Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs

Abstract : In the paper [25], written in collaboration with Gesine Reinert, we proved a universality principle for the Gaussian Wiener chaos. In the present work, we aim at providing an original example of application of this principle in the framework of random matrix theory. More specifically, by combining the result in [25] with some combinatorial estimates, we are able to prove multi-dimensional central limit theorems for the spectral moments (of arbitrary degrees) associated with random matrices with real-valued i.i.d. entries, satisfying some appropriate moment conditions. Our approach has the advantage of yielding, without extra effort, bounds over classes of smooth (i.e., thrice differentiable) functions, and it allows to deal directly with discrete distributions. As a further application of our estimates, we provide a new ``almost sure central limit theorem'', involving logarithmic means of functions of vectors of traces.
Type de document :
Pré-publication, Document de travail
40 pages. This is an expanded version of a paper formerly called "Universal Gaussian fluctuations.. 2010
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00453622
Contributeur : Ivan Nourdin <>
Soumis le : vendredi 5 février 2010 - 11:57:47
Dernière modification le : lundi 29 mai 2017 - 14:23:28
Document(s) archivé(s) le : vendredi 18 juin 2010 - 17:48:39

Fichiers

nonH_clt_asclt.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00453622, version 1
  • ARXIV : 1002.1212

Collections

INSMI | UPMC | USPC | PMA

Citation

Ivan Nourdin, Giovanni Peccati. Universal Gaussian fluctuations of non-Hermitian matrix ensembles: from weak convergence to almost sure CLTs. 40 pages. This is an expanded version of a paper formerly called "Universal Gaussian fluctuations.. 2010. <hal-00453622>

Partager

Métriques

Consultations de
la notice

147

Téléchargements du document

48