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Fast cartoon + texture image �lters�

Antoni Buadesy, Triet M. Le z, Jean-Michel Morelx, and Luminita A. Vese{

Abstract

Can images be decomposed into the sum of a geometric part and a textural part?
In a theoretical breakthrough, Yves Meyer [28] proposed variational models that
force the geometric part into the space of functions with boundedvariation, and the
textural part into a space of oscillatory distributions. Meyer's models are simple
minimization problems extending the famous total variation model. However, their
numerical solution has proved challenging. It is the object of a literature rich in
variants and numerical attempts. This paper starts with the linear model, which
reduces to a low-pass/high-pass �lter pair. A simple conversion of the linear �lter
pair into a non-linear �lter pair involving the total variation is introduc ed. This
new-proposed nonlinear �lter pair retains both the essential features of Meyer's
models and the simplicity and rapidity of the linear model. It depends ononly one
transparent parameter: the texture scale, measured in pixel mesh. Comparative
experiments show a better and faster separation of cartoon from texture. One
application is illustrated: edge detection.
Note to the editor in charge and the referees. The algorithm proposed in this paper
is tested in the web site
http: // mw. cmla. ens-cachan. fr/ megawave/algo/ cartoon_ texture/
showing many more experiments. An on line demo
http: // mw. cmla. ens-cachan. fr/ megawave/demo/ cartoon_ texture/
permits to test arbitrary images.

1 Introduction to the cartoon + texture problem and
prior work

A grey level or color image will be denoted byf : (x; y) 2 
 ! IR (respectively IR 3)
where 
 is an open subset of IR 2, typically a rectangle or a square. An imagef is
de�ned on a continuous domain by interpolating a digital image de�ned on a �nite set
of pixels. We are interested in decomposingf into two components f = u + v, such
that u represents a cartoon or geometric (piecewise-smooth) component of f , while v

� This work has been supported by the National Science Foundation Grants DMS-0714945 and DMS-
0312222. Research partially �nanced by the Centre National d'Etudes Spatiales, and the O�ce of Naval
research under grant N00014-97-1-0839.
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represents the oscillatory or textured component off . The oscillatory part v should
contain essentially the noise and the texture.

The general variational framework for decomposingf into u + v is given in Meyer's
models as an energy minimization problem

inf
(u;v )2 X 1 � X 2

f F1(u) + �F 2(v) : f = u + vg; (1)

where F1; F2 � 0 are functionals andX 1, X 2 are spaces of functions or distributions
such that F1(u) < 1 and F2(v) < 1 if and only if ( u; v) 2 X 1 � X 2. The constant
� > 0 is a tuning parameter. A good model for (1) is given by a choice of X 1 and X 2

so that if u is cartoon and if v is texture, then F1(u) << F 2(u) and F1(v) >> F 2(v)
(such conditions would insure a clear cartoon+texture separation; in other words, if u
is only cartoon, without texture, then texture components must be penalized byF1,
but not by F2, and vice-versa).

The long story of this problem can be summarized in a list of proposed choices
for both spacesX 1 and X 2, and both functionals F1(u) and F2(v). In fact the choice
for F1(u) has quickly converged to the total variation of u, that excludes strong os-
cillations but permits sharp edges. The main point under discussion has been what
spaceX 2 would model the oscillatory part. Since the discussion is complex, we refer to
Table 1 and its legend, which present the main models. This table extends the model
classi�cation outlined in [11], and adopts the same terminology.

One of the �rst nonlinear cartoon+texture models is the Mumf ord and Shah model
[30], [31] for image segmentation, wheref 2 L 2(
) is decomposed into u 2 SBV (
)
([12], [2], [29], [3]), a piecewise-smooth function with its discontinuity set Ju included
in a union of curves whose overall length is �nite, andv = f � u 2 L 2(
) represents
the noise or the texture. The minimization problem is

inf
(u;v )2 SBV (
) � L 2 (
)

n Z


 nJu

jDu j2dx + H 1(Ju) + � kvk2
L 2 (
) ; f = u + v

o
; (2)

where H 1 denotes the 1-dimensional Hausdor� measure (the length ifJu is su�ciently
smooth), and � > 0 is a tuning parameter. With the above notations, X 1 = SBV (
)
is the De Giorgi space of special functions with bounded variation. F1 is composed of
the �rst two terms in the energy from (2), while the third term is F2(v) =

R
v2, the

quadratic norm. It is di�cult to solve this model in practice , because of its non-convex
nature coming from F1(u).

An easier decomposition can be obtained by the Rudin, Osher,and Fatemi (ROF)
total variation (TV) minimization model [37] for image deno ising. Their functional is
convex and therefore more amenable to e�cient minimization. The variational model
is

inf
(u;v )2 BV (
) � L 2 (
)

n Z



jDu j + � kvk2

L 2 (
) ; f = u + v
o

; (3)

where Z



jDu j = sup

n Z



udiv~�dx; ~� 2 C1

0(
 ; IR 2); k~� k1 � 1
o

denotes the total variation of u in 
, also denoted by T V(u) or by jujBV (
) . The

component u belongs to the space of functions of bounded variationBV (
) =
n

u 2

2



L 1(
) :
R


 jDu j < 1
o

. This space penalizes oscillations (such as noise or texture),
but allows for piecewise-smooth functions, made of homogeneous regions with sharp
boundaries. Since almost all level lines (or isolines) of aBV function have �nite length,
the BV space is considered adequate to model images containing shapes. These shapes
can actually be extracted by edge detection or by image binarization and morphology
[38]).

The bibliography on algorithms minimizing the ROF function al and its multi-scale
variants [41, 43] is rich [6, 44, 21, 33]. Convex dual numerical methods have been tested
in [15, 32]. Hybrid models with wavelets are described in [27, 26]. Models where the
L 2 norm is replaced by theL 1 norm are now classical [16].

In [17] strong mathematical geometric arguments are put forward in favor of the
T V-L 1 model: explicit solutions can be computed for simple geometric objects. These
examples demonstrate that, based on the perimeter/area ratio, shapes are unambigu-
ously put either in the TV part or in the L 1 part. This study connects the T V-L 1

model with the classical morphological granulometry [38].Accurate regularity results
for the level set boundaries of minimizers of theT V � L 1 model are also given, in any di-
mension, in [1]. Probably the most popularT V minimization algorithm is Chambolle's
projection algorithm [14]. Recent years have, however, shown a trend to abandon the
BV norm and replace it by a so-called \non-local" norm [34] inspired from [13].

Yet, as pointed out in [28], T V � L 2 or T V � L 1 do not characterize the oscillatory
components. Indeed, these components do not have small norms in L p(
), p � 1, [4].
To overcome this drawback, Y. Meyer [28] proposed in his seminal book weaker norms
to replace k � k2

L 2 in the ROF model, that would better model oscillatory components
with zero mean. The Meyer model is

inf
(u;v )2 (BV (
) � G;F or E );f = u+ v

n Z



jDu j + � kvk�

o
; (4)

where k � k� is the norm in one of the following spaces, denoted byG, F or E (de�ned
here for 
 = IR 2).

De�nition 1 A distribution v belongs toG if and only if v = div(~g) for some ~g 2
(L 1 )2 in the distributional sense. The endowed norm is

kvk� = kvkG = inf
~g2 L 1 ;v= div~g

k~gkL 1 :

The spaceF is de�ned as G, but the condition ~g 2 (L 1 )2 is substituted by the weaker
condition ~g 2 BMO 2 (thus if ~g = ( g1; g2), then gi are functions with bounded mean
oscillation). Finally, the space E is the Besov spaceE = _B � 1

1 ;1 , dual to the space _B 1
1;1.

The introduction of the spaces G, F and E is motivated by the fact that highly
oscillatory signals or images have small norms inG, F or E . For instance, jj cosnx jjG =
1
n . The presence of a non-BV part in images is corroborated by the experimental-
numerical study [20]. However, the three norms proposed by Meyer are not expressed
as integrals and are therefore di�cult to compute. It is also di�cult to set up the right
value of � for real images. This problem is addressed in [42] and [10]. The numerical
experiments have shown promising results and justi�ed further inquiries.
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Minimized energy or �lters Name ReferenceR
jDu j2 + H 1(Ju) +

R
jvj2 SBV � L 2 (MS) [30]R

jDu j +
R

jvj2 T V � L 2 (ROF) [37]R
jDu j +

R
jvj T V � L 1 [16]R

jDu j + inf ~g2 L 1 ;v= div~g k~gkL 1 T V � div(L 1 ) [28]R
jDu j + jjvjjH � 1 TV- H � 1 [36]R

jDu j + inf ~g2 BMO;v = div~g k~gkL 1 TV-div(BMO) [28, 23, 18]R
jDu j + jjvjj _B � 1

1 ;1
TV-Besov [28, 19, 9]

R
jDu j +

R
jK � vj2 TV-Hilbert [11]R

jDu j2 + jjvjj2
H � 1 H 1-H � 1 Here and [39]

u = wL � � f + (1 � w)f nonlinear �lter pair Here

Table 1: Table of all f = u+ v = cartoon+ texture models in approximate chronological order.
These models are divided in �ve groups. The �rst group contains theclassicBV or SBV +noise
models. The second group starting with Meyer's model introduces akey new feature: The norm
of the oscillatory part v decreases whenv oscillates more. This is obtained by putting a norm
on v that is actually a norm on a primitive of v. The TV- H � 1, TV-div(BMO) and TV-Besov
models follow the same pattern. The third group simpli�es the panorama by pointing out that
the norm of a primitive of v is much easier to compute by convolution with a �lter K (in fact
the TV- H � 1 model also belongs to that group). But here, the main fact is that the second
model in the third group, H 1 � H � 1, boils down to the decomposition into a classic low-pass
and high-pass decomposition. As will be shown in Sect. 4 such linear decompositions do give
competitive results. The last row is the proposed nonlinear �lter, which takes the best of each
worlds by using BV , but relying mainly on a previous pair of linear high-pass and low-pass
�lters.

There has been an extensive line of papers (starting with [46]) modifying and inter-
preting Meyer's models, and proposing minimization schemes: [7, 40, 9, 47, 24, 45, 22].
An extensive mathematical analysis of Meyer's model in a bounded domain is per-
formed in [5]. For many formal properties of the G-norm the reader can refer to [35].
In [36] the G-norm is replaced by theH � 1 norm. This approach using Sobolev spaces
with negative exponents was extended in [25] and [18]. TheF = div(BMO ) variant
was numerically studied in [23] and [18]. There have also been extensions intending to
decomposeu into three components, namelyBV , texture, and a residual (e.g., noise).
In the model [46] (where the spaceG = _W � 1;1 is approximated by Gp = _W � 1;p for
large p), this is done by solving

inf
Z



jDu j + � jj f � u � vjj2

L 2 (
) + � jjvjjGp :

In [46] the norm jjvjjG of v = div ~g is approximated by jj
p

g2
1 + g2

2 jjp, p � 1 which is of
course far from the real problem with p = 1 . Aujol et al. [8] addressed the original
Meyer problem and proposed an alternate method to minimize

inf
Z



jDu j + � jj f � u � vjj2

L 2 (
)

subject to the constraint jjvjjG � � .
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The 2006 paper [11] presents a sort of review where the above mentioned variants
and others are summarized. Following this paper's terminology, the funding models that
inspired this line of research areT V � L 2 (ROF) and the original Meyer models T V �
div(L 1 ), T V � div(BMO ) (numerically tried in [23], [18]), and T V-Besov (numerically
tried in [19], [9]). A simpler variant is T V � H � 1, since also theH � 1 norm is small
on oscillatory signals. The hierarchy of the spaces used forthe oscillatory part is
complex: div(L 1 ) and div(BMO ) are distributional �rst derivatives of vector �elds
in L 1 and BMO respectively. The Besov model takes the oscillatory partv into
_B � 1

1 ;1 := �( _B 1
1 ;1 ) which is a space of second derivatives of functions satisfying a

Zygmund regularity condition. Since this condition is close to assuming a Lipschitz
bound on the functions, it is fair to say that the Besov model de�nes distributions that
are second derivatives of functions that have (almost) bounded gradients.

In conclusion (as also pointed out by Y. Meyer [28]), the four spacesG = div(L 1 ),
H � 1 = �( H 1), F = div(BMO ) and �( _B 1

1 ;1 ) (Besov) can be considered as variants
of each other, since they all appear as �rst derivatives of (bounded-like) functions.
Experimental evidence does not favor one of them.

Generalizing T V � H � 1, a genericT V-Hilbert model [11] can be de�ned using a
smoothing kernel K . The associated Meyer energy is

inf
u2 BV

�
J (u) =

Z
jDu j + � kK � (f � u)k2

L 2

�
: (5)

This model has also been proposed in [19]. TheL 2 norm of K � (f � u) can be
substituted by an L p norm, p � 1. One obtains slightly better results with p = 1 [18].
Our numerical trials yield no signi�cant di�erence between T V-Hilbert and the other
mentioned T V � X models. Because of its simplicity, we shall retain this version (5) in
the experiments after �xing adequately the kernel K . This is precisely the object of the
next section. The main goal of the manuscript is to propose here a simpler and faster
model than the variational model (5), while better separating cartoon from texture.

We wish to recall here the function spaces notations used in the next sections.
H 0 = L 2 denotes the space of square-integrable functions. The Sobolev spaceH 1 is
de�ned by H 1 = f u 2 L 2; Du 2 L 2 � L 2g, or in the Fourier domain by H 1 = f u :R

[1 + (2 � j� j)2]jû(� )j2d� < 1g . We will also make use of the spaceH � 1 (dual to the
homogeneous version ofH 1), de�ned in the Fourier domain by the set of functions
and distributions H � 1 = f u :

R
[1 + (2 � j� j)2]� 1jû(� )j2d� < 1g (the corresponding

homogeneous versions, used in the next sections, are obtained by dropping the constant
1).

The rest of the paper is organized as follows: in Section 2 we formulate the linear
cartoon + texture H 1 � H � 1 model inspired from Y. Meyer [28], which can be easily and
rapidly solved in the Fourier domain in one step. Since this model introduces blurring in
the cartoon componentu, we propose in Section 3 a novel nonlinear cartoon + texture
model that retains the simplicity and e�ciency of the linear one, while the cartoon
componentu is piecewise-smooth and with sharp edges. Section 4 illustrates numerical
comparisons between the linear model, the nonlinear minimization model (5) and the
proposed fast nonlinear model; an application to edge detection is also shown, together
with a discussion on the local texture scale.
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2 Linear version of Meyer's model

In view of the multiplicity and complexity of nonlinear mode ls, it seems reasonable to
�rst �x as a reference the best linear model. Separation of scales in images is classically
obtained by applying a complementary pair of low-pass and high-pass �lters to the data
f , namely u = LP F (f ), and then v = f � u = HPF (f ). The T V � H 1 model is easily
linearized by replacing the total variation

R
jDu j by the Dirichlet integral

R
jDu j2. Then

the most natural variational linear model associated with Meyer's ideas isH 1 � H � 1.
Indeed, H � 1 is dual to H 1, in the same way asG is dual to BV . The low pass �lter
f ! u is obtained by the minimization

min
u

�
� 4

Z
jDu j2 + jj f � ujj2

H � 1

�
: (6)

The meaning of � 4 will be shortly explained. This model can be compared with the
classical Tikhonov quadratic H 1 � L 2 minimization

min
u

�
� 2

Z
jDu j2 +

Z
(f � u)2

�
; (7)

which is equivalent in the Fourier domain to the low-pass �lt er û = 1
1+(2 �� j � j)2 f̂ . This

Wiener �lter is known to remove high-frequency components due to the edges off , and
not only those due to oscillations (See Fig. 1).

Using the Fourier transform in (6), the H 1 semi-norm ofu is
R

jDu j2 =
R

(2� j� j)2jû(� )j2

and the H � 1 semi-norm of v is
R j v̂(� )j2

(2� j� j)2 . This implies in particular that u � f = v
has zero mean, since feasible solutions satisfy ^v(0) = 0. Minimizing this quadratic
functional (6) in u yields in Fourier the unique solution û = L̂ � f̂ , where

L̂ � (� ) :=
1

1 + (2 �� j� j)4 : (8)

The meaning of the parameter� is now easily explained: if the frequency� is signif-
icantly smaller than 1

2�� , then the � frequency is kept in u, while if � is signi�cantly
larger than 1

2�� , then the frequency� is considered a textural frequency and attributed
to v. Thus, the solution (u; v) = ( L � � f; (Id � L � ) � f ) is nothing but a pair of com-
plementary low pass and high pass �lters. Note that as� ! 0, L � ! Id . We will
also consider the �lter K � , where K̂ � (� ) = e� (2�� j � j)4

, which behaves still more like the
characteristic function of the ball centered at zero with radius 1

2�� .
It is worth mentioning that related linear and nonlinear thr ee-term decompositions

f = u + v + w based on theH 1 � H � 1 duality were introduced in [39]: the linear case
is the (H 1; H 0; H � 1) decomposition, while the nonlinear decomposition uses piecewise
(H 1; H 0; H � 1) (where piecewiseH 1 is the SBV space for the cartoon, combined with
piecewiseH � 1 for the texture).

3 Proposed fast cartoon+texture non-linear �lters

The observed e�ciency of the linear pair (L � ; Id � L � ) (see Figure 3) leads to consider
nonlinear versions that would retain its main feature, namely the excellent extraction

6



-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: Fourier transform of the low pass �lter obtained wi th the H 1 � L 2 functional
(7) (dotted line), the �lter L � (8) associated with theH 1 � H � 1 model (6) (dashed line)
and the �lter K � (solid line) for � = 1. Among the three �lters, K � behaves more like
the sharpest possible low-pass �lter, namely the characteristic function of [ � 2��; 2�� ].

of the texture by a high pass �lter Id � L � . On the other hand, the non-oscillatory parts
of the initial image f should be kept unaltered even if they have sharp edges. This is of
course impossible with a linear �lter. Thus, a local indicator must be built to decide at
each point x whether it belongs to a textural region or to a cartoon region. The main
characteristics of a cartoon region is that its total variation does not decrease by low
pass �ltering. The main characteristics of a textured region is its high total variation
due to its oscillations. This total variation decreases very fast under low pass �ltering.
Formalizing these remarks leads to de�ne thelocal total variation (LTV) at x,

LT V� (f )(x) := L � � j Df j(x)

(note that L � can be substituted by K � ). The relative reduction rate of LTV is de�ned
by a function x 7! � � (x), given by

� � (x) :=
LT V� (f )(x) � LT V� (L � � f )(x)

LT V� (f )(x)

which gives us the local oscillatory behavior of the function f . If � � is close to 0, we
have

LT V� (f ) � LT V� (L � � f )
LT V� (f )

� � � , LT V� (L � � f ) � (1 � � � )LT V� (f );

which means that there is little relative reduction of the local total variation by the low
pass �lter. If instead � � is close to 1, the reduction is important, which means that
the considered point belongs to a textured region. Thus, a fast nonlinear low pass and
high pass �lter pair can be computed by weighted averages off and L � � f depending
on the relative reduction of LT V . We can set

u(x) = w(� � (x))( L � � f )(x) + (1 � w(� � (x))) f (x); v(x) = f (x) � u(x) (9)
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where w(x) : [0; 1] ! [0; 1] is an increasing function that is constant and equal to zero
near zero and constant and equal to 1 near 1. In all experiments the soft threshold
function w is de�ned by

w(x) =

8
<

:

0 x � a1

(x � a1)=(a2 � a1) a1 � x � a2

1 x � a2

(10)

where the parametersa1 and a2 have been respectively �xed to 0:25 and 0:5. If � � (x)
is small, the function f is non-oscillatory around x and therefore the function is BV
(or cartoon) around x. Thus u(x) = f (x) is the right choice. If instead � � (x) is large,
the function f is locally oscillatory around x and locally replaced by (L � � f )(x). The
choice of � � = 1

2 as underlying hard threshold is conservative: it permits to keep all
step edges on the cartoon side, but puts all �ne structures onthe texture side, as soon
as they oscillate more than once. Of course changes in the parametersa1 or a2 would
slightly modify the separation results.

Since it is desirable to have a one-parameter method, it seems advisable to �x the
threshold function w once and for all, as has been done in all experiments.In that
way the method keeps thescale � of the texture as the only method parameter.That
this last parameter cannot be avoided is obvious: textural details become shapes when
their sizes grow, and therefore should be moved from the texture to the BV side. This
is apparent in the experiments of Figs. 6 and 7.

4 Comparing results

In this section the results of three main representative models will be compared. First,
the simplest linear Meyer model, namely the linearH 1 � H � 1 model, second the stan-
dard T V � Hilbert model (5), and �nally the fast nonlinear �lter de�ned in Sect ion 3.
Implementing the T V � Hilbert model amounts to minimize the energy

inf
u2 BV (
)

Z



jDu j +

�
2

Z



jL � � (f � u)(x)j2dx; (11)

where the smoothing kernelL � will be the same as for the linear and the nonlinear
�lter pairs, to permit fair comparisons. By gradient descent, u must formally solve

@u
@t

= div
� r u

jr uj

�
+ �L � � L � � (f � u):

This numerical method is actually slower than the smart methods for minimizing the
total variation mentioned in the introduction, but gives es sentially the same results.

Figure 3 compares cartoon and texture components for the linear �lter, the T V-
Hilbert formulation, and the proposed non-linear �lter pai r. Clearly the edges are
better preserved in the cartoon part with the proposed non-linear �lter, and much less
apparent in the texture part. The H 1� H � 1 Meyer linear �lter pair gives strikingly good
results, but blurs slightly out edges in the cartoon part, asexpected. As a consequence,
ghosts of the edges appear in the textural part. A careful comparison of H 1 � H � 1 with
T V-Hilbert con�rms the slight improvement of the nonlinear va riational model on the
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Figure 2: Test images Barbara and patio. We will also use the gray level version of
Barbara image.

linear one. Figure 4 displays the plots of� � (x) for several pixels in the Barbara image
and di�erent � . This �gure illustrates how � � (x) increases with � for high frequency
textural patterns and gets quickly close to one. On contoursand at zones � � (x)
increases very slowly tending to values much lower than 0:5, thus explaining the chosen
values ofa1 and a2 in equation (10).

Figure 5 illustrates the e�ciency of the separation of textu re from the BV part by
applying a Canny �lter to the cartoon part u (right) obtained by the proposed nonlinear
�lter. The edges between textural regions are indeed detected on the cartoon part. If
applied directly on the original image (left), these edges are mixed up with numerous
texture edges.

A serious advantage of the proposed nonlinear �lter is that the Lagrange parameter
� in the original Meyer model is now interpreted as a scale� . Thus, it is easy to �x
� in the low pass �lter to put (or not) this texture in the textur al part: it is enough
to evaluate the wave-length (in pixels) of the texture and to �x � accordingly. In Fig.
6, the transparent choice of� is shown on the classical textured image Barbara. The
micro-textures are put in the oscillatory part for � = 4, and the larger textures for
� = 6. Eventually, for � = 8, the oscillations of the books and chair go into the texture
part. The function � � (x) used for these decompositions is displayed in Fig. 8.

The sharper kernelK � instead ofL � was also tested in the nonlinear �lter, as shown
in Fig. 7. K � behaving more like a characteristic function, the oscillations on the scarf,
the chair and the books are slightly better separated than inthe results from Figure
6 using L � . But this comparison also shows that the choice of the low-pass �lter is
not crucial. A �nal decomposition experiment is displayed in Figure 9. This �gure
corroborates the e�ciency of the separation of texture from the BV part. Notice how
the contours of columns and arcades remain sharp in theBV parts. However, the thin
columns seen at a distance pass into texture for� = 4.
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