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Abstract:
To overcome the limitation induced by the fixed time-
frequency resolution over the whole time-frequency plane
of Gabor frames, we propose a simple extension of the Ga-
bor theory leading to the construction of frames with time-
frequency resolution evolving over time or frequency. We
describe the construction of such frames and give the ex-
plicit formulation of the canonical dual frame for some
conditions. We illustrate the interest of the method on a
simple example.

1. Introduction

Gabor analysis [7] is widely used for applications in signal
processing. For some of these applications, which include
processing of signals using Gabor frame multipliers [6, 1],
the rigid construction of the Gabor atoms results in im-
portant limitations on the signal analysis and processing
ability of the associated schemes. The Gabor transform
uses time-frequency atoms built by translation over time
and frequency of a unique prototype function, leading to
a signal decomposition having a fixed time-frequency res-
olution over the whole time-frequency plane. This can be
very restricting when dealing with signals with character-
istics changing over the time-frequency plane. For exam-
ple, this led some people to prefer the use of alternative
decompositions with time-frequency resolution evolving
with frequency in some applications, to better fit the fea-
ture of interest of the signal. Examples of such decompo-
sitions are the wavelet transform [5] or the decompositions
using filter banks based on perceptive frequency scales for
processing of audio signals, as for example gammatone
filters [9].
A case for which the limitation induced by the constant
time-frequency resolution of the Gabor transform can be
seen is shown on the didactic example of Figure 1. On this
figure, two spectrograms of the same glockenspiel signal
are represented. These spectrograms are obtained by plot-
ting the square absolute value of the Gabor coefficients
using a color scale with a level coding in dB. Both spec-
trograms are obtained from the Gabor coefficients using
the same type of window, but using two different window
lengths. We see that the signal contains two very contrast-
ing types of components:

• at the beginning of the notes, the signal presents
sharp attacks which are spread in frequency, but very

localized in time,

• during the resonance of the notes, the signal con-
tains quasi-sinusoidal components which are spread
in time, but very localized in frequency.
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Figure 1: Two spectrograms of the same glockenspiel sig-
nal obtained using two different window lengths. On the
top plot, a narrow window of 6 ms is used, on the bottom
plot, a wide window of 93 ms is used.

We see that the use of the narrow window is well suited for
the analysis and processing of the attacks, leading to a very
sparse decomposition for these components, but gives an
unsatisfying representation of the resonance, as the differ-
ent sinusoidal components are not resolved. On the other
hand, the wide window gives a good representation of the
resonance part, but a blurred representation of the attacks.
For this example, it appears that if we want to build an



optimised scheme for processing of both attacks and the
resonances at the same time, it would be suitable to be
able to adapt the time-frequency resolution locally for the
different types of components.
The purpose of this paper is to describe one way to achieve
this goal. For this, we show that, while staying in the con-
text of frame theory [2, 4], the standard Gabor theory can
be easily extended to provide some freedom of evolution
of the time-frequency resolution of the decomposition in
either time or frequency. Furthermore, this extension is
well suited for applications as it can easily be implemented
using fast algorithm based on fast Fourier transform [12].
We first describe the construction of the frames in Section
2., and then illustrate in Section 3. the potential of the ap-
proach on the preceding example of Figure 1.

2. Construction of the frames

2.1 Resolution evolving over time

As opposed to standard Gabor analysis, we replace time
translation for the construction of atoms by the use of
different windows for the different sampling positions in
time. For each time position we still build atoms by reg-
ular frequency modulation. So using a set of functions
{gn}n∈Z of L

2(R), for m ∈ Z and n ∈ Z, we define
atoms of the form:

gm,n(t) = gn(t)ei2πmbnt.

In practice we will choose each windowgn centered
around a timean, and it will typically be constructed by
translating a well localized window centered around0 by
an, as in the standard Gabor scheme, but with the possi-
bility to vary the windowgn for each positionan. Thus
the sampling of the time-frequency plane is done on a grid
which is irregular over time, but regular over frequency.
Figure 2 shows an example of such a sampling grid. It can
be noted that some results exist in Gabor theory for semi-
regular sampling grids, as for example in [3]. Our study
here uses a more general setting, as the sampling grid is in
general not separable, and more importantly, the window
can evolve over time.
In this case, the coefficients of the decomposition are
given by:

cm,n = 〈f, gm,n〉 ,

and the frame operator is given by:

Sf =
∑

m

∑

n

〈f, gm,n〉gm,n.

The frame operator can be described by its kernelK given
the following relation, which holds at least in a weak
sense:

Sf(s) =

∫
K(t, s)f(t)dt.

Here the kernelK simplifies according to the following
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Figure 2: Example of sampling grid of the time-frequency
plane when building a decomposition with time-frequency
resolution evolving over time.

relations:

K(t, s) =
∑

m

∑

n

gn(t)gn(s)ei2πmbn(s−t)

=
∑

n

gn(t)gn(s)
∑

m

ei2πmbn(s−t)

=
∑

n

1

bn

gn(t)gn(s)
∑

k

δ

(
s − t −

k

bn

)

thus,

Sf(s) =
∑

k

∑

n

1

bn

gn

(
s −

k

bn

)
gn (s) f

(
s −

k

bn

)

In general, the inversion ofS is not obvious. However we
can identify a special case, which is analog to the “pain-
less” case in standard Gabor analysis [8], for which the
expression ofS simplifies.
More precisely, we suppose from now on that for ev-
ery n ∈ Z, the functiongn has a limited time support
supp gn = [cn, dn] such thatdn − cn < 1

bn

. Due to this
support condition, the terms of the summation overk in
the preceding equation are0 for k 6= 0 and the frame op-
eratorS becomes a multiplication operator:

Sf(s) =
∑

n

1

bn

|gn(s)|2f(s).

In this case the invertibility of the frame operator is easy
to check and the system of functionsgm,n forms a frame
for L

2(R) if and only if ∀t ∈ R,
∑

n
1
bn

|gn(t)|2 ≃ 1.
When this condition is fulfilled, the canonical dual frame
elements are given by:

g̃m,n(t) =
gn(t)∑

k
1
bk

|gk(t)|2
ei2πmbnt,

and the associated canonical tight frame elements can be
calculated by:

ġm,n(t) =
gn(t)√∑

k
1
bk

|gk(t)|2
ei2πmbnt.



2.2 Resolution evolving over frequency

An analog construction is possible with a sampling of the
time-frequency plane irregular over frequency, but regular
over time. An example of the sampling grid in such a case
is given on Figure 3.
In this case, we introduce a family of functions{hm}m∈Z

of L
2(R), and form ∈ Z andn ∈ Z, we define atoms of

the form:
hm,n(t) = hm(t − nam).
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Figure 3: Example of sampling grid of the time-frequency
plane when building a decomposition with time-frequency
resolution evolving over frequency.

In practice we will choose each functionhm as a well
localized pass-band function having a Fourier transform
centered around some frequencybn.
In this case the frame operator is given by:

Tf =
∑

m

∑

n

〈f, hm,n〉hm,n,

and the problem is completely analog to the preceding up
to a Fourier transform, as we have:

T̂f =
∑

m

∑

n

〈f̂ , ĥm,n〉ĥm,n,

andĥm,n = ĥm(ν)e−i2πnamν . So the preceding compu-
tation can be done, working on the Fourier transforms of
the involved functions instead of directly on the functions.
Now the “painless” case appears when we suppose that
for everym ∈ Z, the functionĥn has a limited frequency
supportsupp ĥn = [en, fn] such thatfn−en < 1

an

. Then
the following expression holds:

T̂f(ν) =
∑

m

1

am

|ĥm(ν)|2f̂(ν),

and the system of functionshm,n forms a frame ofL2(R)

if and only if ∀ν ∈ R,
∑

n
1

am

|ĥm(ν)|2 ≃ 1.
The associated canonical dual and tight frame can be com-
puted as preceding, with the addition of an inverse Fourier
transform.

2.3 Implementation

For the practical implementation, we have developed the
equivalent theory in a finite discrete setting, that is to say
working with complex vectors as signals. This theory
won’t be described here due to lack of space, but the con-
struction is very similar to the one described in 2.1 and 2.2
and leads to a frame matrix which simplifies to a diagonal
matrix in the “painless” case, suitable for applications.
The implementation is then very similar to the implemen-
tation of the standard Gabor case and can exploit fast
Fourier transform algorithms for efficiency. The only dif-
ferences compared to standard Gabor implementation are
due to the fact that the storage of coefficients requires
more advanced storage structures due to the irregularity
of the time-frequency sampling grid, and that the com-
putation of the dual window must be performed for ev-
ery time position resulting in a slight increase in computa-
tional cost.

3. Example

The possibility to build a decomposition with time-
frequency resolution evolving over time can be exploited
to solve the problem described in example of Section 1. il-
lustrated by Figure 1. For the corresponding glockenspiel
signal, as we have seen before, the use of narrow window
is suitable for the attacks of the notes, while a wide win-
dow should be used for the resonances. Figure 4 shows
a representation built with our approach using a narrow
window of 6 ms for the attacks and a wide window of 93
ms for the resonance. The frame used for this figure is
a tight frame. It should be noticed that the evolution of
the window size between the two target window lengths
is smoothed in order to ensure that the atoms used for the
decomposition maintain a “nice” shape, in the sense of
having a good time-frequency concentration. This ensures
the easy interpretability of the decomposition, especially
for processing using frame multipliers.
This figure gives an idea of the type of decompositions that
can be constructed with our approach and should be com-
pared to the decomposition obtained using standard Gabor
analysis on Figure 1. With our approach, it becomes pos-
sible to have a simultaneous good representation of both
types of components of this signal while keeping the same
processing ability than with standard Gabor.
We see that our approach allows to build decompositions
with better time-frequency localization of the signal en-
ergy. This can be helpful for many processing tasks, in
particular to reduce artifacts in component extraction or
denoising.

4. Conclusion

Our approach enables the construction of frames with flex-
ible evolution of time-frequency resolution over time or
frequency. The resulting frames are well suited for appli-
cations as they can be implemented using fast algorithms,
at a computational cost close to standard Gabor frames.
Exploiting evolution of resolution over time, the pro-
posed approach can be of particular interest for applica-
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Figure 4: Spectrogram of the same glockenspiel signal as
in Figure 1 using a nonstationary Gabor decomposition.

tions where the frequency characteristics of the signal are
known to evolve significantly with time. Order analysis
[11], in which the signal analyzed is produced by a rotat-
ing machine having evolving rotating speed, is an example
of such application.
Exploiting evolution of resolution over frequency, the pre-
sented approach could be valuable for applications requir-
ing the use of a tailored non uniform filter bank. In par-
ticular, it can be used to build filter banks following some
perceptive frequency scale.
One difficulty when using our approach is to adapt the
time-frequency resolution to the evolution of the signal
characteristics. If prior knowledge is available, this can
be done by hand, as for the example of Figure 4. But to
go further, our approach could be extended to construct
an adaptive decomposition of the signal by automatically
adapting the resolution to the signal. To achieve this, we
plan to investigate the possibility to couple our approach
with the use of sparsity criterion as proposed in [10]. The
general idea would then be to consider time segments of
the signal, and for each time segment compare the sparsity
criterion obtained for Gabor transforms computed with
different possible windows. We would then use in our
decomposition the window corresponding to the best cri-
terion for each time segment, leading to a decomposition
optimizing the sparsity of the decomposition over time.
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[10] F. Jaillet and B. Torŕesani. Time-frequency jig-
saw puzzle: adaptive multiwindow and multilay-
ered gabor representations.International Journal for
Wavelets and Multiresolution Information Process-
ing, 5(2):293–316, 2007.

[11] H. Shao, W. Jin, and S. Qian. Order tracking by
discrete Gabor expansion.IEEE Transactions on
Instrumentation and Measurement, 52(3):754–761,
2003.

[12] J. S. Walker.Fast Fourier Transforms. CRC Press,
1991.


