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Abstract:

A relation between double Dirichlet averages and mul-

tivariate complex B-splines is presented. Based on this

reationship, a formula for the computation of certain mo-

ments of multivariate complex B-splines is derived.

1. Introduction

Recently, a new class of B-splines with complex order

z, Re z > 1, was introduced in [4]. It was shown that

complex B-splines generate a multiresolution analysis of

L2(R). Unlike the classical cardinal B-splines, complex

B-splines Bz possess an additional modulation and phase

factor in the frequency domain:

B̂z(ω) = B̂Re z(ω) ei Im z ln |Ω(ω)| e− Im z arg Ω(ω),

where Ω(ω) := (1 − e−iω)/(iω). The existence of these

two factors allows the extraction of additional information

from sampled data and the manipulation of images.

In [6] and [9], some further properties of complex B-

splines were investigated. In particular, connections be-

tween complex derivatives of Riemann-Liouville or Weyl

type and Dirichlet averages were exhibited. Whereas in

[6] the emphasis was on univariate complex B-splines

and their applications to statistical processes, multivari-

ate complex B-splines were defined in [9] using a well-

known geometric formula for classical multivariate B-

splines [7, 10]. It was also shown that Dirichlet aver-

ages are especially well-suited to explore the properties of

multivariate complex B-splines. Using Dirichlet averages,

several classical multivariate B-spline identities were gen-

eralized to the complex setting. There also exist inter-

esting relationships between complex B-splines, Dirich-

let averages and difference operators, several of which are

highlighted in [5].

This short paper presents a generalization of some re-

sults found in [3, 12] to complex B-splines. For this pur-

pose, the concept of double Dirichlet average [1] was in-

troduced and its definition extended via projective limits

to an infinite-dimensional setting suitable for complex B-

splines. Moments of complex B-splines are defined and a

formula for their computation in terms of a special double

Dirichlet average presented.

2. Complex B­Splines

Let n ∈ N and let △n denote the standard n-simplex in

R
n+1:

△n :=

{
u :=(u0, . . . , un) ∈ R

n+1

∣∣∣∣∣ uj ≥ 0;

j = 0, 1, . . . , n;

n∑

j=0

uj = 1

}
.

The extension of △n to infinite dimensions is done via

projective limits. The resulting infinite-dimensional stan-

dard simplex is given by

△∞ :=




u := (uj)j ∈ (R+
0 )N0

∣∣∣∣∣

∞∑

j=0

uj = 1




 ,

and endowed with the topology of pointwise convergence,

i.e., the weak∗-topology. We denote by µb = lim←−µn
b

the projective limit of Dirichlet measures µn
b on the n-

dimensional standard simplex△n with density

Γ(b0) · · ·Γ(bn)

Γ(b0 + · · ·+ bn)
ub0−1

0 ub1−1
1 · · ·ubn−1

n . (1)

Here, Γ : C\Z−
0 → C denotes the Euler Gamma function.

Let R
+ := {x ∈ R | x > 0} and let C+ := {z ∈

C | Re z > 0}.
Definition 1 ([6]). Given a weight vector b ∈ C

N0

+ and

an increasing knot sequence τ := {τk}k ∈ R
N0 with the

property that limk→∞
k
√

τk ≤ ̺, for some ̺ ∈ [0, e), a

complex B-spline Bz(• | b; τ) of order z, Re z > 1, with

weight vector b and knot sequence τ is a function satisfy-

ing
∫

R

Bz(t | b; τ)g(z)(t) dt =

∫

△∞

g(z)(τ · u) dµb(u) (2)

for all g ∈ S (R).

Here, S (R) denotes the space of Schwartz functions on

R, and τ · u =
∑

k∈N0
τkuk for u = {uk}k∈N0

∈ △∞.

In addition, we used the Weyl or Riemann-Liouville frac-

tional derivative [8, 11, 13] of complex order z, Re z > 0,

W z : S (R)→ S (R), defined by

(W zf)(x) :=
(−1)n

Γ(ν)

dn

dxn

∫ ∞

x

(t− x)ν−1f(t) dt,



with n = ⌈Re z⌉, and ν = n − z. Here ⌈ · ⌉ : R → Z,

x 7→ min{n ∈ Z | n ≥ x}, denotes the ceiling function.

To simplify notation, we write f (z) for W zf

It is easy to show that the univariate complex B-spline

Bz(t | b; τ) is an element of L2(R) [5].

Remark 2. For finite τ = τ(n) and b = b(n) and z :=
n ∈ N, (2) defines also Dirichlet splines if g is chosen in

Cn(R). For, Dirichlet splines Dn( · | b; τ) of order n are

defined as those functions for which

∫

R

g(n)(t)Dn(t| b; τ) dt =

∫

∆n

g(n)(τ · u) dµb(u),

holds true for τ ∈ R
n+1 and for all g ∈ Cn(R), and thus

for g ∈ S (R).

To define a multivariate analogue of the univariate com-

plex B-splines, we proceed as follows. Let λ ∈ R
s \ {0}

be a direction, and let g : R→ C be a function. The ridge

function corresponding to g is defined as gλ : R
s → C,

gλ(x) = g(〈λ, x〉) for all x ∈ R
s.

We denote the canonical inner product in R
s by 〈•, •〉 and

the norm induced by it by ‖ • ‖.

Definition 3 ([9]). Let τ = {τn}n∈N0
∈ (Rs)N0 be a

sequence of knots in R
s with the property that

∃ ̺ ∈ [0, e) : lim sup
n→∞

n

√
‖τn‖ ≤ ̺. (3)

The multivariate complex B-spline Bz(• | b, τ) : R
s → C

of order z, Re z > 1, with weight vector b ∈ C
N0

+ and knot

sequence τ is defined by means of the identity

∫

Rs

g(〈λ, x〉)Bz(x | b, τ) dx =

∫

R

g(t)Bz(t | b, λτ) dt,

(4)

where g ∈ S (R), and where λ ∈ R
s \ {0} such that

λτ := {〈λ, τn〉}n∈N0
is separated.

As consequence of the fact that Bz(• | b; τ) ∈ L2(R),
one obtains from the above definition that Bz(• | b, τ) ∈
L2(Rs) [5]. Moreover, it follows from the Hermite-

Genocchi formula for the univariate complex B-splines

Bz( • | b, λτ) and (4), that Bz( x | b, τ) = 0, when x /∈
[τ ], the convex hull of τ .

3. Dirichlet Averages

Let Ω to be a nonempty open convex set in C
s, s ∈ N, and

let b ∈ C
N0

+ . Let f ∈ S (Ω) := S (Ω, C) be a measurable

function. For τ ∈ ΩN0 ⊂ (Cs)N0 and u ∈ △∞, define

τ ·u to be the bilinear mapping (τ, u) 7→
∑∞

i=1 uiτ
i. The

infinite sum exists if there exists a ̺ ∈ [0, e) so that

lim sup
n→∞

n

√
‖τn‖ ≤ ̺. (5)

Here, ‖ · ‖ now denotes the canonical Euclidean norm on

C
s. (See also [6].)

Definition 4. Let f : Ω ⊂ C
s → C be a measurable

function. The Dirichlet average F : C
N0

+ ×ΩN0 → C over

△∞ is defined by

F (b; τ) :=

∫

△∞

f(τ · u) dµb(u),

where µb = lim←−µn
b is the projective limit of Dirichlet

measures on the n-dimensional standard simplex△n.

We remark that the Dirichlet average is holomorphic in

b ∈ (C+)N0 when f ∈ C(Ω, C) for every fixed τ ∈ ΩN0 .

(See [2] for the finite-dimensional case and [9] for the

infinite-dimensional setting.)

Definition 5. [1] Let f : Ω ⊂ C → C be continuous.

Let b ∈ C
k+1
+ and β ∈ C

κ+1
+ . Suppose that for fixed

k, κ ∈ N, X ∈ C
(k+1)×(κ+1) and that the convex hull

[X] of X is contained in Ω. Then the double Dirichlet

average of f is defined by

F (b;X;β) :=

∫

△k

∫

△κ

f(u ·Xv)dµk
b (u)dνκ

β (v),

where u ·Xv :=
∑k

i=0

∑
κ

j=0 uiXijvj .

Note that F (b;X;β) is holomorphic on Ω in the elements

of b, β, and X .

We again use projective limits to extend the notion of

double Dirichlet average to an infinite-dimenional setting.

To this end, let u, v ∈ △∞ and let µb = lim←−µn
b and

νβ = lim←− νn
β be the projective limits of Dirichlet mea-

sures µn
b and νn

β of the form (1) on the n-dimensional

standard simplex, where b, β ∈ C
N0

+ . Now suppose that

X ∈ C
N0×N0 is a infinite matrix with the property that∑∞

i=0

∑∞
j=0 |Xij | converges. Let

u ·Xv :=

∞∑

i=0

∞∑

j=0

uiXijvj .

Suppose that Ω ⊂ C contains the convex hull [X] of X
and that f : Ω → C is continuous. The double Dirichlet

average of f over△∞ is then given by

F (b;X;β) :=

∫

△∞

∫

△∞

f(u ·Xv)dµb(u)dνβ(v). (6)

(We use the same symbol for the (double) Dirichlet aver-

age over △∞ and its finite-dimensional projections △n.)

It is easy to show that

F (b;X;β) =

∫

△∞

F (β;uX)dµb(u), (7)

where uX := {〈u, Xj〉}j∈N0
, with Xj denoting the j-

column of X .

We note that F (b;X;β) is holomorphic in the elements

of b, β, and X over△∞.

For z ∈ C+, we define

F
(z)(b;X;β) :=

∫

△∞

∫

△∞

f (z)(u ·Xv)dµb(u)dνβ(v).

(See also [9] for the case of a single Dirichlet average.)



4. Double Dirichlet Averages and Complex
B­Splines

Assume now that the matrix X is real-valued and of the

form Xij = 0, for i ≥ s and all j ∈ N0, some s ∈ N. In

other words, X ∈ R
s×N0 .

Theorem 6. Suppose that β ∈ R
∞
+ and that Re z > 1.

Let b := (b0, b1, . . . , bs−1) ∈ R
s be such that

∑s−1
i=0 bi /∈

−N0. Assume that f ∈ S (R+). Further assume that uX
is separated for all u ∈ △s−1. Then

F
(z)(b;X;β) =

∫

Rs

Bz(x | β,X) F (z)(b;x)dx.

Proof. We prove the formula first for b ∈ R
s
+. To this end,

we identify u = (u0, u1, . . . , us−1, 0, 0, . . .) ∈ △∞ with

(u0, u1, . . . , us−1) ∈ △s−1. By the Hermite-Genocchi

formula for complex B-splines (see [6] and to some extend

[9]), we have that

F (z)(β;uX) =

∫

△∞

f (z)(u′ · uX) dµβ(u′)

=

∫

R

f (z)(t)Bz(t | β, uX)dt

Substituting this expression into (7) and using (4) gives

F
(z)(b;X;β) =

∫

△∞

∫

Rs

f (z)(〈u, x〉)Bz(x | β, uX) dx dµb(u).

Interchanging the order of integration yields the statement

for b ∈ R
s
+. To obtain the general case b ∈ R

s, we

note that by Theorem 6.3-7 in [2], the Dirichlet average

F can be holomorphically continued in the b-parameters

provided
∑s−1

i=0 bi /∈ −N0.

Remark 7. Theorem 6 extends Theorem 6.1 in [12] to

complex B-splines and the△∞-setting.

5. Moments of Complex B­Splines

Following [2], we define the R-hypergeometric function

Ra(b; τ) : R
s
+ × Ωs → C by

Ra(b; τ) :=

∫

△s−1

(τ · u)adµs−1
b (u), (8)

where Ω := H , H a half-plane in C \ {0}, if a ∈ C \ N,

and Ω := C, if a ∈ N. It can be shown (see [2]) that R−a,

a ∈ C+, has a holomorphic continuation in τ to C0, where

C0 := {ζ ∈ C | − π < arg ζ < π}.
Taking in the definition of the double Dirichlet average

(6) for f the real-valued function t 7→ t−c, where c :=∑s−1
i=0 bi, the resulting double Dirichlet average is denoted

by R−c(b;X;β) and generalizes power functions. The

corresponding single Dirichlet average R−c(b;x), where

x = (x0, . . . , xs−1), is given by

R−c(b;x) =

s−1∏

i=0

x−bi

i , x /∈ [X]. (9)

(See, [2], (6.6-5).)

Now, let p = (p0, p1, . . . , ps−1) ∈ R
s, s ∈ N, be a multi-

index all of whose components satisfy pi < − 1
2 . The mo-

ment M
(z)
|p| (b;X) of order |p| := ∑s

i=1 pi of the complex

B-spline Bz(• | β,X) is defined by

M
(z)
|p| (b;X) :=

∫

Rs

xp
Bz(x | β,X) dx.

Note that since Bz(• | β,X) ∈ L2(Rs) and Bz(• |
β,X) = 0, for x /∈ [X], an easy application of the

Cauchy-Schwartz inequality shows that the above inte-

gral exists provided the multi-index p satisfies the afore-

mentioned condition on its components.

Using a result from [8], namely Property 2.5 (b), and

requiring that Re z < Re c, we substitute the function

f := Γ(c−z)
Γ(c) (•)−(c−z) into (8) to obtain

R
(z)
−(c−z)(b;x) = R−c(b;x) =

s−1∏

i=0

xbi

i .

The above considerations together with Theorem 6 imme-

diately yield the next result.

Corollary 8. Suppose that β ∈ R
∞
+ and that Re z > 1.

Let b := (b0, b1, . . . , bs−1) ∈ (−∞,− 1
2 )s be such that

c :=
∑s−1

i=0 bi /∈ −N0. Moreover, suppose that Re z <
Re c. Then

M
(z)
−c(b;X) = R

(z)
−(c−z)(b;X;β). (10)
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