invariance hypothesis is acceptable. 
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The Gaussian copula was then estimated with the Phoon method, and its adequacy was 

checked with the QQ-plot described in section II.3. The multivariate MFSH return period TM 

was finally calculated as follows: 
(1) (1) ( ) ( )

(1) (1) ( ) ( )
1 1

1 (1) 1 1 ( ) 1
1
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(16) 

As we are interested in the survival function Pr( 1,..., )i iX x i d> ∀ = , the notations c  and dΦ  

have been introduced in equation (16). However, it should be noticed that there is no simple 

relationship similar to the equation 1c c= −  which holds in the univariate case. Figure 7b 

illustrates the relationship between the return period used for MFSH construction and the 

multivariate MFSH return period. It shows that a hydrograph constructed with a 100-years 

return period has in fact a return period TM ≈ 160 years. Conversely, a hydrograph of return 

period TM = 100 years would be obtained from mean discharges quantiles V(d,T) with a return 

period T around 65 years. Translated in terms of discharge, this leads to a difference of about 

7% between the mean discharge V(d,T=100 years) and the mean discharge which would lead 

to a hydrograph return period of 100 years, for the range of durations d considered. The 

constructed MFSH can thus be considered as suitable for flood scenarios.  

The same study was conducted on the Ubaye river at the Lauzet (946 km²), with 45 years of 

available data. Mean discharges are here computed over durations d = 1, 10, 20 and 30 days, 

because most floods are related to snow melt, leading to very slow events. The data present a 

weaker dependence than in the preceding case, especially between the daily duration and the 

others. Consequently, the ratio between marginal and multivariate return periods T and TM 

becomes larger: a hydrograph constructed with T=100 years has in fact a return period TM 

about 1000 years (Figure 8a). This result emphasizes the lack of shape invariance for snow-

related events: moderate rainfalls can be superimposed on the high baseflow created by snow 

melt, thus leading to a great variety of shapes at a daily resolution. By contrast, Figure 8b 

shows the results of the QdF analysis conducted on the same river, but only for events 

occurring between September and February (rainfall-related floods), with durations d=1, 2, 3 

and 4 days. The results are now similar to those obtained with the Zorn River. The 

construction of a MFSH is thus possible for such flood events.  

These two examples provide an illustration of the link between the shape variability of the 

hydrographs and the dependence between the mean discharges Vd over different durations d. 

The Gaussian copula provides a quantification of the relationship between the return period T 

of each mean discharge and the multivariate return period TM, which can be very different 

from one catchment to another one. However, the meaning of the multivariate return period 

TM is far from obvious, as the sum of the probabilities (p1+p2) can be far from one, with 

p1=Pr(hydrograph > MFSH) and p2=Pr(hydrograph < MFSH). A number of intermediate 

cases can occur, with a cross-over between an observed hydrograph and a MFSH:  some mean 

discharges Vd  have a larger return period, and others a smaller, than the prescribed return 

period used for the MFSH construction. Consequently, such multivariate analysis is more 

recommended for the study of the hydrograph shape (likelihood of various shape hypotheses) 

than for an exact assessment of the probability of a design hydrograph. 
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III.4. Regional Frequency Analysis 

Regional frequency analysis is used by hydrologists in order to improve the estimation of high 

quantiles. The principle is to collect data originating from different locations and to derive a 

regional distribution of extreme streamflows or rainfalls. Since the precursory work of 

Dalrymple [11], a number of methodological improvements have been proposed (e.g. [27]). 

However, a common drawback of almost all regional methods for extremes is that they ignore 

the spatial dependence of data. This problem has been addressed by Stedinger [58], Hosking 

and Wallis [26, 27] or Madsen and Rosbjerg [38]. Roughly speaking, these authors found that 

ignoring intersite dependence led to underestimation of the variance of the estimates, but did 

not lead to any bias. In the following example, dependence will be explicitly taken into 

account in the probabilistic model, by means of a Gaussian copula. 

Six rainfall stations located around Paris, France, were used (Figure 9). 58 annual maximum 

values of daily rainfalls were extracted from the years between 1922 and 2003, with 1926, 

1936, 1939-1944, 1948-1949, 1952, 1955-1958, 1981-1983, 1991 and 1997-2001 as missing 

years. The index-flood procedure of Dalrymple [11] comprises an homogenization step, by 

dividing the at-site samples by the at-site means or medians. For the six study stations, the at-

site median values ranged from 28.5 mm to 31.75 mm. Moreover, from a meteorological 

point of view, the study area can be considered as homogeneous, with little altitudinal range. 

Consequently, we assume that the six rainfall series arise from an identical GEV distribution. 

The parameters of this regional distribution are estimated using two models: 

In model 1 the intersite dependence is ignored. The multivariate density of a vector of six 

annual maxima (1) (6)( ,..., )t tx x  at year t can be written as: 

6
(1) (6) ( )

1

1
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t t t
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=

= ∏  (17) 

In model 2 the intersite dependence is modeled with a Gaussian copula, whose adequacy was 

checked with the Chi-square plot of section II.3. Using Equation (8), the multivariate density 

of a vector of six annual maxima (1) (6)( ,..., )t tx x  at year t can be written as: 
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(18) 

The dependence is thus summarized in a correlation matrix Σ. In order to obtain an acceptable 

number of parameters, the dependence ,i jρ  between two stations is assumed to decrease as a 

function of the distance : ,i jd ( ), 0 1 ,

,

exp  if 

1

i j i j

i i

d iρ γ γ
ρ

 = − =
j≠
 (19) 

Such a parameterization can be compared to classical variograms used in geostatistics. 

Because of the complexity of this model, a Bayesian estimation scheme using MCMC 

algorithms is applied. Some details of these methods in a hydrological context can be found 

for instance in the papers by Perreault et al. [47, 48], Thyer et al. [61], Marshall et al. [41] and 
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Renard et al. [53]. The likelihood of the data is simply computed from the product of the 

multivariate densities of observations, i.e. for one of the models k=1,2 described above: 

(1) (6)

1

( | ) ( ,..., ;
n

k k t

t

p f x
=

= ∏k kX θ θ )tx  (20) 

with ( , , )α β ξ=1θ  and 0 1( , , , ) ( , , , , )α β ξ α β ξ γ γ= =2θ Σ . 

The prior distribution of the shape parameter ξ  is chosen to be a Gaussian distribution with 

zero mean and standard deviation 0.3, which implies that the interval [-0.6;0.6] encompasses 

more than 95% of the density. This prior distribution can be compared with the Martins and 

Stedinger [42] geophysical prior, which is less variable and is entirely included in the interval 

[-0.5;0.5]. For other parameters, almost non-informative priors are set, by using uniform 

distributions with large variances, namely ~ U[0,1000]α , ~ [ 10000,10000]Uβ − , 

 and . Finally, the independence between these prior marginal 

distributions is assumed, in order to derive the multivariate prior distribution  of the 

parameters of the model k. 

0 ~ [0,1]Uγ 1 ~ [0,10]Uγ
(kπ θ )k

The posterior distribution is finally obtained up to a constant of proportionality by: 

( | ) ( | ) (k kp p π∝k kθ X X θ θ )k k  (21) 

Samples arising from the posterior distribution of the parameters are generated with MCMC 

algorithms in the following way. First of all, at-site maximum likelihood estimations are used 

to derive a rough estimate of the posterior means and variances of the parameters α, β and ξ . 

Because almost non-informative priors are used, the posterior distribution will be mostly 

influenced by the likelihood, thus making the ML-estimates relevant. For the two remaining 

parameters of model 2, the exponential model described in equation (19) is fitted to the 

empirical correlations estimated by the method of Phoon, using a classical least-square 

approach. As a second step, these estimations are used as starting parameters of a Metropolis 

algorithm (see Renard et al. [53] for a detailed description), which was run for 100 000 

iterations, and whose convergence was checked using the approach suggested by Gelman et 

al. [20]. Finally, the last 50 000 iterations are used to perform the inference. 

Figure 10 describes the relationship between distance and dependence. The solid line 

represents the median exponential decrease described in Equation (19), and the dashed lines 

denote a 90% posterior confidence interval. The model of dependence/distance relationship 

seems acceptable for the six series studied. Figure 11 compares the posterior distributions of 

parameters α,β and ξ  obtained with the two models. For the first two parameters, the results 

are almost identical for the mean posterior values, but the estimates of model 2, which takes 

into account the intersite dependence, have a larger variance. This is consistent with the 

conclusions of Stedinger [58], Hosking and Wallis [26, 27] and Madsen and Rosbjerg [38] 

described earlier. Conversely, the posterior variances of the shape parameter are almost 

identical for the two models, with a slight shift between the two distributions. This result 

shows that the effect of intersite dependence is not necessarily the same for all parameters. 

The implications for quantiles estimates are shown in Figure 12: the difference between the 

two models, in terms of posterior variance, is stronger between moderate quantiles (i.e. 10-

years return period) than between high quantiles (i.e. 100-years return period). 

These results also have implications for regional methods of extrapolation. As an illustration, 

the FORGEX method [16, 51, 59] uses the series of the annual maximum of the standardized 

values observed over a measurement network (netmax series) in order to extrapolate the 

distribution of a target site. This method uses the following observation [52]: if the N stations 

of the network are independent, then the netmax variable Y has the following distribution: 
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In other terms: ( )log( log( ( ))) log log ( )

log( ) log( log( ( )))

N

Y X

X

F y F y

N F

  − − = − −     
= − − −

, (23) 

so that in a Gumbel repair, the distribution of the netmax lies at a distance of log(N) to the left 

of the population growth curve (i.e. the distribution of the standardized values). In order to 

take into account the effect of intersite dependence, this distance is in fact replaced by 

log(Ne), where Ne is an equivalent number of stations. The latter concept has been used for a 

long time [43] in order to take into account the information redundancy caused by 

dependence. However, in the present situation, this approach suffers from two drawbacks, 

whatever the method used to estimate the equivalent number of stations. First of all, the 

preceding results show that the effect of intersite dependence is not identical for all 

parameters, or equivalently for the whole quantile curve. Consequently, using a unique value 

as Ne to summarize the effect of dependence is questionable. Secondly, the parallelism 

between at-site and netmax growth curves is only true under the hypothesis of independence. 

As an illustration, a simple bidimensional case is explored: for a network of two sites, whose 

dependence is described with a Gaussian copula with correlation 0.8, the at-site distribution (a 

GEV(1,0,-0.5)) is plotted in a Gumbel repair, together with the netmax distribution under the 

independence hypothesis and the “true” Gaussian copula hypothesis. Figure 13 (left panel) 

shows that the at-site and the netmax distributions are parallel assuming independence, but 

not with the prescribed model of dependence. In the right panel, the gap between these two 

distributions is shown: in the independence case, the gap is constant and equal to log(2), but 

this not the case in the Gaussian copula case, where this gap depends on marginal values, and 

can therefore not be equal to log(Ne), whatever the Ne used. The same computation is made 

for the preceding case study (Figure 14), with identical conclusions. In this case, the 

distributions are plotted using point-estimates of the parameters. Consequently, they are 

affected by sampling uncertainty, which is not shown in the figure for clarity, but which is far 

from negligible, thus complicating the conclusions of the comparison. 

The case study could be enhanced in several ways. First of all, the assumption of a single 

shared distribution may be relaxed. Rather than dividing the at-site samples by an index 

variable, the spatial variability of the parameters could be modeled with covariables such as 

altitude or distance from the sea. Such an approach has been proposed by Diggle et al. [14], 

Cooley [9] and Cooley et al. [10]. Moreover, from a Bayesian perspective, the use of a proper 

prior distribution could improve the accuracy of estimates. Bayesian model checking or 

Bayesian comparison of models could also be useful for deriving a more complete validation 

of the model assumptions. Finally, it is clear that the preceding conclusions are dependent on 

the Gaussian copula hypothesis, which remains questionable. Further investigations are 

needed to refine regional frequency analysis, using more complex dependence structures. 
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III.5. The Gaussian copula can fail 

The need to check the adequacy of the copula before using it for any computation has been 

pointed out in section II. The following case study illustrates the fact that a Gaussian copula is 

far from being a universal tool. 55 flood events were selected from the daily discharge series 

of the Ubaye river at Barcelonette (549 km²; 1904-2001). The scatterplot of the peak 

discharge of the hydrograph versus the volume computed above a threshold equal to the half 

of the peak discharge is shown in Figure 15a. At first sight, the dependence structure of the 

data seems complex. Nevertheless, the shape of the scatterplot may be due to the marginal 

structure of the observations: on this river, flood events can result from snow melt or heavy 

rainfalls. Both marginal distributions are therefore likely to derive from a population mixture 

model. In order to erase the influence of marginal distributions, a normal score transformation 

is applied to the data, leading to the scatterplot shown in Figure 15c. Snow-related events are 

denoted by crosses, and rainfall-related ones by triangles. Despite this transformation, the two 

types of events still lead to different dependence structures: for snow-related events, peak 

flows and volumes are more correlated than for rainfall-related ones. It is thus clear that 

modeling the dependence structure with a single correlation parameter will lead to very poor 

results. As an illustration, the contour of the estimated bivariate Gaussian density is also 

plotted in the Figure 15c. It clearly appears that the distribution of the points is not consistent 

with a Gaussian description. This departure from normality can also be viewed in the Chi-

square plot of Figure 15d, where high quantiles have a tendency to deviate from the 

theoretical line y=x.  

A more subtle problem arises from the asymptotic properties of the copula, also known as the 

tail dependence properties. More accurately, the Gaussian copula implies the asymptotic 

independence of marginal values, which means that ( ) 1
( ) | ( ) 0X Y p

F X p F Y p →> >  →Pr . In 

other words, the dependence weakens for very extreme events. This property has a strong 

influence for the computation of very low probabilities, concerning events lying outside the 

range of observations. More explicitly, the risk can be strongly underestimated if an 

asymptotically independent model is used with asymptotically dependent data. For this 

reason, empirical or physical evidence of tail independence is necessary before using such a 

copula for extrapolation. Coles et al. [7] provide a number of tools for exploring the 

asymptotic properties of a multivariate data set. 



This phenomenon will be illustrated with a simulated case study. The following variables are 

considered: 

2

~ (0;1)

exp( / 4)
,  where | ~ 0; .

4

X N

X
Y X Z Z X N

 −= +   
 (24) 

The idea behind this construction is to create a couple of variables whose dependence 

increases with marginal values. A sample of (X,Y) with size 10
6
 was thus generated. In order 

to deal with known marginal distributions, data were finally transformed to fit a GEV 

distribution with parameters (1,0,-0.5): { } { }( 1 1ˆ ˆ( , ) ( ) , ( )X Y )X Y G F X G F Y− −=% %  (25) 

where G is the cdf of the GEV distribution and  is the empirical cdf of X.  ˆ
XF

The first 100 couples were used for the copula estimation. The scatterplot of these data is 

shown in Figure 16a. In order to focus on the problems caused by the dependence structure, 

the marginal parameters were not estimated but fixed at the true value (1,0,-0.5). Figure 16b 

shows the scatterplot of the normalized data, and the contour of the bivariate density 
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estimated with the Phoon method. At first sight, the Gaussian copula seems to be a reasonable 

description of the dependence of the data. 

The Gaussian copula is now used to extrapolate far outside the observations range. More 

accurately, the probability Pr( , )p X u Y u= > >% %  is computed, with u possibly lying outside the 

observations range. This probability is estimated with the Gaussian copula as ( )1 1( ( )), ( (d ))p G u G uφ φ− −= Φ , and is compared to the theoretical value, empirically estimated 

with the total sample of length 10
6
. The results are shown in Figure 17, where the probability 

described above is expressed in terms of return period (T=1/p). On the left-hand side, it can be 

observed that the Gaussian copula is adequate in the observation range. Conversely, the 

quantile curves differ strongly in the extrapolation range: the curve associated with the 

Gaussian copula grows faster than the theoretical one, which leads to a severe 

underestimation of risk. As an example, the quantile is under-estimated by about 38% for a 

return period of 10
3
 years, and by about 58% for a return period of 10

4
 years. This can be 

explained by the fact that the simulated data are not asymptotically independent. The 

probability of observing an extreme value in both components is thus higher than that 

suggested by the Gaussian copula model. 

IV. Discussion 

The case studies presented in sections III.1 to III.4 demonstrate the usefulness and the relative 

simplicity of the Gaussian copula for dealing with multivariate events. Conversely, section 

III.5 highlights its limitations and emphasizes the error risk related to extrapolation. As no 

theoretical argument can be employed to justify the use of this copula, this raises the question 

of how to decide, in practical cases, if this model is acceptable or should be avoided. Two 

different aspects have to be explored for this purpose. The first is to check that the Gaussian 

copula is consistent with the observed data. This implies that both the marginal distributions 

and the dependence structure have to be in agreement with the observations. For the marginal 

distributions, a number of standard univariate tools can be used (e.g. goodness-of-fit tests or 

QQ-plots). Moreover, univariate extreme value theory provides a strong theoretical 

justification for the use of extreme value distributions. After marginal transformations, the 

distribution is determined by a simple multivariate Gaussian model. Diagnoses for 

multivariate normality have also been extensively studied, thus providing a number of tools 

for model checking [40]. 

The second aspect is more difficult to handle, and is related to the asymptotic dependence 

properties of the data. From a theoretical point of view, it can be shown that the limit 

distribution of the componentwise maxima (Equation (2)) has the property of asymptotic 

dependence, except in the case of exact independence. Consequently, the Gaussian copula 

might be considered at first sight to be inadequate for describing these data, because it is 

asymptotically independent. Alternative multivariate distributions may be used [8], e.g. using 

the logistic family. Such a development has been undertaken by Tawn [60] and Schalter and 

Tawn [55] for an arbitrary number of dimensions, and may be applied with additional 

hypotheses in order to reduce the number of parameters (2
d
-1). However, this limitation has to 

be mitigated, because the limit distribution of Equation (2) is valid when the block size tends 

toward infinity. In most hydrological applications, the block size is typically of 365 days, with 

non-independent daily data, and a number of zero values in the case of rainfall. It is thus 

possible that the asymptotic arguments used to derive the limit distribution of componentwise 

maxima do not hold in real-life hydrological studies. Although the latter argument can also be 

argued for univariate extreme value distributions, it seems that the problem is more critical in 
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the multidimensional case. For instance, Bortot et al. [3] reported empirical evidence of 

asymptotically independent data in the oceanographic field. Alternatively, Hosking and 

Wallis [26] argued that a Gaussian copula model was fairly well supported by British annual 

flood series, although in some cases, stronger dependence seemed to occur at higher levels. 

From a practical point of view, a given data set of componentwise maxima will generally not 

include enough data to provide empirical evidence of asymptotic dependence or 

independence. Physical arguments may be used to discriminate between these two 

hypotheses, by using for example meteorological model simulations, or by exploiting the 

knowledge of historical extreme events. 

Consequently, our point of view is that the Gaussian copula should not be used for the 

computation of very low probabilities, unless strong arguments can be derived to justify the 

asymptotic properties of the data. Conversely, the Gaussian copula can be very useful within 

the observations range. As an illustration, in the case study in section III.4, the copula can be 

used to take into account intersite dependence in regional frequency analysis, and to derive a 

more realistic quantification of the uncertainties than with the independence hypothesis, 

which is in any case a very crude model for describing dependent data. 

V. Conclusion and perspectives 

The aim of this article was to present some possible applications of the Gaussian copula in the 

flood mitigation field. The main advantage of this method is its simplicity, even with more 

than two or three dimensions. Rough estimates can thus be obtained in problems involving an 

evaluation of the dependence of variables. Moreover, the Gaussian copula can be used to 

simulate values with prescribed correlations and marginal distributions. Four case studies 

were used to demonstrate its usefulness in the contexts of field significance determination, 

regional risk analysis, QdF models with design hydrograph derivation and regional frequency 

analysis. Nevertheless, this tool is far from universal, as it is based on no theoretical 

justification. The suitability of the Gaussian dependence model therefore has to be properly 

checked. Moreover, even if the copula seems well fitted to observed values, caution is needed 

before using it for extrapolation. 

Alternative copula families can be used in order to improve the dependence model arising 

from the Gaussian copula. For instance, the Student copula may be more appropriate if tail 

dependence is observed in the data. Nevertheless, the choice of the more suitable copula for 

modeling a data set is not straightforward. Various criteria may be used for this purpose, but 

they will only reflect a particular feature of the data. For instance, two models may lead to an 

adequate fit to the data on the basis of a given criterion, but to contrasted results in 

extrapolation. The choice of a copula in such a case is problematic, especially if the data set is 

not informative enough to provide relevant indications about the asymptotic dependence 

properties. Modeling uncertainty can thus be an important part of the overall uncertainty. 

Another problem concerns the parameter estimation uncertainties, because the maximum 

likelihood method can usually not be used, due to the great number of parameters to be 

estimated. Computations based on the Fisher information matrix are thus impossible. Finally, 

whatever the copula used, the lack of theoretical justification remains a limitation for 

extrapolation. 

The preceding approaches only consist in modeling the extreme part of the variables 

distribution. An alternative consists in studying the whole distribution, and evaluating how 

dependence evolves for high values. For instance, Bortot et al. [3] applied a model where the 

tail dependence is described using a multivariate Gaussian distribution, after suitable marginal 

transformations. In spirit, this model is similar to that of the Gaussian copula. The major 

difference is that the data are not block maxima, and that the Gaussian tail model is only 
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applied above a multivariate threshold , which has to be high enough to ensure that 

the asymptotic assumptions hold, both for marginal and joint distributions. Moreover, given 

that the distribution belongs to the domain of attraction of a multivariate extreme value 

distribution, some theoretical results related to the theory of regular variation [2] can be used 

in order to compute the probability of extreme sets. An example of such study is provided by 

De Haan and De Ronde [12]. Such an approach is appealing, because it is physically more 

convincing: couples of values are describing the same physical event, while componentwise 

maxima lead to the use of couples of values which may describe two distinct events. 

Nevertheless, some difficulties still hold. Firstly, obtaining a sample of independent values is 

not obvious. As an example, if the data consist of daily discharges at two locations, a 

sampling strategy has to be found which ensures the independence of successive values and 

preserve enough data for estimation. Secondly, this approach can only be used to compute the 

probability of sets for which both components are extreme. This can be a strong limitation: in 

the confluence problem, as an example, an extreme downstream discharge can result from a 

high value in only one of the two upstream flows. Heffernan and Tawn [24] recently proposed 

a semi-parametric conditional approach which overcomes this difficulty. 

1( ,..., )du u

More generally, we believe that multivariate extreme events analysis is likely to improve 

hydrological risks assessment, as emphasized by Katz et al. [31]. In a number of situations, 

multivariate events are used without a formal statistical model to account for dependence. As 

an example, the well-known index flood methodology [11] is intended to improve quantiles 

estimations by using data from several sites. Unfortunately, among other problems, ignoring 

spatial dependence leads to an underestimate of the quantiles uncertainty. Alternatively, most 

hydrological extreme events (floods or droughts) are intrinsically multivariate, as noted by 

Adamson et al. [1]. Potential damage is thus likely to be a function of several random 

variables. Hydrologists involved in risk assessment should thus be attentive with the progress 

achieved by statisticians in multivariate extremes theory. 
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LIST OF CAPTIONS 

TABLES 

Table 1: Comparison of observed and critical number of significant tests for various local and 

regional risks. A star denotes a regionally significant result. 

FIGURES 

Figure 1. Principle of the Gaussian copula 

Figure 2. Isolines of a bivariate distribution arising from a Gaussian copula with marginal 

distributions (1,0, 0.2)GEV −  and correlation coefficient equal to 0.8. 

Figure 3. Annual maxima of 13 stations in the north-east of France. Stations with significant 

trend at risk 5% are denoted with a star in their figure box. 

Figure 4. Chi-square plot (see text for explanation) for the 13 stations studied. 

Figure 5. Estimated distribution of N, the number of locally significant results, under the 

assumption that all series are stationary.  

Figure 6. Local versus regional return period (see text for definition). 90% confidence 

intervals are obtained by Bootstrap. 

Figure 7. QdF Analysis of the Zorn River. (a) Scatterplot matrix of annual maxima, (b) return 

period of the mean discharges Vd versus multivariate hydrograph return period. Total 

dependence and independence cases are respectively denoted by dash and dash-dot lines. 

Figure 8. QdF Analysis of the Ubaye River at Lauzet. (a) all events; (b) events occurring 

between September and February. Total dependence and independence cases are respectively 

denoted by dash and dash-dot lines. 

Figure 9. Location of the six rainfall stations. 

Figure 10. Relationship between intersite distance and intersite dependence. Crosses denote 

Phoon’s estimates of correlations, the median line with 90% confidence intervals are obtained 

by means of the posterior distribution of parameters. 

Figure 11. Posterior marginal distributions of scale, location and shape parameters. Dashed 

line: independence hypothesis, solid line: Gaussian copula. 

Figure 12: Posterior distribution of quantiles with probabilities 0.9 and 0.99. Dashed line: 

independence hypothesis, solid line: Gaussian copula. 

Figure 13. Bidimensional case: Comparison between at-site distribution (triangles) and 

netmax distribution, in the cases of independence (crosses) and with a Gaussian copula 

(circles). Left: distributions in a Gumbel repair, right: difference with at-site distribution. 

Figure 14. Network of six rainfall series. Comparison between at-site distribution (triangles) 

and netmax distribution, in the cases of independence (crosses) and with a Gaussian copula 

(circles). 

Figure 15. (a) Scatterplot of peak daily discharge versus volume of selected hydrographs on 

the Ubaye River at Barcelonette. (b) Scatterplot of peak discharge versus volume, transformed 
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by the estimated empirical cdf. (c) Normalized scatterplot, with estimated Gaussian 

distribution. Snow-related events are denoted by crosses, and rainfall-related ones by 

triangles. (d) Chi-square plot. 

Figure 16. Scatterplot of the first 100 simulated values. (a): raw values, (b): normalized values 

and isolines of the estimated bivariate Gaussian density. 

Figure 17. Return period associated with the probability . Solid line 

represents the theoretical probability, and dotted line the value estimated with the Gaussian 

copula. (a) u is in the observations range, (b) extrapolation. 

( , )P X u Y u> >% %
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