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Abstract

This paper presents recurrence formulas allowing the calculus of the marginals

and the normalizing constant of a Gibbs distribution π.The numerical perfor-

mances of different methods are evaluated on several examples, particularly for

an Ising model on a lattice.
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1. Introduction

Usually, the computation of the marginal distributions and/or the normaliz-

ing constant C of a discrete probability distribution π involves high dimensional

summation, such that the direct evaluation of these sums becomes quickly in-

feasible in practice. For example, for an Ising model on a 10×10 grid, it involves

summation over 2100 terms. This problem has a deep impact for many appli-

cations, for instance, maximum likelihood parameter estimation. In the same

way, some significant efforts have been put to solve the problem and the litter-

ature displays various alternatives for distributions involving such unreachable

constants. For instance, in spatial statistics, we replace the likelihood by the
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conditional pseudo likelihood (Besag, 1974; Gaetan and Guyon, 2010). Another

common way to bypass the problem is to estimate C, see for example Moeller

et al. (2006) for efficient Monte Carlo methods. Sometimes, it is possible to

compute C with an efficient algorithm, see for example Liu (2001); of course

this is an interesting preliminary for further statistical procedures such as sim-

ulation or estimation. We briefly recall hereafter some recent results on the

subject. Bartolucci and Besag (2002) express the likelihood of a Markov field

in terms of the product of conditional probabilities; Pettitt et al. (2003) obtain

the exact normalizing constant for a general categorical K− valued distribution

on a m × n cylinder with a matrix method involving the computation of the

eigenvalues of a Km × Km matrix, which makes it possible for Km . 1024,

that is for example K = 2 and m = 10. Then Reeves and Pettitt (2004) give

recursions for π factorisable.

In this paper, we first summarize classical results on the calculus of C and

of the marginal distributions of π, a general Gibbs distribution. Then, following

an idea of Khaled (2008a, 2008b) (see also Lovinson, 2006), we propose a new

algorithm based on π’s conditional probabilities to compute the marginals.

The plan of the paper is the following. Section 2 sums up basic properties

about π, a Gibbs process on a finite state space; then we recall some results

which permit the calculus of the marginals and the normalization constant of

π, these results being presented under a new writing. We also compare the

numerical efficiency of various algorithms in terms of their computing times.

Section 3 presents a new algorithm based on the conditionals of π to compute

the marginals of π. Section 4 extends these results for general Gibbs fields, and

evaluates the numerical performance for a spatial Ising model on a lattice m×T .

The paper ends with some generalisations.

2. Recursions for a temporal Gibbs distribution

2.1. Factoring joint distribution, Markov field and Markov chain properties

Let T > 0 be a positive integer, E a finite state space with N elements,

Z(T ) = (Z1, Z2, · · · , ZT ) a temporal random variable with a factorisable joint
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distribution π on ET (see Reeves and Pettitt, 2004): for z(T ) = (z1, z2, · · · , zT ),

π(z(T )) = C−1 exp
∑

s=1,T−1

hs(zs, zs+1) = C−1
∏

s=1,T−1

Hs(zs, zs+1) (1)

Let us give some notations; in all the following, we interprete Hs, s = 1, T−1,

as N × N matrices of elements Hs(u, v) = exp hs(u, v). For such two N × N

matrices H and G, for a N -row vector F = (B(v), v ∈ E), and for a N -column

vector B = (B(v), v ∈ E), we note, as in the classical way,

HG(u, v) =
∑

w∈E

H(u,w)G(w, v) , FH(v) =
∑

u∈E

F (u)H(u, v) and HB(u) =
∑

v∈E

H(u, v)B(v).

HG is a N × N matrix and HB an N -column vector. We also denote πS

the marginal of π on the subset S ⊆ T = {1, 2, · · · , T}, and πt
s = π[s,t] with

[s, t] = {s, s + 1, · · · , t} for s < t.

We can interpret π as a Gibbs distribution with energy UT (z(T )) =
∑

s=1,T−1 hs(zs, zs+1)

associated to saturated pairs potentials (hs)s=1,T−1. In particular, π is a bilat-

eral Markov random field w.r.t. the 2-nearest neighbours system (see Kinder-

mann et Snell, 1980; Lauritzen, 1996; Guyon, 1995):

π(zt | zs, s 6= t) =
Ht−1(zt−1, zt)Ht(zt, zt+1)

Ht−1Ht(zt−1, zt+1)
= π(zt | zt−1, zt+1).

Let us note that this non causal conditional distribution π(zt | zt−1, zt+1) can

be easily computed as soon as N , the cardinal of E, remains rather small. On

the other hand, the normalizing constant C as well as the marginals cannot be

computed since they entail high dimensional summation.

Z(T ) is also a Markov chain; indeed, π(zt | zs, s ≤ t−1) = πt
1(z1,z2,···,zt)

πt−1
1 (z1,z2···,zt−1)

;

then, for 1 ≤ s < t ≤ T , and using the notation ut
s = (us, us+1, · · · , ut), we

write πt
1(z1, z2, · · · , zt) =

∑
uT

t+1∈ET−t π(z1, z2, · · · , zt, u
T
t+1). Finally, we have

π(zt | zs, s ≤ t−1) =
Ht−1(zt−1, zt)

∑
uT

t+1
Ht(zt, ut+1)

∏T−1
s=t+1 Hs(us, us+1)

∑
uT

t
Ht−1(zt−1, ut)

∏T−1
s=t Hs(us, us+1)

= π(zt | zt−1).

But the analytic form of the transition cannot be explicited because it also

requires high dimensional summation.
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2.2. Recursions over marginal distributions

Let us set BT = 1 the N -column vector with constant coordinates 1. By

direct marginalization on zT , we obtain :

πT−1
1 (z1, z2, · · · , zT−1) = C−1{

∏

s=1,T−2

Hs(zs, zs+1)}(HT−1BT )(zT−1)

In the same way, defining Bt−1 = Ht−1Bt, we have, for t = T, 2 :

πt
1(z1, z2, · · · , zt) = C−1

∏
s=1,t−1

Hs(zs, zs+1)(HtBt+1)(zt) (2)

= C−1
∏

s=1,t−1

Hs(zs, zs+1)(Ht · · ·HT−1BT )(zt) .

These equations, up to the constant C, gives the marginals πt
1. Looking at π{1},

and denoting F1 = tBT the N−row constant vector with components equal to

1, we express the normalizing constant

C = C ×
∑

z1∈E

π{1}(z1) = F1{
∏

s=1,T−1

Hs}BT . (3)

These results about the marginals and the constant can be found, eventu-

ally differently presented, in other works, see for instance paragraph 2.4 of Liu

(2001), and Reeves and Pettitt (2004). However, our writing is interesting since

it gives a very simple algorithm to compute efficiently the normalizing constant,

in terms of matrices products.

Analogously, using forward recursions, and defining Ft = Ft−1Ht−1 for t ≥ 2,

we obtain :

πT
t (zt, zt+1, · · · , zT ) = C−1{(Ft−1Ht−1)(zt)

∏

s=t,T−1

Hs(zs, zs+1)}

= C−1{(F1H1H2 · · ·Ht−1)(zt)
∏

s=t,T−1

Hs(zs, zs+1)}.

More generally, let us consider the marginal of π on the subset S = {s1, s2, · · · , sq} ⊆
T = {1, 2, · · · , T}. For C given by (3), we have the following result:
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Proposition 1. 1 - The marginal distribution of π on S = {s1, s2, · · · , sq} with

1 = s1 < s2 < · · · < sq−1 < sq = T is

πS(z1, zs2 , · · · , zsq−1 , zT ) = C−1
∏

i=1,q−1

(
si+1−1∏
s=si

Hs)(zsi
, zsi+1), (4)

2 - The marginal on S1,T = S \ {1, T} is obtain by changing the first H-

product (
∏s2−1

1 Hs)(z1, zs2) by t1(
∏s2−1

1 Hs)(zs2) and the last product (
∏sq−1

sq−1
Hs)(zsq−1 , zT )

by ((
∏sq−1

sq−1
Hs)1)(zsq−1).

2.3. Numerical performances

Formula (3) simplifies for time invariant potentials hs = h (Hs = H). In this

case, C = t1(H)T−11 (or C = t1(H)T−2HT−11 if HT−1 6= H); if the size N of

E allows the diagonalization of the matrix H, we can achieve the calculus of C

independently of the temporal dimension T . Let us look at two examples for

which we compare the computing times for different algorithms. For this study,

we have used the software Matlab .

Example 1 : binary temporal model

Let us consider E = {0, 1} and the autologistic Gibbs field π associated to

time independent singletons and pairs potentials θt(zt) = αzt, t = 1, T and

Ψt(zt, zt+1) = βztzt+1 for t ≤ T −1. We have ht(zt, zt+1) = θt(zt)+Ψt(zt, zt+1)

for t = 1, T − 2 and hT−1(zT−1, zT ) = θT−1(zT−1) + ΨT−1(zT−1, zT ) + θT (zT ).

We present in Table 1 the times for the computation of C for increasing

values of T and the following three methods: (1) C = t1(H)T−2HT−11; (2) C

is computed by direct summation over ET using a simple loop (each element is

computed one by one and added to the previous calculus); (3) C is obtained by

summation again, using a bitmap dodge which computes simultaneously the 2T

elements of ET . We stopped computing C by summation (methods 2 and 3)

for T > 25.
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Meth. 1 Meth. 2 Meth. 3 Value C

T = 10 0 0.4690 0.0150 3.3441e+004

T = 20 0 744.6570 33.8120 8.6756e+008

T = 25 0 ∼ 6 hours 1315.0 1.3974e+011

T = 690 0 4.7610e+304

Table 1 : Computing times (in seconds) of C for a binary temporal Gibbs

distribution, α = 1, β = −0.8.

We observe that the computing times of C = t1(H)T−2HT−11 are negligible for

T < 700 while methods 2 and 3 become quickly unusable.

Example 2 : bivariate binary temporal model

We consider now E = {0, 1}2 and Z(T ) is the anisotropic Ising model with

invariant saturated potentials hs = h,

h((x1, y1), (x2, y2)) = αx1 +βy1 + γx1y1 +αx2 +βy2 + γx2y2 + δ(x1x2 + y1y2) ,

with the convention that a pair potential equals 0 if a state is taken out of

the time domain {1, 2, · · · , T}. We computed the constant C in two ways, first

calculating directly the power HT−2, then making use of the diagonalization

of H, i.e. calculating C = t1PDT−2P−1HT−11. The parameter values are

α = 1, β = −0.8, γ = −0.5, and δ = 0.04. We were able to calculate C for

T ≤ 430 and then stopped since the software treats C as equals to infinity. The

computing times for both methods are instantaneous, the size of H being too

small to distinguish computations using power or diagonalization of H.

2.4. Results for r-range potentials

Reeves and Pettitt (2004) consider more general r-factorisable distribution

π(z(T )) =
∏T−r

s=1 Hs(zs, zs+1, · · · , zs+r). There, the function Hs is defined on

E∗ = Er+1. For H a real function defined on E∗, we set H∗ defined on E∗×E∗

by:

H∗(u, v) = H(ur+1
2 , vr+2)

r∏

i=1

1(ui+1 = vi). (5)
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Then, respectively to the (∗)-objects, and with the notations of §2.1, we obtain

the same results, for example the normalizing constant C = t1(
∏T−r

s=1 H∗
s )1.

Recursive algorithms for the marginals of π follow in the same way as in (2) and

(4).

3. A new recursive algorithm for marginals based on future condi-
tionals

Let us clarify the Gibbs specification (1) of π in term of singletons and pairs

potentials, and write :

hs(zs, zs+1) = θs(zs) + Ψs(zs, zs+1) for s = 1, T ,

with the convention ΨT ≡ 0. Then we get the energy’s writing for t = 1, T , and

zt
1 = (z1z2, · · · , zt):

Ut(zt
1) =

∑
s=1,t

θs(zs) +
∑

s=1,t−1

Ψs(zs, zs+1)

We use conditioning by the future in order to compute recursively the

marginal πt
1. First we define the contribution of π, conditionally to the fu-

ture (zt+1, · · · , zT ). For t < T , it is clear that π(z1, z2, · · · , zt | zt+1, · · · , zT ) =

π(z1, z2, · · · , zt | zt+1). Then, for t < T ,

π(zt
1 | zt+1) = C−1

t (zt+1) exp U∗
t (zt

1; zt+1),

where U∗
t (zt

1; zt+1) = Ut(zt
1) + Ψt(zt, zt+1) is the future-conditional energy, and

Ct+1(zt+1) =
∑

ut
1∈Et exp {U∗

t (ut
1; zt+1)}.

Definition 1. For 1 ≤ t ≤ T , let γt(zt
1;u) = expU∗

t (zt
1; u) be the future-

conditional contribution of πt
1, conditionally to the future zt+1 = u. Then we

define Γt(zt
1) as the N -row vector of the future-conditional contributions of π

at time t:
Γt(zt

1)(u) = γt(zt
1; u), u ∈ E .

For t = T , ΓT (z(T )) is the constant vector of components γT (z(T )) =

exp UT (z(T )). Let us notice that Γt(zt
1) is analytically explicit.

For 1 ≤ t ≤ T , let Ht(u, v) = exp{θt(u) + Ψt(u, v)}, u, v ∈ E and let us

define the sequence (Dt, t = T, 2) of N -column vectors by DT = t(1, 0, · · · , 0),
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and Dt−1 = HtDt for t ≤ T . Then the following result gives a new recursion

for the marginals, based on the future-conditional contributions.

Proposition 2. Recursion for marginal distributions.

1 - For 2 ≤ t ≤ T and zt
1 = (z1, z2, · · · , zt) ∈ Et, we have:

∑

zt∈E

Γt(zt−1
1 , zt) = Γt−1(zt−1

1 )Ht. (6)

2 - For 1 ≤ t ≤ T ,

πt
1(z

t
1) = C−1 × Γt(zt

1)Dt. (7)

Proof. 1 - For 2 ≤ t ≤ T , Ut(zt−1
1 , zt) = Ut−1(zt−1

1 ) + θt(zt) + Ψt−1(zt−1, zt);

therefore,

U∗
t ((zt−1

1 , zt); zt+1) = Ut−1(zt−1
1 ) + θt(zt) + Ψt−1(zt−1, zt) + Ψt(zt, zt+1)

= U∗
t−1(z

t−1
1 ; zt) + {θt(zt) + Ψt(zt, zt+1)}.

This implies γt((zt−1
1 , zt); u) = γt−1(zt−1

1 ; zt)×Ht(zt, u) and summation over zt

gives (6).

2 - We prove (7) by descending recurrence. For t = T , the equality is verified

since

πT
1 (zT

1 ) = π(z(T )) = C−1 expUT (z(T )) = C−1 × ΓT (z(T ))DT .

Let us assume that (7) is verified for some t, 2 ≤ t ≤ T . We use (6) which gives:

πt−1
1 (zt−1

1 ) =
∑
zt

πt
1(z

t−1
1 , zt) = C−1{

∑
zt

Γt(zt−1
1 , zt)}Dt

= C−1Γt−1(zt−1
1 )HtDt = C−1Γt−1(zt−1

1 )Dt−1.

¥

Proposition (2) can be extended in a natural way to r-lag Gibbs processes.

For example, let us consider the 2-lag factorisable distribution π, characterized

by the following energy:
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UT (z(T )) =
∑

s=1,T

θs(zs) +
∑

s=1,T−1

Ψ1,s(zs, zs+1) +
∑

s=1,T−2

Ψ2,s(zs, zs+2).

with the convention Ψ1,T ≡ Ψ2,T−1 ≡ Ψ2,T = 0. It is easy to see that π is a

Markov field w.r.t. the 4-nearest neighbours system and:

π(zt
1 | zt+1, zt+2, · · · , zT ) = π(zt

1 | zt+1, zt+2) = Ct(zt+1, zt+2) exp U∗
t (zt

1; zt+1, zt+2),

where

U∗
t (zt

1; zt+1, zt+2) = Ut(zt
1) + Ψ1,t(zt, zt+1) + Ψ2,t−1(zt−1, zt+1) + Ψ2,t(zt, zt+2).

Then, we have:

U∗
t ((zt−1

1 , zt); (zt+1, zt+2)) = U∗
t−1(z

t−1
1 ; (zt, zt+1))+θt(zt)+Ψ1,t(zt, zt+1)+Ψ2,t(zt, zt+2).

Following the previous scheme, we define for t ≤ T, the N2-row vector Γt(zt
1)

by

Γt(zt
1)(u, v) = exp U∗

t (zt
1;u, v), u, v ∈ E .

Then, as in the proof of Proposition (2), but w.r.t the E∗ × E∗ matrices (H∗
s )

(5) with in this case E∗ = E2, we obtain the recurrence (6) on the contributions

Γt(zt
1) and the results (7) on the marginals.

4. The case of spatial Gibbs fields

4.1. A temporal multidimensional Gibbs process

The basic idea is to consider a spatial Gibbs field as a multidimensional

Gibbs process.

Let us consider Zt = (Z(t,i), i ∈ I), where I = {1, 2, · · · ,m}, and Z(t,i) ∈ F

(Zt ∈ E = Fm). Then Z = (Zs, s = (t, i) ∈ S) is a spatial field on S = T × I.

We take the notations zt = (z(t,i), i ∈ I), z(t) = (z1, .., zt) and z = z(T ).

Without loss of generality, we suppose that the distribution π of Z is a Gibbs

distribution with translation invariant potentials ΦAk
(•), k = 1, K associated
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to a family A = {Ak, k = 1,K} of subsets of S, ΦAk
(z) depending only on zAk

,

the layout of z over Ak. Then π is characterized by the energy:

U(z) =
∑

k=1,K

∑

s∈S(k)

ΦAk+s(z), with S(k) = {s ∈ S s.t. Ak + s ⊆ S}.

For A ⊆ S, we define the height of A by r(A) = sup{|u− v| ,∃(u, i) and

(v, j) ∈ A}, and r = r(A) = sup{r(Ak), k = 1, K} the biggest height of the

potentials. With this notation, we write the energy U as the following:

U(z) =
H∑

h=0

T∑

t=h+1

Ψ(zt−h, · · · , zt) with Ψ(zt−h, · · · , zt) =
∑

k:r(Ak)=h

∑

s∈St(k)

ΦAk+s(z)

where St(k) = {s = (u, i) : Ak + s ⊆ S and t− r(Ak) ≤ u ≤ t}.

(Zt) is a Markov random field w.r.t. the 2r-nearest neighbours system but

also a Markov process with memory r: Yt = (Zt, Zt+1, · · ·Zt+r), t = 1, T − r, is

a Markov chain on E∗ = Er for which we get the results (7) and (3).

4.2. Computing the normalization constant for the Ising model

We specify here the calculus of C for a translation invariant Ising model. Let

S = T × I ={1, 2, · · · , T} × {1, 2, · · · ,m} be the set of sites, F = {−1, +1} the

state space, and Z = (Z(t,i), (t, i) ∈ S) the Markov random field on S with the

4-nearest neighbours system. The joint distribution π of Z is characterized by

the potentials

Φt,i(z) = α z(t,i) for (t, i) ∈ S,

Φ{(t,i),(t,i+1)}(z) = β z(t,i)z(t,i+1) for 1 ≤ i ≤ m− 1,

and Φ{(t,i),(t+1,i)}(z) = δ z(t,i)z(t+1,i) for 2 ≤ t ≤ T.

Z is also a temporal Gibbs process with the following potentials:

θt(zt) = θ(zt) = α
∑

i=1,m

z(t,i) + β
∑

i=1,m−1

z(t,i)z(t,i+1),

Ψt(zt, zt+1) = Ψ(zt, zt+1) = δ
∑

i=1,m

z(t,i)z(t+1,i), 1 ≤ t ≤ T − 1.
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We define the following counting statistics associated to c, d ∈ E = {−1, +1}m:

n+(c) = ]{i ∈ I : ci = +1}, n−(c) = m − n+(c), v+(c) = ]{i = 1,m − 1 :

ci = ci+1}, v−(c) = (m − 1) − v+(c), and finally n+(c, d) = ]{i ∈ I : ci = di},
n−(c, d) = m− n+(c, d).

Then we apply the formula (3) w.r.t. the following 2m × 2m matrices (Ht)

defined for any u, v ∈ E = {−1, +1}m and δ(t) = δ × 1(t≤T−1) by :

Ht(u, v) = exp{α(n+(u)−n−(u))+β(v+(u)−v−(u))+δ(t)(n+(u, v)−n−(u, v))}.

Example 3

Table 2 gives computing times for the normalizing constant C for this Ising

model with parameters α = 0.15, β = 0.05, δ = −0.08. We fix m = 10 and

consider increasing values of T . We compute C using (3) and two methods:

(M1) calculates the power HT−2of H, while (M2) uses diagonalization of H.

m = 10 M1 M2 C

T = 2 0.3130 32.4850 1.3855e+006

T = 10 8.9220 40.8290 5.4083e+030

T = 50 15.4380 47.4060 4.8989e+153

T = 100 19.3600 51.0950 2.4344e+307

Table 2: Computing times of C for an Ising model on a lattice 10× T.

We observe that it’s computationally more efficient to compute the powers HT−2

rather than to use diagonalization. Indeed, the diagonalization procedure itself

is expensive for large size matrices, and we use here vectors and square matrices

of size 210.

4.3. Some generalizations

The results can be extended to larger potentials, as triplet potentials and so

on.

Another extension considers varying state spaces Et 3 zt; the recurrence (6)

and properties (7), (3) still hold but in this case, the matrices Ht are no longer

square.
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Finally, we can extend results (2), (3) and (6) to a sequence of embedded

subsets of T = {1, 2, · · · , T}. Let us consider a decreasing sequence T = SQ ⊃
SQ−1 ⊃ · · · ⊃ S1 of subsets of T and assume Sq = Sq−1∪∂Sq−1 for q = 1, Q−1.

Similarly to the former future-conditional contributions (7) presented in defi-

nition 1 and used in proposition 2, we define the contributions γq(z(Sq); z(T�Sq))

conditionally to the outer layout z(T�Sq). Then, we obtain (7) respectively to

the conditional energy U∗
q ,

U∗
q (z(Sq); z(∂Sq)) = U∗

q−1(z(Sq−1); z(∂Sq−1)) + ∆q(z(∂Sq−1)); z(∂Sq)), with

∆q(z(∂Sq−1)); z(∂Sq)) =
∑

u∈∂Sq−1

θu(zu) +
∑

u∈∂Sq−1,v∈∂Sq,<u,v>

Ψ{u,v}(zu, zv),

and the matrices Hq :

Hq(∂Sq; ∂Sq−1) = exp∆q(z(∂Sq−1); z(∂Sq)) .

5. Conclusion

This paper gives results permitting the evaluation of marginals and nor-

malizing constant for a Gibbs processes π. Some of these results, known in

the litterature, are presented with another formalism. A new result, based on

the contributions of π conditionally to the future, permits another recursion

to compute the marginals of π. In particular, these results are applicable to

Markov chains and Markov fields. It overcomes the need to resort to approxi-

mate alternatives for the likelihood, and makes feasible the exact evaluation of

the normalizing constant for moderate set of sites.

We gave several illustrations of the algorithm’s efficiency in terms of comput-

ing times for the normalizing constant. For one dimensional two states Gibbs

fields, we are able to compute instantaneously the normalizing constant for a

sequence of length 700, as well as for a sequence with four states and of length

400. We could keep computing for bigger lengths using another software able

to manipulate large matrices.

Since a random field with states in F can be seen as a temporal m-multivariate

Gibbs process in E = Fm, we give similar results on marginals and normalizing
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constant for a Gibbs random field. We have computed the normalizing constant

for an Ising model on a lattice 10× 100 in 20 seconds. While we could increase

the temporal parameter T, one of the side of the lattice, the limitation of the

procedure ensures from the manipulation of Em×Em matrices. So the method

seems to fail for large square lattices. As a comparison, Pettitt et al. (2003)

compute the normalizing constant for an autologistic model defined on a cylin-

der lattice for which the smallest row or column is not greater than 10. They

suggest to split a large lattice into smaller sublattices along the smallest row or

column. A similar idea could apply here.
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