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Abstract. The purpose of this paper is, on the one hand, to identify to define and classify customization requirements and, on
the other hand, to evaluate how generic modeling and configuration assistance within the Constraint Satisfaction Problem (CSP)
framework can fulfil the requirements. The aim is to provide commercial configurator knowledge base designers with constraint
based generic modeling elements for customizable industrial product. A first part recalls the main trends of the configuration
problem. In a second part divided in four sections corresponding with different requirement set; each section proposes a definition
of the requirement set, some CSP based modeling elements and a discussion about adequacy of relevant configuration assistance
techniques.

1. Introduction

In order to improve their competitiveness, compa-
nies try to launch on the market products with cus-
tomization capabilities. Therefore, they include con-
figuration software (configurator) in their information
system. In consequence, most of the ERP providers
include in their software packages configuration mod-
ules (see the surveys in [18]). In order to work, these
configuration modules require a generic model of the
product, which is most of the time not defined by a
computer science specialist. Therefore, a strong need
for friendly generic modeling approaches and relevant
tools is rising in order to set up configurators in industry.
Many papers dealing with configuration are more in-

terested by a solving approach and the relevant generic
modeling problem is most of the time not addressed.
As Wielinga explains in [27] “Many authors prefer a
parsimonious set of knowledge structures that suit their
favorite problemsolvingmethod or their domain”. Ori-
ented towards configuration requirements and model-

ing, our contribution targets two goals. The first one,
dealing mainly with product generic modeling require-
ments, is to identify and to classify the product cus-
tomization possibilities that should be fulfilled by con-
figurators. The second one, dealing with modeling,
is to analyze how the Constraint Satisfaction Problem
(CSP) framework can handle these modeling require-
ments and to comment how existing processing ap-
proaches can assist the configuration process.
We first recall configuration definition basics, dis-

cuss about the people involved in the configuration
process, point out two kinds of configurators, under-
line general modeling needs and justify our CSP based
modeling choice. Then we identify a first set of mod-
eling requirements corresponding with what we call
the “central problem” and provide modeling elements.
Then, in order to match other particularities of in-
dustrial problems, we sequentially add modeling re-
quirements to this “central problem” and analyze how
CSP based generic modeling elements can fulfill them.
These complementary elements gather: product de-



scriptive approach, tailored or parametric component,
layout definition and hierarchical bill-of-materials.
Our intention is therefore to propose and discuss

generic modeling elements without focusing on prob-
lem solving. We are clearly interested in identifying
requirements and showing howCSP can be used to rep-
resent various aspects of product generic modeling for
the configuration problem. A “custom storage system”
provided by the Lapeyre Company will be used as an
example to illustrate our ideas all through this paper.

2. General aspects of configuration, configurators
and modeling

This section recalls general aspects of configuration,
introduce the product genericmodeling need and justify
our CSP based approach.

2.1. Configuration and configurator elements of
definition

From significant works achieved concerning config-
uration [7,12,15,22], and [1], common features defin-
ing configuring are:

– hypothesis: a product is a set of components,
– given: (i) a generic model of a configurable prod-
uct able to represent a family of products with all
possible variants and options, in which a generic
model is a set of components plus a set of vari-
ous constraints; and (ii) a set of customer require-
ments, inwhich each requirement canbe expressed
by a constraint,

– configuring can be defined as “finding at least one
component set that satisfies all the constraints”.

A configurator is a software package that assists the
person in charge of the configuration task. It is com-
posed of a knowledgebase that stores the genericmodel
of the product and a set of assistance tools that helps
the user finding a solution or selecting components.
In any case, the fundamental assistance requirement is
to guarantee the consistence of the configured product
with both generic model and customer requirements.

2.2. Two classes of configuration situations

According to the previous definition, configuration
can exist in any customer/supplier relation when defin-
ing the product object of a deal. It is nevertheless

possible to identify two main classes of configuration
problems and relevant configurators.
The first class deals with the selling side and is con-

ducted by the sales teams of companies. In that case,
the cycle time order of magnitude for setting a solu-
tion is less than an hour and sometimes less than a
minute when configuring on line on a web site for ex-
ample. This is the target of the ERP configurationmod-
ules that assist the Business to Customer (B2C) cus-
tomer/supplier relation and need to be able to support
mass configuration or a great amount of configuration
tasks (for example: 1 to 100 configuration tasks per
day).
The second class is close to a product design activity

and ismainly achieved by the research anddevelopment
teams of companies. An order of magnitude of the
cycle time to provide a solution could be between a
week and a month. In most of these cases, previous
ERP configurationmodules can not be used and specific
configurators are necessary. For that class of problems,
the customer/supplier relation is more on the Business
to Business side (B2B) and the number of configuration
tasks that needs to be achieved is rather small (no mass
configuration, for example: from 1 to 10 configuration
tasks per month).
As the configurators of the second class are specific,

each of them (including its generic model) needs to be
designed and maintained by computer science special-
ists. On the other hand, the configurationmodules pro-
vided by software companies should propose (and pro-
vide most of the time) a generic modeling environment
enabling a non-computer science specialist to describe
the generic model of the product. Our contribution is
clearly positioned on the generic modeling side of the
first configurator class, frequently called commercial
configurator or sale configurator.

2.3. Generic product model main characteristics

In this section we list and briefly explain the main
characteristics that should fulfil the generic model of
the product. They will be used in the next section for
justification of our a priori choice of modeling formal-
ism.

2.3.1. Easy modeling
The product model and the modeling task should

rely on “natural” or easy to understand concepts. The
configurable productmodel should be clearly separated
from the configuration process. A graphical represen-
tation of the model is a necessity for an easy com-



prehension and a lower maintenance effort. Pieces of
“visible” written code or pseudo-code (whatever the
language is), source of many errors during modeling,
should be avoided as much as possible.

2.3.2. Generic model expressivity and knowledge
level of users

The generic model can be different according to the
configurator user’s level of knowledge about the prod-
uct that must be configured. For a product expert, a
genericmodel gathering detailed components plus con-
straints is suitable, whereas a clearer product represen-
tation in terms of product characteristics is necessary to
a non expert. In the work of [14] this is addressed as an
explicit model (component oriented) versus an implicit
model (description oriented).

2.3.3. Generic model testability
As generic models mainly rely on components plus

constraints, it is necessary to have a good confidence
in the model consistency. This is a hard point and the
configuration technique operating on the model should
be open to debugging and inconsistency detection tech-
niques.

2.3.4. Structured generic model and reusability
In order to avoid redundancy of parts of generic

model, a structured generic model is of interest and
permits to re-use these generic model parts in generic
models of different products.

2.4. Model characteristics, configuration techniques
and CSP approach

Most of the works recently achieved on configu-
ration rely on propositional logic, first order logic
and constraint satisfaction problem (CSP) frameworks.
Generic modeling with propositional logic requires a
large amount of Boolean variables and Boolean rules
(and, or, not), resulting models are therefore compli-
cated with a low expressivity. First order logic is a
good generic modeling tool but is not easy to handle
by non computer science specialists, some work has
been done [6] to provide some UML based graphical
formalism avoiding coding.
The utilization of “pure” CSP, introduced in [13],

presents interesting concepts for configuration, but we
will see, in Section 3.1.2, why its dynamic extension,
the DCSP, proposed in [16] and discussed in [23], is far
much better for configuration problems handling.

The clear separation between the model and the
propagation or resolution techniques, the concepts of
variables/domains/constraintsnatural for non computer
specialist and good graphical representation possibili-
ties make CSP a good candidate for configurationmod-
eling.
The CSP concepts, variables and constraints fit two

possible configurable product descriptions: set of com-
ponents and/or set of characteristics. Furthermore, the
work of [21] exploiting the notion of preference in CSP
allows CSP based configurator to take into account the
preference of the user during the configuration process.
In terms of model testability, some works [11]

and [20] have presented some possibilities about CSP
model debugging and inconsistency detection, but the
proof of full consistence model still relies in the com-
plete analysis of the solution space. In order to avoid
this last drawback, consistency restoration and expla-
nation during configuration can be supported by CSP
techniques as explained in [3].
CSP approaches do not deal easily with structural

aspects. Very little work has been done in this field,
composite CSP has been proposed by [17] and some
extensions of Dynamic CSP trying to match this as-
pect have been discussed in [25]. As far as we know,
this is clearly not a good point for CSP utilization in
configuration.
The kinds of product where various aspect of CSP

based configuration have been studied are diverse. A
car configuration problem introduced in [16] and dis-
cussed by [19,20], and [25], an industrial mixer [23],
a machining operation [8], and an automotive wiring
system [2] are typical examples of product where CSP
based configuration has been used. For these works, it
must be noted that: the car and industrial mixer product
model examples have been used to illustrate theoreti-
cal points of CSP based processing, while the goal of
the works dealing with machining operation and auto-
motive wiring system examples was to have a product
specific operating configurator without providing any
new theoretical points. An interesting survey of prod-
uct customization variety has been reported [22] but
without CSP based support. Our contribution, there-
fore aims to study the diversity of product customiza-
tion problems, or product modeling requirements, and
how it can be handled with CSP based elements. This
is the aim of the rest of the paper.
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3. Modeling requirements and generic modeling
elements

In this chapter, we first present what we call the “cen-
tral problem”, then each following sectionwill describe
some additional modeling requirements to the central
problem. For each section, the configuration problem
hypotheses are defined or refined, an example is given
for clarification and a CSP basedmodel is provided and
discussed.

3.1. From basic to central configuration problem

3.1.1. Basic configuration problem and CSP approach
The simplest configuration problem can be defined

as follows:

– h1: all the components are “standard” or com-
pletely defined, it is not possible to create a new
component during the configuration task,

– h2: the components are gathered in groups, each
componentmust belong to only one group, the pur-
pose of the group notion is to gather components
that support the same functionalities,

– h3: each group is present in any configured prod-
uct,

– h4: the constraints represent the allowed combi-
nations of components,

– h5: the customer or configurator user requirement
corresponds with the selection of one component
in each group,

– h6: a configured product is a component set, sat-
isfying both constraints and requirements, where
one and only one component must be selected in
each group.
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Fig. 2. Basic problem CSP model.

The example of Fig. 1, a “custom storage system”,
illustrates this problem. The generic product gathers 3
components: a Bookcase (BC), a High Cabinet (HC)
and a Low Cabinet (LC), where:

– any component of each group exists in two fin-
ishes: Painted (P) or Wood (W),

– the BC height can be 72 cm or 216 cm, LC height
is 72 and HC height is 144,

– 3 groups exist (i) BC: {BC72P, BC72W, BC216P,
BC216W}, (ii) LC: {LC72P, LC72W}and (iii)
HC: {HC144P, HC144W}

– a single constraint states that any configured prod-
uct must be of the same color.

CSP, defined in [13] as a triplet X, D, C where X
is a set of variables, D a set of finite domains (one for
each variable) and C a set of constraints (defining the
possible combinations of variables value), matches this
basic problem. Each group of components is associ-
atedwith a variable. Each component correspondswith
one value of the variable. The constraint (solid lines
of Fig. 2) represents the allowed combinations of com-
ponents. A generic model of the product of example 1
could be as the one shown in Fig. 2.

3.1.2. Central configuration problem and DCSP
approach

This previous problem is extremely rare. Very fre-
quently, the existence of a group of components is op-
tional or restricted for product feasibility reason or cus-
tomer wishes. Therefore, two kinds of groups must be
defined: the groups which always exist in any config-
ured product and the ones that may exist according to
the customer requirements or product feasibility rea-
sons. The central configuration problem can therefore
be described as follows:
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– h1, h2, h6: unchanged
– h3 – a group is either always present in any con-
figured product or its existence depends on: (i) the
existence of other groups and/or (ii) the selection
of other components,

– h4 – the constraints represent the allowed combi-
nations of (i) components and/or (ii) group exis-
tences,

– h5 – the customer or configurator user requirement
corresponds to the selection of (i) one component
in each group and/or (ii) decision of a component
group existence.
The example of 3.1.1 is modifiedwith the addition
of the following constraints:

– The Bookcase must be present in all configured
Storage Systems.

– The High Cabinet can exist if and only if a Low
Cabinet exists and the Bookcase is 216 cm high.

This “central problem” is supported by most of the
configurator packages provided by software companies
and is frequently associated with what is called “pick
to order” or “assemble to order” industrial situations.
DSCP, proposed in [16], adds to “pure CSP” the

notions of:

– Initial variables: variables that exist in any config-
ured product.

– Compatibility constraints: equivalent to the con-
straints defined in Section 3.1.1.

– Activity constraints: allowing to control the vari-
able existence in the following ways:

∗ Require: a specified value of a variable “x” im-
plies the existence of the variable “y”,

∗ Always Require: any value of a variable “x” (or
“x” exists) implies the existence variable “y”,

∗ Not Require: a specified value of a variable “x”
implies the non existence of the variable “y”,

∗ Always Not Require: any value of a variable
“x” (or “x” exists) implies the non existence of
the variable “y”.

A generic model of the central problem example
could be as the one shown in Fig. 3. It is clear thatDCSP
matches exactly the “central problem” requirements.
In the following sections we are going to show that the
presented requirements are not sufficient to take into
account various industrial situation needs and provide
complementary requirements and analyze how DCSP
can fulfil them.

3.2. Central problem extension and complementary
modeling elements

3.2.1. Physical versus descriptive model
The previous model of Fig. 3 is a “physical” model

because each variable correspondswith a group of com-
ponents. But very often, for a non product expert, it is
necessary to define “descriptive” attributes that do not
correspond with a component group. In that modeling
approach, the values of the descriptive attributes permit
to identify a component (for example the height and
the color allow identifying a component). The advan-
tages are, on the one hand, that descriptive attributes
(defined by the person in charge of modeling) can be
much more expressive for the customer than a list of
components (that does not interest the customer most
of the time) and, on the other hand, that configuration
models can involve much less configuration variables
and constraints. But the second approach needs to
maintain identification tables or functional constraints
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allowing to derive the component list from the values
of the descriptive attributes.
The example of Fig. 3 is presented in Fig. 4 with this

second modeling approach with the same DCSP for-
malism. The four descriptive attributes, necessary to
represent exactly the same set of solutions, correspond
with the color (wood/painted) the book case height
(72/216) the existence of the lower cabinet and higher
cabinet (yes/no). The component identification tables
permit to derive, from the four previous variables, the
final result of configuration as a set of BC, LC and HC
components.

3.2.1.1. Extended definition of the central problem.
In the first definition, components were gathered in
groups. With the descriptive approach we added de-
scriptive attributes and values. We therefore introduce
the notion of configuration variables that gathers these
two elements and can propose the followingdefinition:
– H1 – All the components, “standard” or com-
pletely defined, are gathered in groups, each com-
ponentmust belong to only one group. Each group
is associated with a configuration variable whose
definition domain is a list of values equal to the
component list.

– H2–Aproduct can be characterized by descriptive
attributes. Each descriptive attribute is associated
with a configuration variable whose definition do-
main is a list of values, where a value cannot be a
component.

– H3 – A configuration variable is either always
present in any configured product or its existence
depends on: (i) the existence of other configu-
ration variables and/or (ii) the selection of other
configuration variable values.

– H4 – The constraints represent the allowed combi-
nations of (i) configuration variable values and/or
(ii) configuration variable existences,

– H5 – The customer or configurator user require-
ment corresponds to the selection of (i) one value
for each configuration variable and/or (ii) decision
of a configuration variable existence.

– H6 – A configured product is a set of configuration
variable values, satisfying both constraints and re-
quirements, where (i) one and only one compo-
nent is selected in each group and (ii) one and only
one value is selected for each existing descriptive
attribute.

3.2.1.2. Discussion. Globally the descriptive model
targets to displace the configuration from a component
plus constraint problem to a descriptive attribute plus
constraint problem plus component identification ta-
bles. This permits a kind of disconnection between the
product configuration process and the bill-of-materials
generation. The interest of this disconnection lies in
a kind of delinking of selling and manufacturing con-
cerns allowing remote configuration possibilities for
sale without handling all the product technical data.
Therefore this approach is of interest for commercial
configurators.
When there is not any descriptive attribute (i.e. all

configuration variables represent component groups),
this definition corresponds with the physical problem
of Section 3.1.2. When all the configuration variables
associated with the component groups are only present
in component identification tables or functional con-
straints, this definition corresponds with a “pure” de-
scriptive problem. Most of the time, it is unfortunately
necessary to express the requirements of the configu-
rator user in terms of both component selection and
product characteristic valuation. For example, when it
is necessary to allow configuration by product experts
(component selection) and also by non product experts
(descriptive attribute valuation), the two modeling ap-



Color 

Wood 

Painted 

BC_Height 

72 

216 

HC_exist 

Yes 

No 

LC_exist 

Yes 

No 

BC 

BC72W 

BC216W 

BC72P 

BC216P 

LC 

LC72W 

LC72P 

HC 

HC144W 

HC144P 
. . .
.

Fig. 5. Physical and descriptive configuration model.

proaches need therefore to be mixed in a single config-
uration problem as shown in Fig. 5, where both com-
ponent groups (constraints in dot lines) and descriptive
attributes (constraint in solid lines) are present in the
proposed model. D CSP handles this problem relying
on configuration variables gathering group/component
and descriptive attribute/value. The next sections will
identify other kinds of attribute that will be associated
with configuration variables allowing to represent other
configuration modeling requirements.

3.2.2. Tailored components, component quantity and
numerical constraints

3.2.2.1. Standard and tailored components. Until now,
all the components were completely defined with en-
tirely frozen characteristics (hypothesis H1). Very fre-
quently, industrial cases need to deal with parametric
or tailored components. For example, when a door
needs to be replaced in an old house, it rarely corre-
sponds with a standard offer. In order to capture this
market, many companies propose customization pos-
sibilities that are not restricted to standard component
assembling.
We therefore propose to characterize each tailored

componentby numerical tailoring attributes with a con-
tinuous definition domain defining the range of possible
values. Therefore, modeling requires to associate each
tailoring attribute with a configuration variable defined
on a continuous definition domain (Fig. 6).
In the example of Fig. 6, the Bookcase and the High

Cabinet are now tailored components with tailoring at-
tributes BC height (chosen in a range between 72 cms
and 216 cms) and HC height (chosen in a range be-
tween 50 cms and 144 cms).

3.2.2.2. Component quantity. In the central problem,
hypothesis H6 assumes that a configuration solution
contains only one component in a group. Very often,
it is necessary to model that the quantity of a selected
component might be different from 1.
In that case, a quantity attribute is necessary to char-

acterize the quantity selected for a component chosen
in a group. This attribute can be defined either on a
discrete or continuous domain. This quantity attribute
must also be associated with a configuration variable.
In our example of Fig. 6, theHigh cabinet can contain

drawers and roll out-shelves. For each of them, it is
possible to select a quantity between 0 and 3 thanks
to the quantity attributes for drawers (Qtt Draw) and
roll-out-shelves (Qtt Ros).

3.2.2.3. Numerical constraints on discrete variable.
Until now, compatibility and activity constraints were
discrete. Activity and compatibility constraints repre-
sented allowed the combinations of configuration vari-
able values. Very frequently duringmodeling, it is sim-
pler to define constraints through the expression of a
mathematical formula that avoids a huge combinatory
even when dealing with discrete variable domains.
Therefore a strong modeling requirement is to han-

dle constraints expressed with formulae. These kinds
of formula allow to take into account among other
that some component selections or attribute valua-
tions are restricted by some kind of resource (space,
power, length. . . ) provided by other components or
attribute values. This behavior is similar to the re-
source/provide/consume elements introduced by [10]
and discussed in [19].
In our example of Fig. 6, let us consider that up to

four elements among Drawers and Roll-Out-Shelves
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can be chosen for the High Cabinet. It is much simpler
to express this modeling requirement with a numerical
constraint stating that Qtt Draw.+ Qtt Ros. ! 4 than
describing in extension the possible combinations of
quantity.

3.2.2.4. Numerical constraints on discrete and contin-
uous variable. Before the identification of tailored and
quantity attributes, configuration variables were dis-
crete. With these two continuous attributes, it is neces-
sary to express constraints on continuous variables.
A first modeling solution that avoids mathematical

formulae is to discretize the variable domains and to
use discrete constraints. This is shown in our exam-
ple of Fig. 6 with the compatibility constraint between
BC height and HC existence, where BC height is dis-
cretized in two intervals [72,122] and [122,216], the
first interval forbids the HC existence while the second
leaves the two possibilities.
When discretization is not suitable or requires a too

large combinatory description, it is necessary to use
a mathematical formula. This is shown in the exam-
ple of Fig. 6 where a constraint, between BC height
and HC height expresses that the top of Bookcase and
High Cabinet must be at the same height: BC height
= HC height + 72,

3.2.2.5. Tailored attribute, quantity attribute and
numerical constraint example. In the example of
Fig. 6, the Bookcase and the High Cabinet are tai-
lored components with tailoring attributes BC height
and HC height, with the following constraints:

– the top of Bookcase and High Cabinet must be at
the same height: BC height = HC height + 72,

– the High Cabinet can exist if: BC height " 72 +
50 = 122

Two new component groups, Drawers and Roll-Out
Shelves, are added to the High Cabinet. A constraint
states that a maximum of four elements among these
groups can be chosen. This is modeled with:

– quantity attribute for drawers (Qtt Draw) andRoll-
Out Shelves (Qtt Ros),

– a numerical constraint expressing that: Qtt Draw.
+ Qtt Ros. ! 4.

3.2.2.6. Discussion. As far as modeling is concerned,
configurationvariables correspondingwith tailoring at-
tributes and quantity attributes, numerical constraints,
continuous variables and constraints can be added to
the model of the central problem. The problem raised
in this section is on the side of configuration process-
ing, DCSP solving and constraint propagation require
discrete variables and discrete constraints. Therefore,
other processing techniques must be investigated for
assisting the configuration process, which should deal
with cooperation of constraint solvers dealing with dis-
crete and numeric variables, some ideas for this prob-
lem have been proposed in [24]. As far as we know,
very few commercial configurator software programs
support discrete and continuous variables, discrete and
continuous constraints, and constraints expressed with
formulae in a proper way.

3.2.3. Layout aspects in configuration
In the previous cases, the configuration result is al-

ways a set of components plus attribute values. As
explained in [4], a same set of components can corre-
spondwith two different products according to two dif-
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ferent layouts. It is therefore sometimes necessary to
geometrically locate each selected component among
others. This is close to a design activity whose aims are
either to locate a component in an absolute referential
or to locate the position of one component in relation
to another component.

3.2.3.1. Layout with component absolute locations.
Layout requirements using absolute position can be
handled thanks to the association of each component
with location attributes. Each attribute is a coordinate
of a referential and corresponds with a configuration
variable. The values of the location attribute can be
either discrete or continuous. Discrete and continuous
layout constraints can link location attributes of differ-
ent components. These modeling elements are simi-
lar to quantity and tailored attributes modeling. Con-
sequently, they lead to the same configuration process
drawbacks.
Without layout configuration, the four layouts in the

upper left part of Fig. 7 are possible. But let’s consider
that only the first and second are valid: the LC must be
under the HC and the BC near the LC. Then, absolute
position layout modeling requires to define different
possible component locations. The space is therefore
mapped in 6 possible locations identified by a num-

ber: 1/lower left, 2/upper left, 3/upper right, 4/lower
right, 12/left, 34/right, as described in the upper right
of Fig. 7. The model, in the lower part of Fig. 7, shows
that each component is characterized by a location at-
tribute and compatibility constraints define the accept-
able layout solutions (1) and (2).

3.2.3.2. Layout with component relative locations.
Layout requirements using relative location of compo-
nent couple have been introduced with the notion of
“port and connection” in [15], defining that two com-
ponents can be connected through component ports
(port m of component i can be connected to port n of
component j). Each port is a characteristic of a com-
ponent and can be associated with a component port
attribute.
In our example, this approach requires to locate each

component with respect to each other at a certain place
(on, under, lined up, etc.) in a way very close to CAD
systems. Therefore each component must be charac-
terized by some ports, each port corresponds with a
particular side (or piece of side) where a port of an-
other component can be “in contact” as shown in the
upper part of Fig. 8. Constraints should explain how
components could be relatively located.
Layout modeling with relative location or ports is

much harder to handle with a CSP based approach
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Fig. 8. Layout modeling with ports and connections.

but we propose some ideas dealing with this modeling
problem, such as: (i) define a configuration variable
for each component port attribute, (ii) define allowed
values of the component port configuration variable as
the list of component ports that can be connected to it
plus the value “Ø” specifying that the port is not used,
(iii) define possible connections between component
couples with compatibility constraints.
The model in the lower part of Fig. 8 illustrates

the proposed solution. The BC has four ports (P BC-
1, P BC-2, P BC-3, P BC-4), the HC three (P HC-
1, P HC-2, P HC-3) and LC three (P LC-1, P LC-
2, P LC-3). The definition domains of these vari-
ables are the component ports that can be connected.
The constraints show how three couples of components
plus ports can be connected (BC,HC), (BC,LC) and
(HC,LC) allowing the solutions of the previous sub-
section Fig. 7.

3.2.3.3. Discussion. Configuration with layout re-
quirements is not easy to handle with our CSP based
elements. When the location problem is not too com-
plicated, for example when locating less than 20 pieces
of furniture on a single axis with a unique coordinate,
absolute position location is fine. Layout requirements
taking advantage of the port and connection approach
are typical of electronical product configuration. When
components and possible connections are numerous,
the presented CSP based model becomes quickly com-
plicated and modeling and maintenance not possible.

It is clear that layout configuration is close to a design
activity. Simple cases, close to schematic drawings,
can be handledwith commercial configurators as shown
for example in the configuration problem of a train
car layout addressed in [9]. But as explained in [2]
configuration including hard layout problems are better
solved thanks to the cooperation of configurator and
CAD system.

3.2.4. Hierarchical bill-of-materials
Many industrial situations require, mainly for pro-

duction management reasons, to have the configura-
tion result (the component set) presented as a hierar-
chical bill-of-materials instead of a single level bill-of-
materials.
For the example of Fig. 6 gathering up to five of the

components, Bookcase (BC), High Cabinet (HC), Low
Cabinet (LC), Drawers (Draw) and Roll-Out Shelves
(Ros); the single level bill-of-material is as shown in
left part of Fig. 9. The hierarchical bill-of-material
presentation need may correspond, for example, with
the identification of the following sub-assemblies:

– High Cabinet plus Accessories (HCA) gathering:
High Cabinet, Drawers and Roll-Out Shelves,

– High and Low Cabinet (HLC) gathering: Low
Cabinet and High Cabinet plus Accessories,

and the resulting hierarchical bill-of-materials would
be as shown in the right part Fig. 9.
As this is mainly a presentation requirements, we

propose to keep the previous modeling elements (CSP
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based generic model plus component identification ta-
bles representing single level bill-of-materials) and to
add a piece of generic model allowing to derive a
hierarchical bill-of-materials. The added pieces of
model gather a generic hierarchical bill-of-materials
plus existence conditions of each generic sub-assembly.
The leaves of the generic hierarchical bill-of-materials
are the component groups and the intermediate el-
ements are the generic sub-assemblies of the prod-
uct. The sub-assembly existence conditions correspond
with functional activity constraints that modulate the
sub-assembly existence in function of the variables of
the CSP based generic model.
With these elements, the configuration can go as

follows: (i) configuration of the product (ii) iden-
tification of the component (iii) existence validation
of the generic sub-assemblies (iv) hierarchical bill-of-
material generation. The last step is achieved with a
substitution in the generic hierarchical bill-of-materials
of each component group by relevant identified compo-
nent at step (ii). When a sub-assembly does not exist,
direct bill-of-material links, between lower level sub-
assemblies or components and upper sub-assembly of
top level product, replaces the generic hierarchical bill-
of-materials upstream and downstream links. Lastly, in
order to differentiate each sub-assembly, each of them
should be codified according to the lower level compo-
nents and/or sub-assemblies.
For the example of Fig. 9, these elements both pre-

sented in a table form would be as shown in Fig. 10,
the hierarchical bill-of-materials in the left part and
sub-assembly conditions in the right part
According to these elements, the whole configura-

tion process would go for example as follows:
(i) configuration process with user requirements as:

Color = “Wood”, BC Height= 216, LC = “Yes”, HC
= “yes”, HC Height= 144, Qtt Draw= 0, Qtt Ros =
0
(ii) component identification: BC216W (BC group),

LC72W (LC group), HC144W (HC group).

(iii) sub-assembly existence validation: HLC,
(iv) hierarchical bill-of-material generation: as

shown in Fig. 11.

3.2.4.1. Discussion. The added pieces of the model
show how a hierarchical bill-of-materials can be gen-
erated as a configuration result with our CSP based
approach. Some complementary works are necessary
to model a product where a same component group
is present in different generic sub-assemblies or when
the hierarchical bill-of-materials does not have a tree
shape.
A main drawback of our entire CSP based approach,

which clearly appears in this section, is that it is not
easy to configure in a generative way. Generative con-
figuration should be understood as the ability of config-
uring a product with more than one instance of a same
generic sub-assembly orwith a number of instances un-
known at the beginning of the configuration task. Very
little work has been done in “generative configuration”,
an application specific configurator has been designed
for telecommunication system and is presented in [5]
and very recently some ideas about duplicating vari-
able groups in CSP model in order to permit generative
configuration have been proposed in [26].

4. Conclusions

Our goal was to identify and classify configura-
tion modeling requirements and analyze how the CSP
framework could be a good support for generic model-
ing and if relevant propagation and solving techniques
were adequate.
In terms of identification of requirements and generic

modeling, we started with the central problem and a
DCSP physical model composed of (i) variables, de-
fined on a discrete domain, associated with component
groups, and (ii) compatibility and activity discrete con-
straints.
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We extended the previous central problem, in or-
der to take into account the following generic model-
ing requirements, and proposed: descriptive approach,
parametric or tailored component, multi-presence of a
same component, layout configuration and expression
of the solution as a hierarchical bill-of-materials. We
proposed, for modeling, (i) to associate configuration
variables, defined on a discrete or continuous domain,
with: component groups, descriptive attributes, tailor-
ing attributes, quantity attributes, location attributes,
component ports attributes and generic sub-assemblies;
and (ii) constraints, combining the previous variables,
that can be compatibility constraints or activity con-
straints, expressed with allowed combination of values
or numerical formulae.
The complexity of the modeling task, with the pre-

vious elements, comes from: (i) the mix of all kinds of
attributes and the various constraints that can exist in
a single problem and (ii) the customization complexity
and size of the product itself. Nevertheless, the de-
scriptive approach, allowing some kind of disconnec-
tion between product configuration process and bill-of-
materials generation, tends to reduce the modeling task
difficulty.
The main lack of this approach, at present, lies in

the fact that the model is not structured. This forbids
easy re-use of model parts without “cut and paste”, and

makes generative configuration very difficult or impos-
sible when the number of model instances is not known
before configuring. This important aspect needs fur-
ther work with probably some kind of object-oriented
approach.
In terms of propagation and solving techniques, con-

tinuous domain variables and constraints expressed
with mathematical formulae are not compatible with
the DCSP solving algorithms and most of the works
done in consistency checking, inconsistency explana-
tion proposition, constraint propagation and CSP res-
olution have been achieved with discrete domain vari-
able and discrete constraints. As far as we know, there
is no proper way to overcome the problem at present
without a delicate combination of: discretization of
continuous variable domains, algorithms reasoning on
intervals, or delicate cooperation of different solvers.
Setting an easy to use modeling tool in order to “put

on the paper” a generic model of a configuration situa-
tion is a big issue for configurator deployment in indus-
try. Friendly user modeling is a necessity, especially
for “commercial configurator”. The proposed elements
present the important interests of being “visible” on
a schema and easy to understand by non-specialists
thanks to CSP formalism. The model expressivity
mixing component groups, various attributes allows to
build configuration model that can be used during con-



figuration by product experts (component oriented) and
by non product experts (characteristics oriented).
Many of the proposed modeling elements and

a specific model structure approach have been in-
cluded in a commercial configurator software pack-
age called “Caméléon Visual Expert” and in a generic
modeling method “Caméléon Model Designer” de-
signed and distributed by Access-Commerce (web site:
http://www.access-commerce.com). This configurator
is also the configurationmodule of the twoERPMfgpro
and Mapics and has been integrated with many ERP.
Thanks to the elements proposed and the “Caméléon

Model Designer” modeling method, a great variety of
industrial customizable products that did not require
a specific configurator have been successfully mod-
eled. Initially defined for manufacturing products, as
the example running all through this paper; the pro-
posed modeling elements can be used for service and
software configuration.
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