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Ranking Forests
Stéphan Clémençon, Member, IEEE

Abstract—It is the goal of this paper to examine how the aggregation and feature randomization principles underlying the algorithm

RANDOM FOREST [1], originally proposed in the classification/regression setup, can be adapted to bipartite ranking, in order to increase

the performance of scoring rules produced by the TREERANK algorithm [2], a recently developed tree induction method, specifically

tailored for this global learning problem. Since TREERANK may be viewed as a recursive implementation of a cost-sensitive version of

the popular classification algorithm CART [3], with a cost locally depending on the data lying within the node to split, various strategies

can be considered for ”randomizing” the features involved in the tree growing stage. In parallel, several ways of combining/averaging

ranking trees may be used, including techniques inspired from rank aggregation methods recently popularized in Web applications.

Ranking procedures based on such approaches are called RANKING FORESTS. Beyond preliminary theoretical background, results of

experiments based on simulated data are provided in order to give evidence of their statistical performance.

Index Terms—Bipartite Ranking, data with binary labels, ROC optimization, AUC criterion, tree-based ranking rules, bootstrap,

bagging, rank aggregation, median procedure, feature randomization.

✦

1 INTRODUCTION

IN the context of classification/regression, the method
called RANDOM FORESTS and introduced in [1] has led

to considerable improvements in terms of prediction per-
formance. As highlighted by various empirical studies
(see [4], [5] for instance), RANDOM FOREST has emerged
as a serious competitor to ADABOOST and is considered
as one of the best off-the shelf classification/regression
techniques. Our purpose is here to examine how the
principles underlying RANDOM FOREST, feature ran-
domization and bootstrap aggregation namely, can be
applied in the bipartite ranking setup.

In many applications involving input data X in a
space X ⊂ Rq, q ≥ 1, assigned to a binary label
information Y ∈ {−1,+1}, the goal is to order/rank the
instances x ∈ X by order of magnitude of the posterior
distribution P{Y = +1 | X = x}, rather than simply
classifying them as positive or negative. This task is
known as bipartite ranking. From a practical perspective,
orderings are generally derived from a scoring function
s : X → R, transporting the natural order on the real
line onto X , and their accuracy is evaluated through
ROC analysis, see [6]. For this reason, the global learning
problem that consists in building an accurate ordering
from a sample of independent copies of the pair (X, Y )
is also called nonparametric scoring, sometimes. Though
easy to formulate, it covers a wide variety of applica-
tions: medical diagnosis, anomaly detection, design of
search engines, credit-scoring, etc.

In spite of its ubiquitousness, nonparametric scoring
is in general considered from the plug-in angle: this
approach, confronted with the curse of dimensionality,
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consists in inferring the posterior probability from sam-
pling data and using then the resulting estimate as a
scoring function. In recent years, nonparametric scoring
has been the subject of a good deal of attention in
the machine-learning literature, with the aim to extend
the Empirical Risk Minimization approach to the bipartite
ranking setup mainly, see [7], [8], [9], [10] for instance.
From a computational perspective, apart from the plug-
in approach, the vast majority of learning techniques
used for building scoring functions rests on combining
classifiers (i.e. binary scoring functions), see [11], [12],
[13]. However, significant advances have recently been
made with the development of the TREERANK algorithm
[14], a tree induction method specifically tailored for
bipartite ranking. In [2], generalization bounds in the
ROC space equipped with the sup-norm have been estab-
lished for the ROC curve of the tree-structured scoring
rule output by TREERANK under mild conditions and
practical issues related to the splitting procedure, as well
as the pruning stage, involved in the ranking algorithm
are dealt with in [15].

In the same way RANDOM FOREST makes use of
classification trees to drastically reduce misclassification
error, we shall examine throughout this paper how to
combine feature randomization and bootstrap aggrega-
tion techniques based on the ranking trees produced by
the TREERANK algorithm in order to increase ranking
performance. In constrast to the classification/regression
setup, the question of aggregating predictions is far from
trivial in the ranking framework. The rank aggregation
issue, originally introduced in social choice theory (see
[16] and the references therein) and recently ”rediscov-
ered” in the context of Web applications [17], can be
addressed in a variety of ways, including metric-based
consensus methods, which the approach we develop here
pertains to. In addition, feature randomization can be
incorporated at two different levels here: at each node of



JOURNAL OF LATEX CLASS FILES 2

the ranking tree and/or at all nodes of the cost-sensitive
classification trees describing the splits of the ranking
tree leaves. In this paper, beyond the description of a
novel ranking methodology, RANKING FOREST, using
bagging and random selection of features, some theoreti-
cal foundations for rank aggregation in connection with
AUC optimization are given, together with simulation
results, illustrating how the present approach simulta-
neously enhances stability and ranking accuracy.

The article is structured as follows. Section 2 sets out
the notations and shortly describes the crucial notions
required to rigorously formulate the bipartite ranking
problem. The concept of ranking tree and the TREERANK

algorithm, which form the base for the present work,
are also briefly reviewed. Section 3 investigates how to
extend use of the key ingredients of RANDOM FOREST

in order to produce an ensemble of ranking trees, which
we call a ”ranking forest” and combine them so as to
improve on the performance of single ranking trees in
regards to the standard AUC criterion. Statistical results
guaranteeing the validity of the RANKING FOREST ap-
proach are stated in Section 4. In order to explore its
performance from an empirical angle, Section 5 presents
numerical results based on simulated data. Finally, some
concluding remarks are collected in Section 6. Technical
details and proofs are deferred to the Appendix.

2 BACKGROUND AND PRELIMINARIES

This section first briefly reviews basic concepts related
to bipartite ranking, paying special attention to ROC
analysis, a popular way of evaluating the capacity of a
given scoring rule to discriminate between two popula-
tions [6]. Since our interest here focuses on ranking rules
defined through a combination of tree-structured scoring
functions, we precisely define the notion of tree-based
ranking rule and recall the heuristics behind the TREER-
ANK algorithm proposed in [2], [14], a recent recursive
partitioning method, specifically designed for ROC op-
timization and maximizing thus the AUC criterion, the
gold standard for summarizing ranking performance in
most applications.

2.1 Bipartite Ranking

The probabilistic setup is exactly the same as the one in
standard binary classification. The random variable Y is
a binary label, valued in {−1,+1} say, while the random
vector X = (X(1), . . . , X(q)) models some multivariate
observation for predicting Y , taking its values in a high-
dimensional space X ⊂ Rq, q ≥ 1. The probability mea-
sure on the underlying space is entirely described by the
pair (µ, η), where µ denotes X’s marginal distribution
and η(x) = P{Y = +1 | X = x}, x ∈ X , the posterior
probability. Alternatively, it is entirely determined by
the triplet (G, H, p) where G (respectively, H) is X’s
conditional distribution given Y = +1 (respectively,
given Y = −1) and p = P{Y = +1}.

An informal way of considering the ranking task is as
follows. The goal is to learn from the observation of a
sample of independent copies of the pair (X, Y ) how to
order/rank novel data X1, . . . , Xm with no knowledge
of their labels, so that positive instances are high on
the resulting list with large probability. Undoubtedly,
the most natural way of defining a total order on the
multidimensional space X is to transport the natural
order on the real line by means of a scoring function,
i.e. a measurable mapping s : X → R. A preorder 4s

on X is then defined by: ∀(x, x′) ∈ X 2, x 4s x′ iff
s(x) ≤ s(x′). We denote by S the set of such functions.
The capacity of a candidate s ∈ S to discriminate be-
tween the positive and negative populations is generally
evaluated by means of its ROC curve (standing for
Receiver Operating Characteristic curve), a widely used
functional performance measure which we recall below
for clarity.

Definition 2.1 (TRUE ROC CURVE) Let s ∈ S. The true
ROC curve of the scoring function s is the ”probability-
probability” plot given by:

t ∈ R 7→ (P {s(X) > t | Y = −1} , P {s(X) > t | Y = 1}) .

By convention, when a jump occurs, the corresponding ex-
tremities of the curve are connected by a line segment, so that
s(x)’s ROC curve can be viewed as the graph of a continuous
mapping α ∈ [0, 1] 7→ ROC(s, α).

We refer to [2] for a detailed list of properties of
ROC curves (see the Appendix section therein). Clearly,
this criterion provides a useful visual tool for assessing
ranking performance: the closer to the left upper corner
of the unit square [0, 1]2 the curve ROC(s, .), the better
the scoring function s. It thus leads to a partial order
on the set of all scoring functions: for all (s1, s2) ∈ S2,
s2 is said more accurate than s1 when ROC(s1, α) ≤
ROC(s2, α) for all α ∈ [0, 1]. By standard Neyman-
Pearson argument, one may classically establish that
the most accurate scoring functions are increasing trans-
forms of the regression function, i.e. the elements of the
set S∗ = {T ◦ η, T : [0, 1] → R strictly increasing}, see
Proposition 4 in [2].

The performance of a candidate s ∈ S is usually
summarized by a scalar quantity, the area under the ROC
curve (AUC in short):

AUC(s) =

∫ 1

α=0

ROC(s, α)dα.

Beyond the fact that it provides a total order on the set S,
the major interest of this criterion lies in its well-known
probabilistic interpretation. Indeed, recall that

AUC(s) = P{s(X1) < s(X2) | (Y1,Y2) = (−1,+1)}

+
1

2
P{s(X1) = s(X2) | (Y1, Y2) = (−1,+1)},

where (X1, Y1) and (X2, Y2) denote two independent
copies of the pair (X,Y ), see Proposition 1 in [15] for
instance.
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The statistical counterparts of ROC(s, .) and AUC(s)
based on sampling data Dn = {(Xi, Yi) : 1 ≤ i ≤ n}
are obtained by replacing the class distributions by their
empirical versions in the definitions. They are denoted

by R̂OC(s, .) and ÂUC(s) in the sequel.

2.2 Tree-structured Scoring Rules

Here we focus on specific piecewise constant scoring
rules, namely those defined by a left-right oriented bi-
nary tree and ”combinations” of the latter (in a sense
that will be specified later). For interpretability’s sake, it
is often desirable in many ranking applications (medical
diagnosis, credit-risk, marketing, etc.) that the population
X of interest be segmented in various strata. In super-
vised classification, one may entirely define a prediction
rule by means of a partition P of the input space X and
a training set Dn = {(Xi, Yi) : 1 ≤ i ≤ n} of i.i.d. copies
of the pair (X,Y ) through a majority voting scheme, i.e.
by assigning to any instance x ∈ X the most frequent
label among the observed examples within the cell C ∈ P
in which x lies. However, in bipartite ranking, as the
nature of the goal pursued is global, the notion of local
majority vote makes no sense. In contrast, the matter
is to rank the cells of the partition with respect to each
other. It is assumed that ties among the ordered cells can
be observed in the subsequent analysis and the usual
MID-RANK convention is adopted. Refer to Appendix A
for a rigorous definition of the notion of ranking in the
case where some elements can possibly be tied. We also
point out that the term partial ranking is often used in
this context, see [18], [19] for instance.

Hence, when restricting the search of candidates to
the collection of piecewise constant scoring rules, the
learning problem boils down here to finding a partition
P = {Ck}1≤k≤K of X , with 1 ≤ K < ∞, together with a
ranking �P of the Ck’s (i.e. a preorder on P), so that the
ROC curve of the scoring function given by

sP,�P
(x) =

K∑

k=1

(K −R�P
(Ck) + 1) · I{x ∈ Ck}

be as close as possible of ROC∗, where R�P
(Ck) denotes

the rank of Ck, 1 ≤ k ≤ K, among all cells of P according
to �P .

In this study, particular attention is paid to specific
piecewise-constant scoring functions, those related to
tree-structured partitions namely. For such a partition, a
ranking of the cells can be simply defined by equipping
the tree with a left-right orientation. In order to describe
how such a ranking tree can be built so as to maximize
AUC, further concepts are required. By a master ranking
tree, here we mean a complete, left-right oriented, rooted
binary tree with depth D ≥ 1. Consider TD such a
ranking tree. At depth d = 0, the entire input space
C0,0 = X forms its root. Every non terminal node (d, k),
with 0 ≤ d < D and 0 ≤ k < 2d, is in correspon-
dence with a subset Cd,k ⊂ X , and has two children,

corresponding each to a piece obtained by splitting Cd,k:
the left sibling Cd+1,2k is related to the leaf (d + 1, 2k),
while the right sibling Cd+1,2k+1 = Cd,k \ Cd+1,2k is
related to the leaf (d + 1, 2k + 1) in the tree structure.
Distinguishing this way the two siblings of a parent node
allows for using any subtree T ⊂ TD as a ranking rule.
A ranking of the terminal cells naturally results from the
left-right orientation of the tree, the top of the list being
represented by the cell in the bottom left corner of the
tree, and is related to the scoring function defined by:
∀x ∈ X ,

sT (x) =
∑

(d,k): terminal node of T

(2D − 2D−dk) · I{x ∈ Cd,k}.

The score value sT (x) can be computed in a top-down
manner, using the underlying ”heap” structure. Starting
from the initial value 2D at the root node, at each
subsequent inner node (d, k), 2D−(d+1) is substracted
to the current value of the score if x moves down to
the right sibling (d + 1, 2k + 1), whereas one leaves the
score unchanged if x moves down to the left sibling. The
procedure is depicted by Fig. 1.

Fig. 1. Ranking tree.

2.3 The TREERANK Algorithm.

Here we briefly review the TREERANK method, on
which the procedure we call RANKING FOREST crucially
relies. One may refer to [2], [15] for further details as
well as rigorous statistical foundations for the algo-
rithm. As for most tree-based techniques, a greedy top-
down recursive partitioning stage based on a training
sample Dn = {(Xi, Yi) : 1 ≤ i ≤ n} is followed
by a pruning procedure, where children of a same
parent node are recursively merged until an estimate
of the AUC performance criterion is maximized. A
package for R statistical software (see http://www.r-
project.com) implementing TREERANK is available at
http://treerank.sourceforge.net, see [20].
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2.3.1 Growing Stage

The goal is here to grow a master ranking tree of large
depth D ≥ 1 with empirical AUC as large as possible.
In order to describe this first stage, we introduce the
following quantities. Let C ⊂ X , consider the empirical
rate of negative (respectively, positive) instances lying in
the region C:

α̂(C) =
1

n

n∑

i=1

I{Xi ∈ C, Yi = −1},

β̂(C) =
1

n

n∑

i=1

I{Xi ∈ C, Yi = +1},

as well as n(C) = n(α̂(C) + β̂(C)) the number of data
falling in C.

One starts from the trivial partition P0 = {X} at root
node (0, 0) (we set C0,0 = X ) and proceeds recursively
as follows. A tree-structured scoring rule s(x) described
by an oriented tree, with outer leaves forming a partition
P of the input space, is refined by splitting a cell C ∈ P
into two subcells: C′ denoting the left child and C′′ =
C \C′ the right one. Let s′(x) be the scoring function thus
obtained. From the perspective of AUC maximization,
one is lead to seek for a subregion C′ maximizing the
gain ∆

ÂUC
(C, C′) in terms of empirical AUC induced by

the split, which may be written as:

ÂUC(s′) − ÂUC(s) =
1

2
{α̂(C)β̂(C′) − β̂(C)α̂(C′)}.

Therefore, taking the rate of positive instances within the
cell C, p̂(C) = α̂(C) ·n/n(C) namely, as cost for the type I
error (i.e. predicting label +1 when Y = −1) and 1− p̂(C)
as cost for the type II error, the quantity 1−∆

ÂUC
(C, C′)

may be viewed as the cost-sensitive empirical misclassifica-
tion error of the classifier C(X) = 2 · I{X ∈ C′} − 1 on
C up to a multiplicative factor, 4p̂(C)(1− p̂(C)) precisely.
Hence, once the local cost p̂(C) is computed, any binary
classification method can be straightforwardly adapted
in order to perform the splitting step. Here, splits are
obtained using empirical-cost sensitive versions of the
standard CART algorithm with axis-parallel splits, this
one-step procedure for AUC maximization being called
LEAFRANK in [15]. As depicted by Fig. 2, the growing
stage appears as a recursive implementation of a cost-
sensitive CART procedure with a cost updated at each
node of the ranking tree, equal to the local rate of
positive instances within the node to split, see Section
3 of [15].

2.3.2 Pruning Stage

The way the master ranking tree TD obtained at the end
of the growing stage is pruned is entirely similar to the
one described in [3], the sole difference lying in the fact
that here, for any λ > 0, one seeks a subtree T ⊂ TD that
maximizes the penalized empirical AUC

ÂUC(sT ) − λ · |T |,

where |T | denotes the number of terminal leaves of
T , the constant being next picked using N -fold cross
validation.

The fact that alternative complexity-based penaliza-
tion procedures, inspired from recent nonparametric
model selection methods and leading to the concept of
structural AUC maximization, can be successfully used
for pruning ranking trees has also been pointed up
in subsection 4.2 of [15]. However, the resampling-
based technique previously mentioned is preferred to
such pruning schemes in practice, insofar as it does
not require, in contrast, to specify any tuning constant.
Following in the footsteps of [21] in the classification
setup, estimation of the ideal penalty through bootstrap
methods could arise as the answer to this issue. This
question is beyond the scope of the present paper but
will soon be tackled.

2.3.3 Some Practical Considerations

Like other types of decision trees, ranking trees (based
on perpendicular splits) have a number of crucial ad-
vantages. Concerning interpretability first, it should be
noticed that they produce ranking rules that can be easily
visualized through the binary tree graphic, see Fig. 2, the
rank/score of an instance x ∈ X being obtained through
checking of a nested combination of simple rules of the
form ”X(k) ≥ t” or ”X(k) < t”. In addition, ranking trees
can adapt straightforwardly to situations where some
data are missing and/or some predictor variables are
categorical and some monitoring tools helping to eval-
uate the relative importance of each predictor variable
X(k) or to depict the partial dependence of the prediction
rule on a subset of input variables are readily available.
These facets are described in section 5 of [15]. From a
computational perspective now, we also underline that
the tree structure makes the computation of consensus
rankings much more tractable, we refer to Appendix B
for further details.

3 RANKING FOREST

In this section, we introduce most of the ingredients
required for subsequent description of the RANKING

FOREST algorithm. We investigate how to adapt the
ideas grounding RANDOM FOREST, bagging and random
selection of features, in order to grow and combine an
ensemble of ranking trees so as to improve upon the
accuracy of single ranking trees.

3.1 Feature Randomization in TREERANK

Whereas the concept of bootstrap aggregating technique
had already been introduced in [22], the major novelty
in the RANDOM FOREST method consists in randomizing
the features used for recursively splitting the nodes
of the classification/regression trees involved in the
committee-based prediction procedure. As recalled in
subsection 2.3, the left and right siblings of the ranking
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Ranking tree output by TreeRank

Node split output by LeafRank

Fig. 2. THE TREERANK ALGORITHM AS A RECURSIVE

IMPLEMENTATION OF COST-SENSITIVE CART.

tree nodes are themselves obtained through classification
trees. We thus propose two possible feature randomiza-
tion schemes for TREERANK.

FR1: At each node (d, k) of the master ranking tree TD, draw
at random a set of q0 ≤ q indexes {i1, . . . , iq0

} ⊂
{1, . . . , q}. Implement the LEAFRANK splitting proce-
dure based on the descriptor (Xi1 , . . . , Xiq0

) to split the
cell Cd,k.

FR2: For each node (d, k) of the master ranking tree TD, at
each node of the cost-sensitive classification tree describ-
ing the split of the cell Cd,k into two children, draw
at random a set of q1 ≤ q indexes {j1, . . . , jq1

} ⊂
{1, . . . , q} and perform an axis-parallel cut using the
descriptor (Xj1 , . . . , Xjq1

).

We underline that, of course, these randomization
methods do not exclude each other. At each node (d, k)
of the ranking tree, one may first draw at random a
collection Fd,k of q0 features and then, when growing the
cost-sensitive classification tree describing Cd,k’s split,
divide each node based on a sub-collection of q1 ≤ q0

features drawn at random among Fd,k.

3.2 Aggregation of Ranking Trees

In recent years, the issue of summarizing/aggregating
various rankings has been the subject of a good deal of
attention in the machine-learning literature, mainly mo-
tivated by practical problems in the Web context: design
of meta-search engines, collaborative filtering, spam-
fighting, etc. Refer to [17], [23], [24], [25] for instance.
Such problems have lead to a variety of results, ranging

from the generalization of the mathematical concepts
introduced in social choice theory (see [16] and the refer-
ences therein) for defining relevant notions of consensus
between rankings [19], to the development of efficient
procedures for computing such ”consensus rankings”
[26], [27], [28], through the study of probabilistic models
over sets of rankings [29], [30]. Here we revisit the rank
aggregation issue with a view to extend the bagging
approach to ranking trees. In order to formulate our
answer to this problem, further definitions and notations
are required.

Given two partitions P and P ′ of the feature space X ,
we will say that P ′ is a subpartition of P , and then denote
P ′ ⊂ P , when any nonempty cell C ∈ P can be obtained
as union of cells of P ′.

Suppose now that we dispose of an ensemble of B ≥ 1
ranking trees T1, . . . , TB . Each ranking tree Tb, 1 ≤ b ≤ B,
is associated to a partition Pb and a ranking �b of its
cells. We consider the partition P∗

B made of nonempty
subsets C ⊂ X satisfying the two constraints:

(i) there exists (C1, . . . , CB) ∈ P1 × · · · × PB such that:

C =
B⋂

b=1

Cb,

(ii) for all nonempty subset C′ belonging to some parti-
tion Pb, b ∈ {1, . . . , B}: if C′ ⊂ C, then C′ = C.

One may easily see that P∗
B is a subpartition of all the

Pb’s, and the largest one in the sense that any partition P
such that P ⊂ Pb for all b ∈ {1, . . . , B} is a subpartition of
P∗

B . We denote P∗
B =

⋂
b≤B Pb. Incidentally, it should be

noticed that, from a computational perspective, the un-
derlying tree structures considerably help getting P∗

B ’s
cells explicitely, refer to Appendix B for further details.

Each ranking tree Tb naturally induces a ranking (or a
preorder) �∗

b on the partition P∗
B : precisely, for all (C, C′) ∈

P∗2
B , one write by definition C �∗

b C′ (respectively, C ≺∗
b

C′) iff Cb �∗
b C′

b (respectively, Cb ≺∗
b C′

b) where (Cb, C′
b) ∈

P2
b are such that C × C′ ⊂ Cb × Cb. We denote by R∗

b(C)
the rank of the cell C ∈ P∗

B as defined by �∗
b , for b =

1, . . . , B.

Now, based on this family of B rankings on P∗
B , called

a profile in voting theory, we would like to define a
”central ranking” or a consensus. Whereas the mean or
the median naturally provides such a summary when
considering scalar data, various meanings can be given
to this notion for rankings. It is precisely the purpose of
this subsection to review possible ways of aggregating
a finite collection of rankings on a same set of finite
cardinality.

3.2.1 Agreement between rankings

The most widely used approach to the rank aggregation is-
sue relies on the concept of measure of agreement between
rankings or (pseudo-) metrics equivalently, depending on
whether one chooses to measure similarity or dissimi-
larity. Since the seminal contribution of [31], numerous
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ways of measuring agreement have been proposed in
the literature. Here we review three popular choices,
originally introduced in the context of nonparametric
statistical testing; see [24] for instance.

Let � and �′ be two rankings on a finite set Z =
{z1, . . . , zK}.

Kendall τ . Consider the quantity dτ (�,�′), obtained by
summing up all the terms

Ui,j(�,�′) = I{(R�(zi)−R�(zj))(R�′(zi)−R�′(zj)) < 0}

+
1

2
I{R�(zi) = s�(zj), R�′(zi) 6= R�′(zj)}

+
1

2
I{R�′(zi) = R�′(zj), R�(zi) 6= R�(zj)}

over all pairs (zi, zj) such that 1 ≤ i < j ≤ K. It counts,
among the K(K − 1) pairs of Z’s elements, how many
are ”discording”, assigning the weight 1/2 when two
elements are tied in one ranking but not in the other. The
Kendall τ is obtained by renormalizing this distance:

τ(�,�′) = 1 − 4

K(K − 1)
dτ (�,�′). (1)

Large values of τ(�,�′) indicate agreement (or similar-
ity) between � and �′: it ranges from −1 (full disagree-
ment) to 1 (full agreement). It is worth noticing that it
can be computed in O((K log K)/ log log K) time, refer
to [32].

Spearman footrule. Another natural distance between
rankings is defined by considering the l1-metric between
the corresponding rank vectors:

d1(�, �′) =

K∑

i=1

|R�(zi) −R�′(zi)|.

The affine transformation given by

F (�,�′) = 1 − 3

K2 − 1
d1(�, �′). (2)

is known as the Spearman footrule measure of agree-
ment and takes its values in [−1,+1].

Spearman rank-order correlation. Considering instead
the l2-metric

d2(�, �′) =

K∑

i=1

(R�(zi) −R�′(zi))
2

leads to the Spearman ρ coefficient:

ρ(�1,�2) = 1 − 6

K(K2 − 1)
d2(�, �′). (3)

Remark 1 (EQUIVALENCE.) It should be noticed that these
three measures of agreement are equivalent in the sense that:

c1 (1 − ρ(., .)) ≤ (1 − F (., .))
2 ≤ c2 (1 − ρ(., .)) ,

c3 (1 − τ(., .)) ≤ 1 − F (., .) ≤ c4 (1 − τ(., .)) ,

with c2 = K2/(2(K2 − 1)) = Kc1 and c4 = 3K/(2(K +
1)) = 2c3; see Theorem 13 in [19].

We point out that many fashions of measuring agree-
ment or distance between rankings have been considered
in the literature, see [33]. Well-known alternatives to
the measures recalled above are the Cayley/Kemeny
distance [31] and variants for top k-lists [19], in order to
focus on the ”best instances” [34]. Many other distances
between rankings could naturally be deduced through
suitable extensions of word metrics on the symmetric
groups on finite sets, see [35] or [36].

3.2.2 Probabilistic measures of scoring agreement

Now the concept of (pseudo-) metric for rankings on a
finite set has been recalled, it is easy to relate it to a
notion of dissimilarity between preorders on a general
space X , when the latter are induced by piecewise con-
stant scoring functions. Consider two scoring functions
s1 and s2, defining preorders 4s1

and 4s2
on X , both

constant on each cell of a partition P = {Ck}1≤k≤K . They
also naturally define rankings �s1

and �s2
on the finite

set P : ∀(k, l) ∈ {1, . . . , K}, Ck �si
Cl iff ∃(x, x′) ∈ Ck ×Cl

such that si(x) ≤ si(x
′) for i = 1, 2. Given a pseudo-

metric d on the set of rankings of P’s elements, one may
thus quantify the disagreement between the preorders
they induce on X by:

d̃(4s1
,4s2

)
def
= d(�s1

,�s2
).

As we shall see now, in some specific situations, this
may lead to measures of closeness between 4s1

and
4s2

, that can be alternately defined with absolutely no
reference to the partition P , by contrast with the expres-
sion d(�s1

,�s2
). As mentioned above, most widely used

measures of agreement between rankings arise from the
field of nonparametric statistics and the quantities de-
fined above have well-known probabilistic counterparts.
In this regard, recall that the theoretical Kendall τ related
to two random variables (Z1, Z2) defined on the same
probability space is τ̃(Z1, Z2) = 1 − 2dτ̃ (Z1, Z2), with:

dτ̃ (Z1, Z2) = P{(Z1 − Z ′
1) · (Z2 − Z ′

2) < 0}

+
1

2
P{Z1 = Z ′

1, Z2 6= Z ′
2}

+
1

2
P{Z1 6= Z ′

1, Z2 = Z ′
2}.

where (Z ′
1, Z

′
2) is an independent copy of the pair

(Z1, Z2). Notice, incidentally, that the Kendall τ for the
pair (s(X), Y ) is related to AUC(s) through:

1

2
(1 − τ̃(s(X), Y )) = 2p(1 − p) (1 − AUC(s))

+
1

2
P{s(X) 6= s(X ′), Y = Y ′}.

Hence, a natural way of measuring the similarity be-
tween the preorders on X induced by the scoring func-
tions s1 and s2 is to consider the probabilistic quantity
τX(4s1

,4s2
) = τ̃(s1(X), s2(X)), or, equivalently, the

probability that s1 and s2 rank two independent copies
X and X ′ in the same order. We also set dτX

(4s1
,4s2

) =
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dτ̃ (s1(X), s2(X)). The next result reveals the connection
between this quantity and a specific notion of agreement
between the rankings �s1

and �s2
they induce on P . The

proof is straightforward and thus omitted.

Lemma 3.1 Let (s1, s2) ∈ S2, we have:

dτX
(4s1

,4s2
) = 2

∑

1≤k<l≤K

µ(Ck)µ(Cl) · Uk,l(�s1
,�s2

).

(4)

Hence, τX(4s1
,4s2

) may be viewed as a ”weighted
version” of the rate of concording pairs measured by
τ(�s1

,�s2
). Notice that, when all cells have the same

weight with respect to µ, i.e. when ∀(k, l) ∈ {1, . . . , K}2,
µ(Ck) = µ(Cl) = 1/K, we have dτX

(4s1
,4s2

) = 2dτ (�s1

,�s2
)/K2. In order to avoid confusion, we shall use the

term ”probabilistic Kendall τ” to refer to the quantity
τX(4s1

,4s2
).

The following proposition shows that the AUC devia-
tion between two scoring functions is controlled by the
related probabilistic Kendall tau in a very simple fashion.
It is essentially for this reason that the Kendall τ criterion
plays a large part in the theoretical analysis carried out
in Section 4.

Proposition 3.2 (AUC AND KENDALL τ ) Let p = P{Y =
+1} ∈ (0, 1). For any scoring functions s1 and s2 on X , we
have:

|AUC(s1) − AUC(s2)| ≤
1 − τX(4s1 ,4s2)

4p(1 − p)
.

We point out that it is generally vain to look for a
reverse control: indeed, scoring functions yielding differ-
ent rankings may have exactly the same AUC. However,
the following result guarantees that a scoring function
with a nearly optimal AUC is close to optimal scor-
ing functions in Kendall sense, under the additional
assumption that the noise condition introduced in [37]
is fulfilled.

Proposition 3.3 (AUC AND KENDALL τ (BIS)) Assume
that the r.v. η(X) is continuous and there exists ǫ ∈ (0, 1/2)
such that ǫ ≤ η(X) ≤ 1 − ǫ with probability one. Suppose
also that there exist c < ∞ and a ∈ (0, 1) such that

∀x ∈ X , E
[
|η(X) − η(x)|−a

]
≤ c. (5)

Then, we have for all (s, s∗) ∈ S × S∗,

1 − τX(4s∗ ,4s) ≤ C · (AUC∗ − AUC(s))
a/(1+a)

,

with C = 2 · max{c1/(1+a), p(1 − p)/ǫ2}.

Remark 2 (ON THE NOISE CONDITION.) Recall that condi-
tion (5) is rather weak. Indeed, it is fulfilled for any a ∈ (0, 1)
as soon η(X)’s density is bounded, see Corollary 8 in [37].
Notice in addition that the condition related on η(X)’s range
means that the likelihood ratio of the class distributions
φ(X) = dG/dH(X) is bounded and bounded away from zero,
recall indeed that φ(X) = ((1 − p)/p) · (η(X)/(1 − η(X))),
or, equivalently, that the slope of the tangent of the optimal

ROC curve at the origin is not infinite and that at the opposite
vertex (1, 1) of the unit square is non zero ; see [38].

A statistical version of τX(4s1
,4s2

) is obtained by
replacing the µ(Ck)’s by their empirical counterparts in
Eq. (4). It may be classically expressed as

τ̂X(4s1
,4s2

) = 1 − 2d̂τX
(4s1

,4s2
), (6)

where d̂τX
(4s1

,4s2
) = 2/(n(n − 1))

∑
i<j K(Xi, Xj) is a

U -statistic of degree 2 with symmetric kernel given by:

K(x, x′) = I{(s1(x) − s1(x
′)) · (s2(x) − s2(x

′)) < 0}

+
1

2
I{s1(x) = s1(x

′), s2(x) 6= s2(x
′)}

+
1

2
I{s1(x) 6= s1(x

′), s2(x) = s2(x
′)}.

Alternately, one could measure the dissimilarity be-
tween 4s1

and 4s2
by considering the theoretical Spear-

man correlation coefficient, ρ̃(s1(X), s2(X)), that is the
linear correlation coefficient between the r.v.’s Fs1

(s1(X))
and Fs2

(s2(X)), where Fsi
denotes the cdf of si(X),

i ∈ {1, 2}. Based on a sample (X1, . . . , Xn) of i.i.d.
copies of the r.v. X , the empirical counterpart is the
empirical linear correlation between the rank vectors
of (s1(X1), . . . , s1(Xn)) and (s2(X1), . . . , s2(Xn))
respectively. Notice that, when s1 and s2 are constants
on the cells of a partition P = {Ck}1≤k≤K such that
µ(Ck) = 1/K for 1 ≤ k ≤ K, we have ρ̃(s1(X), s2(X)) =
ρ(�s1

,�s2
).

3.2.3 Median Rankings

The method for aggregating rankings we consider here
relies on the so-termed median procedure, which belongs
to the family of metric aggregation procedures, see [16] for
further details. Let d(., .) be some metric or dissimilarity
measure on the set of rankings on a finite set Z . By
definition, a median ranking among a profile Π = {�k:
1 ≤ k ≤ K} with respect to d is any ranking �med on Z
that minimizes the sum dΠ(�)

def
=

∑K
k=1 d(�,�k) over

the set R(Z) of all rankings � on Z :

dΠ(�med) = min
�: ranking on Z

dΠ(�). (7)

Notice that, when Z is of cardinality N < ∞, there are

#R(Z) =
N∑

k=1

(−1)k
k∑

m=1

(−1)m

(
k
m

)
mN

possible rankings on Z1 and in most cases, the com-
putation of (metric) median rankings leads to solve
NP-hard combinatorial optimization problems, see [39],
[40], [41] and the references therein. From a practical
perspective, acceptably good solutions can be computed
in a reasonable amount of time by means of (probabilis-
tic) metaheuristics such as simulated annealing, genetic

1. Let 1 ≤ k ≤ N . We recall that the number of surjective mappings

from {1, . . . , N} to {1, . . . , k} is (−1)k
∑

k

m=0
(−1)m

(
k

m

)
mN .
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algorithms or tabu search; see [42]. Refer to [43], [44] for
instance.

When it comes to preorders on a set X of infinite
cardinality, defining a notion of aggregation becomes
harder. Given a pseudo-metric such as dτ̃ (., .) for in-
stance and K ≥ 1 scoring functions s1, . . . , sK on
X , the existence of s̄ in S such that

∑K
k=1 dτ̃ (s̄, sk) =

mins∈S

∑K
k=1 dτ̃ (s, sk) is by no means guaranteed in

general. However, when considering scoring functions
that are constant on each cell of a given finite partition
P of X , the corresponding preorders are in one-to-one
correspondence with rankings on P and the minimum
distance is thus effectively attained, by a median scoring
function that is also constant on P’s cells.

Remark 3 (THE ORDINAL APPROACH.) We point out that
metric aggregation procedures are not the sole way to summa-
rize a profile of rankings. The so-termed ”ordinal approach”
provides a variety of alternative techniques for combining
rankings (or, more generally, preferences), returning to the
famous ”Arrow’s voting paradox” and consisting of a series
of duels (i.e. pairwise comparisons) as in Condorcet’s methods
or successive tournaments as in the well-known proportional
voting Hare system, see [45]. Such approaches have recently
been the subject of a good deal of attention in the context
of preference learning (”Ranking by Pairwise Comparison”
methods); see [46] for instance.

Remark 4 (ON UNIQUENESS.) It is worth noticing that a
median ranking is far from being unique in general. One may
immediately check for instance that any ranking among the
profile made of all rankings on Z = {1, 2} is a median in
Kendall sense, i.e. for the metric dτ .

3.2.4 Aggregation: Ranks vs. Rankings

Let s1, . . . , sK be K ≥ 1 base piecewise constant scoring
functions and X

(n) = {X1, . . . , Xn} a collection of n ≥
1 i.i.d. copies of the input variable X . When it comes
to rank the Xi’s ”consensually”, two strategies can be
considered:

1) compute a ”median ranking rule” based on the K
rankings of the largest subpartition’s cells and use it for
ranking the new data as previously described,

2) alternatively, compute, for each scoring rule sk, the
related rank vector of (X1, . . . , Xn) or, in other words,
the ranking induced by sk on the set X

(n), and then a
”median rank vector”, i.e. a median ranking on the set
X

(n) (data lying in a same cell of the largest subpartition
being tied).

Although they are not equivalent, these two methods
generally produce similar results, especially when n is
large. Indeed, considering probabilistic Kendall τ medi-
ans for instance, it is sufficient to notice that the Kendall
τ distance dτ between rankings on X

(n) induced by two
piecewise constant scoring functions s and s′ can be
viewed as an empirical estimate of dτX

(4s,4s′) based

on the dataset X
(n). Therefore, the median computation

approach 1) relies on analogous quantities except they
are not based on the data to be ranked but on the training
dataset. However, when both the size of the training
sample and that of the dataset X

(n) are large, the two
approaches lead to optimize close quantities, except that,
in case 1), optimization is performed over rankings of
the largest subpartition’s cells, while in case 2), rankings
on X

(n), such that data belonging to a same cell of the
largest subpartition are tied, are considered.

3.3 The Algorithm

Now that the rationale behind the RANKING FOREST

procedure has been given, we recapitulate its succes-
sive steps in detail. Based on a training sample D =
{(X1, Y1), . . . , (Xn, Yn)}, the algorithm is performed in
three stages, as follows.

RANKING FOREST

1) Parameters. B number of bootstrap replicates,
n∗ bootstrap sample size, TREERANK tuning
parameters (depth D and presence/absence of
pruning) FR feature randomization strategy,
d pseudo-metric.

2) Bootstrap profile makeup.

a) (RESAMPLING STEP.) Build B indepen-
dent bootstrap samples D∗

1 , . . . , D∗
B , by

drawing with replacement n∗ × B pairs
among the original training sample D.

b) (RANDOMIZED TREERANK.) For b =
1, . . . , B, run TREERANK combined with
the feature randomization method FR
based on the sample D∗

b , yielding the
ranking tree T ∗

b , related to the partition
P∗

b of the space X .

3) Aggregation. Compute the largest subparti-
tion partition P∗ =

⋂B
b=1 P∗

b . Let �∗
b be the

ranking of P∗’s cells induced by T ∗
b , b =

1, . . . , B. Compute a median ranking �∗

related to the bootstrap profile Π∗ = {�∗
b : 1 ≤

b ≤ B} with respect to the metric d on R(P∗):

�∗= arg min
�∈R(P∗)

dΠ∗(�),

as well as the scoring function s�∗,P∗ (x).

Before setting theoretical grounds for use of the RANK-
ING FOREST method, a few remarks are in order.

Remark 5 (ON TUNING PARAMETERS.) As mentioned in
3.2.3, aggregating ranking rules is computationally expensive.
The empirical results displayed in Section 5 suggest to aggre-
gate several dozens of randomized ranking trees of moderate or
even small depth built from bootstrap samples of size n∗ ≤ n.
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Remark 6 (”PLUG-IN” BAGGING.) As pointed out in [2]
(see Remark 6 therein), given an ordered partition (P,RP)
of the feature space X , a ”plug-in” estimate of the (optimal
scoring) function S = Hη ◦ η can be automatically deduced
from any ordered partition (or piecewise constant scoring
function equivalently) and the data D, where Hη denotes the
conditional cdf of η(X) given Y = −1. This scoring function
is somehow canonical in the sense that, given Y = −1,
H(X) is distributed as a uniform r.v. on [0, 1]. Considering a
partition P = {Ck}1≤k≤K equipped with a ranking RP , the
plug-in estimate is given by

ŜP,RP
(x) =

K∑

k=1

α̂(Rk) · I{x ∈ Ck}, x ∈ X , (8)

where Rk =
⋃

l: R(k)≤R(l) Cl. Notice that, as a scoring func-

tion, ŜP,RP
and yields the same ranking as sP,RP

, provided
that α̂(Ck) > 0 for all k = 1, . . . , K. Adapting the idea
proposed in subsection 6.1 of [22] in the classification context,
an alternative to the rank aggregation approach proposed here
naturally consists in computing the average of the piecewise-
constant scoring functions S̃∗

T ∗
b

thus defined by the bootstrap

ranking trees and consider the rankings induced by the latter.
This method we call ”plug-in bagging” is however less effec-
tive in many situations, due to the inaccuracy/variability of
the probability estimates involved.

Ranking stability. Let Θ = X × {−1,+1}. From the
view developed in this paper, a ranking algorithm is a
function S that maps any data sample D ∈ Θn, n ≥ 1, to
a scoring function SD. In the ranking context, we will say
that a learning algorithm is ”stable” when the preorder
on X it outputs is not much affected by small changes in
the training set. We propose a natural way of measuring
ranking stability, through the computation of

Stabn(S) = E
[
dτX

(
4SD

,4SD′

)]
, (9)

where the expectation is taken over two independent
training samples D and D′, both made of n i.i.d. copies of
the pair (X, Y ). We highlight the fact that the bootstrap
stage of RANKING FOREST can be used for assessing
the stability of the base ranking algorithm: indeed, the
quantity

Ŝtabn(S) =
2

B(B − 1)

∑

1≤b<b′≤B

d̂τX

(
4SD∗

b

,4SD∗
b′

)
,

can be possibly interpreted as a bootstrap estimate of (9).

We finally underline that the outputs of the RANKING

FOREST can also be used for monitoring ranking perfor-
mance, in an analogous fashion to RANDOM FOREST in
the classification/regression context, see subsection 3.1
in [1] and the references therein. An out-of-bag estimate
of the AUC criterion can be obtained by considering,
for all pairs (X, Y ) and (X ′, Y ′) in the original training
sample, those ranking trees that are built from bootstrap
samples containing neither of them, avoiding this way
the use of a test dataset.

4 SOME THEORETICAL BACKGROUND

The purpose of this section is to set preliminary statistical
grounds for the aggregation procedure in the ranking
context. Precisely, following in the footsteps of [47], from
which some of the notations are borrowed, we study the
AUC consistency of scoring rules that are obtained as a
median over a profile of consistent randomized scoring
functions for the (probabilistic) Kendall τ distance. Here,
a randomized scoring function is of the form SDn

(., Z),
where Dn = {(X1, Y1), . . . , (Xn, Yn)} denotes the
training sample and Z a random variable taking its
values in some measurable space Z that describes the
randomization mechanism.

Suppose that a randomized scoring function
SDn

(., Z) is given and consider its generalization
AUC, AUC(SDn

(.,Z)) namely, which is given by:

P{SDn
(X, Z) < SDn

(X ′, Z) | (Y, Y ′) = (−1,+1)}

+
1

2
P{SDn

(X, Z) = SDn
(X ′, Z) | (Y, Y ′) = (−1,+1)},

where the conditional probabilities are taken over inde-
pendent copies (X, Y ) and (X, Y ′), independent from the
training data Dn. It is said AUC-consistent (respectively,
strongly AUC-consistent), when the convergence

AUC(SDn
(.,Z)) → AUC∗ as n → ∞,

holds in probability (respectively, almost-surely), where
AUC∗ = AUC(s∗) for s∗ ∈ S∗ denotes the maximum
AUC. Let m ≥ 1. Conditioned upon Dn, one may draw
m i.i.d. copies Z1, . . . , Zm of Z, yielding the collection
Σm of scoring functions SDn

(., Zj), 1 ≤ j ≤ m. Let S0 ⊂
S be a collection of scoring functions and suppose that
S̄m(., Z(m)) is a median scoring function with respect to
S0, in the sense that:

∆Σm
(S̄m(., Z(m))) = min

s∈S0

∆Σm
(s),

where ∆Σm
(s) =

∑m
j=1 dτX

(4s,4SDn (.,Zj)) for s ∈ S.

The next result shows that, whenever it exists, AUC
consistency is preserved for such a median ranking rule
(a look at the proof given in Appendix C.3 shows that
the convergence rate is also preserved).

Theorem 4.1 (AUC-CONSISTENCY AND AGGREGATION.)
Assume that assumptions of Proposition 3.3 are fulfilled.
Suppose that the randomized scoring function SDn

(., Z) is
AUC-consistent (respectively, strongly AUC-consistent). Let
S0 ⊂ S such that S∗ ∩ S0 6= ∅ and m ≥ 1. Suppose
that, for all n ≥ 1, there exists a median S̄m ∈ S0 of m
independent replications of the randomized scoring function
given Dn, in Kendall sense with respect to S0. Then, the
aggregated scoring rule S̄m is AUC-consistent (respectively,
strongly AUC-consistent).

From a practical perspective, median computation is
based on empirical versions of the probabilistic Kendall
τ ’s involved, see Eq. (6). The following result reveals that
this leads to scoring functions that are asymptotically
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median with respect to dτX
, provided that the class S0

over which the median is computed is not too complex.

Theorem 4.2 (EMPIRICAL MEDIAN COMPUTATION.) Let
Σ = {S1, . . . , SK} be a collection of K ≥ 1 scoring
functions and S0 ⊂ S a class of scoring functions with finite
VC dimension. For any s ∈ S, define

∆̂N (s) =

K∑

k=1

d̂τX
(4s,4SK

),

where the estimate τ̂X(., .) of τX(., .) is based on N ≥ 1
independent copies of the r.v. X . Suppose that ˆ̄sN ∈ S is
such that ∆̂N (ˆ̄sN ) = mins∈S0

∆̂N (s). Then, as N → ∞, we
have

∆Σ(ˆ̄sN ) → min
s∈S0

∆Σ(s) with probability one,

where ∆Σ(s) =
∑K

k=1 dτX
(4s,4Sk

). In addition, this con-
vergence takes place at the rate OP(n−1/2).

Combining the two preceding theorems, we finally
obtain the following corollary.

Corollary 4.3 Suppose that assumptions of Theorem 4.1 are
fulfilled. Let S0 ⊂ S be of finite VC dimension and as-
sume that the AUC-consistent randomized scoring function
SDn

(., Z) belongs to S0. Let m ≥ 1 and suppose in addition
that, for all n ≥ 1, there exist median scoring rules S̄m and
ˆ̄
Sm in S0 of m independent replications of the randomized
scoring function given the training sample Dn, with respect
to the probabilistic Kendall τ distance and its empirical version

respectively. Then, the empirical aggregated scoring rule ˆ̄
Sm is

AUC-consistent as n tends to ∞. Additionally, if SDn
(., Z)’s

convergence rate is of order OP(vn) with vn ց 0, that of ˆ̄
Sm

is of order OP(sup{vn, 1/
√

n}).
Naturally, the results stated above straightforwardly

extend to any median based on a dissimilarity mea-
sure d (on the set of preorders on S) equivalent to
dτX

, i.e. such that c1dτX
(., .) ≤ d(., .) ≤ c2dτX

(., .) for
0 < c1 ≤ c2 < ∞. Notice additionally that more
general complexity assumptions about the class S0 over
which optimization is performed could be considered,
following in the footsteps of the results established in
[37]. The finite VC dimension case is however enough
when considering ranking trees with a given maximum
depth and based on a LEAFRANK procedure with a fixed
maximum number of perpendicular splits for instance,
see subsection 4.2 in [15].

5 NUMERICAL EXPERIMENTS

Various simulation studies have been carried out, pro-
viding considerable empirical evidence of the effec-
tiveness of the approach proposed in this paper. It is
the purpose of this section to describe some of the
experimental results obtained, demonstrating how the
RANKING FOREST method improves upon single ranking
trees produced by the TREERANK algorithm in these
situations.

Three examples are considered here, called RF 10, RF
20 and RF 10 sparse. Datasets RF 10 and RF 20 have
been generated using two Gaussian class distributions
H(dx) and G(dx), on R10 and R20 respectively. For
RF 10, both distributions have the same means (µ+ =
µ− = 0) but different covariance matrices Σ+ = Id10

and Σ− = 1.023 · Id10, while in case RF 20, the class
distributions have different means (||µ+ − µ−|| = 0.9)
and covariance matrices, Σ+ = Id20 and Σ− = 1.23·Id20,
both at the same time. In the third situation, RF 10 sparse
namely, G(dx) and H(dx) are still Gaussian probability
distributions but have a 6-d marginal in common, the
regression function η(x) depending on four components
of the input vector X only. In each situation, an estimate
of the optimal ROC curve using a test set of size 3000
has been plotted in red line, see graphs a., b. and c. in
Fig. 5.

In order to quantify the impact of bagging and ran-
dom feature selection on the accuracy/stability of the
resulting ranking rule, in each situation the algorithm
has been run under various configurations (see Table 1)
on 30 independent training samples of size n = 2000 and
the ranking rule thus output have all been evaluated
on a same test sample of size 3000. The first row of
each subtable of Table 1 displays the results obtained
when running the TREERANK algorithm without any
bagging nor feature selection method. The enveloppe in
|| · ||∞ norm based on the related 30 ”test” ROC curves
is displayed in blue dotted line for each example in Fig.
5.

Here, RANKING FOREST has been implemented with
B = 50 bootstrap samples of size 2000 (i.e. equal to
the original sample size). Strategies FR1 and FR2 for
random selection of features have been combined. For
each bootstrap data sample, the TREERANK algorithm
has been run using a fixed number of input components,
selected at random, at each node of the master ranking
tree (indicated by column ”TRK rfs”) and a fixed number
of variables at each node of the subtrees describing
the splits of the master ranking tree, randomly selected
among those chosen at the level of the corresponding
master tree node (indicated by column ”LRK rfs”). Then,
the test data have been ranked using an approximate
(empirical) median scoring rule in Kendall sense, opti-
mization being performed by means of a simulated an-
nealing method (with the ranking of P∗

B ’s cells obtained
by taking the median or mean ranks over the B rankings
as starting point). This procedure has been repeated
for each of the 30 training samples. The corresponding
enveloppes in the ROC space are plotted in Figure 5,
for the configurations (”RF 10”, case 3), (”RF 20”, case
9), and (”RF 10 sparse”, case 3), in dotted red line. In all
examples, the master ranking tree is of maximum depth
10, as well as the ”split subtrees”, except for the ”RF
10 sparse” experiments, where the latter have depth less
than 8.

Results are collected in Table 1. In each situation, the

test AUC of the optimal scoring rule (ÂUC
∗

), the mean
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of the test AUC of the scoring function produced by the
ranking algorithm over the 30 training samples (AUC)

and its standard deviation ( ̂σ(AUC)) have been com-
puted. Additionally, two other indicators of the stability
of the ranking algorithms considered are displayed: Env.
Red. gives the amount of reduction (in percentage) of
the area delineated by the enveloppe in the ROC space
resulting from the RANKING FOREST parametrization
compared with TREERANK, while Stabτ provides an
estimate of the stability indicator (9) based on the prob-
abilistic Kendall τ .

The figures speak volume. These experiments clearly
show the impact of the resampling and the random
feature procedures. Indeed, generally speaking, both
prediction accuracy and stability are improved : the test
AUC is clearly enhanced, while at the same time, ranking
variability globally decreases. Notice in particular that,
on the graphs displayed in Fig. 5, RANKING FOREST

enveloppes are higher than those corresponding to
single ranking trees at every point of the false positive
rate, and their areas are much smaller. In addition, the
following fact, confirmed by many other experimental
simulations, is worth noticing : an adequate amount
of randomization permits to increase stability, while
preserving, to a certain extent, the enhancement in
ranking accuracy induced by the aggregation stage.
Observe in this regard that, even when applied to very
”weak” tree-based ranking rules, with only one node all
told, probabilistic Kendall τ aggregation undoubtedly
improves upon TREERANK in the RF 10 sparse example
(see Case No. 7 in Table 1). As explained in [38] (see
also Section 3 in [15]), the possible success of a ranking
algorithm lies in its ability to approximate accurately
a collection of level sets of the regression function η.
As the latter are quadratic in these example, they are,
in general, poorly approximated by union of rectangles
with axis parallel sides, such as those TREERANK

builds here and one may thus reasonably guess that the
refinements induced by the aggregation of simpler rules
(due to randomization) produced more accurate level
set estimates.

These empirical results only aim at illustrating the ef-
fect of the combination of rank aggregation and random
feature selection on ranking accuracy/stability, the sole
goal pursued here being to show how this improves
upon single ranking trees built using the TREERANK

algorithm. A complete and detailed empirical analysis of
the merits and limitations of RANKING FOREST is beyond
the scope of this paper and is one of the main subjects
of a forthcoming article, where the impact of the choice
of the pseudo-metric used for aggregating preorders
and that of the bootstrap sample size are investigated
at length among other things and comparisons with
competitors such as those studied in [48], [49], [11], [50]
are carried out, on real datasets in particular.

6 CONCLUDING REMARKS

The major contribution of this article is of methodologi-
cal order. We showed how to apply the principles of the
RANDOM FOREST approach to the ranking task. Several
ways of randomizing and aggregating ranking trees,
such as those produced by the TREERANK algorithm,
have been rigorously described. We proposed a specific
notion of stability in the ranking setup and provided
some preliminary backround theory for ranking rule
aggregation. Encouraging experimental results based on
artificial data have also been obtained, demonstrating
how bagging combined with feature randomization may
significantly enhance ranking accuracy and stability both
at the same time. Truth be told, theoretical explanations
for RANKING FOREST’s success in these situations are
left to be found. Results obtained by [51] or [52] for
the bagging approach in the classification/regression
context suggest possible lines of research in this regard.
At the same time, further experiments, based on real
datasets in particular, will be carried out in a dedicated
article in order to determine precisely the situations in
which RANKING FOREST is competitive, compared to
alternative ranking methods.

APPENDIX A
RANKING RULES

Throughout this paper, we call a ranking of the elements
of a set Z any total preorder on Z , i.e. a binary relation �
for which the following axioms are checked.

1) (TOTALITY) For all (z1, z2) ∈ Z2, either z1 � z2 or
else z2 � z1 holds.

2) (TRANSITIVITY) For all (z1, z2, z3): if z1 � z2 and
z2 � z3, then z1 � z3.

When the assertions z1 � z2 and z2 � z1 hold both
at the same time, we write z1 ≍ z2 and z1 ≺ z2 when
solely the first one is true. Assuming in addition that Z
has finite cardinality #Z < ∞, the rank of any element
z ∈ Z is given by

R�(z) =
∑

z′∈Z

{
I{z′ ≺ z} +

1

2
I{z′ ≍ z}

}
,

when using the standard MID-RANK convention [53], i.e.
by assigning to tied elements the average of the ranks
they cover.

Any scoring function s : Z → R naturally defines a
ranking �s on Z : ∀(z1, z2) ∈ Z2, z1 �s z2 iff s(z1) ≤
s(z2). Equipped with these notations, it is clear that �R�

coincides with � for any ranking � on a finite set Z .

APPENDIX B
ON COMPUTING THE LARGEST SUBPARTITION

We now briefly explain how to make crucial use of
the fact that the partitions of X we consider here are
tree-structured to compute the largest subpartition they

induce. Let P1 = {C(1)
k }1≤k≤K1

and P2 = {C(2)
k }1≤k≤K2
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a. RF 10: case No. 3. b. RF 20: case No. 9. c. RF 10 sparse: case No. 3.

Fig. 3. ROC curves and enveloppes: optimal curves (red line), RANKING FOREST enveloppes (red dotted line) and

TREERANK enveloppes (blue dotted line).

TABLE 1

Impact of Resampling and Random Feature Selection on the TREERANK algorithm.

RF 10

TRK rfs LRK rfs ÂUC
∗

AUC ̂σ(AUC) Red. Env. Stabτ

TreeRank 10 10 0.756 0.588 0.127 ∅ 0.0084
Case No. 1 5 5 0.756 0.721 0.003 58% 0.0026
Case No. 2 10 5 0.756 0.717 0.003 55% 0.0027
Case No. 3 8 5 0.756 0.718 0.003 56% 0.0027

RF 20

TRK rfs LRK rfs ÂUC
∗

AUC ̂σ(AUC) Red. Env. Stabτ

TreeRank 20 20 0.773 0.605 0.011 ∅ 0.0134
Case No. 1 15 15 0.773 0.744 0.003 47% 0.0043
Case No. 2 20 15 0.773 0.743 0.002 50% 0.0042
Case No. 3 18 15 0.773 0.744 0.003 50% 0.0042
Case No. 4 10 10 0.773 0.748 0.003 54% 0.0043
Case No. 5 20 10 0.773 0.743 0.003 49% 0.0043
Case No. 6 15 10 0.773 0.744 0.004 46% 0.0043
Case No. 7 5 5 0.773 0.75 0.004 48% 0.0047
Case No. 8 20 5 0.773 0.744 0.003 46% 0.0043
Case No. 9 8 5 0.773 0.747 0.002 47% 0.0044

RF 10 sparse

TRK rfs LRK rfs ÂUC
∗

AUC ̂σ(AUC) Red. Env. Stabτ

TreeRank 10 10 0.89 0.83 0.007 ∅ 0.0068
Case No. 1 5 5 0.89 0.88 0.002 67% 0.0016
Case No. 2 10 5 0.89 0.88 0.001 73% 0.0014
Case No. 3 8 5 0.89 0.88 7 · 10−4 73% 0.0015
Case No. 4 3 3 0.89 0.87 0.002 58% 0.0023
Case No. 5 10 3 0.89 0.88 0.001 71% 0.0016
Case No. 6 5 3 0.89 0.88 0.002 63% 0.0019
Case No. 7 1 1 0.89 0.83 0.009 10% 0.0053
Case No. 8 10 1 0.89 0.87 0.002 60% 0.0026
Case No. 9 3 1 0.89 0.86 0.003 53% 0.0031

be two partitions of X , related to (ranking) trees T1 and
T2 respectively. For any k ∈ {1, . . . ,K1}, the collection

of subsets of the form C(1)
k ∩ C(2)

l , 1 ≤ l ≤ K2, can be
obtained by extending the T1 tree structure the following

way. At the T1’s terminal leave defining the cell C(1)
k ,

add a subtree corresponding to T2 with root C(1)
k : the

terminal nodes of the resulting subtree, starting at the
global root X , correspond to the desired collection of
subsets (notice that some of these can be empty), see
Fig. 4 below. Of course, this scheme can be iterated
in order to recover all the cells of the subpartition
induced by B > 2 tree-structured partitions. For obvious

reasons of computational nature, one should start with
the most complex tree and bind progressively less and
less complex trees as one goes along.

Fig. 4. CHARACTERIZING THE LARGEST SUBPARTITION

INDUCED BY TREE-STRUCTURED PARTITIONS.
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APPENDIX C
TECHNICAL PROOFS

C.1 Proof of Proposition 3.2

Recall that τX(4s1
,4s2

) = 1 − 2dτX
(4s1

,4s2
), where

dτX
(4s1

,4s2
) is given by:

P{(s1(X) − s1(X
′)) · (s2(X) − s2(X

′)) < 0}

+
1

2
P{s1(X) = s1(x

′), s2(X) 6= s2(X
′)}

+
1

2
P{s1(X) 6= s1(x

′), s2(X) = s2(X
′)}.

Observe first that, for all s ∈ S, AUC(s) may be written
as:

P{(s(X) − s(X ′)) · (Y − Y ′) > 0}/(2p(1 − p))+

P{s(X) = s(X ′), Y 6= Y ′}/(4p(1 − p)).

Notice also that, using Jensen’s inequality, one easily
obtain that 2p(1− p)|AUC(s1)−AUC(s2)| is bounded by
the expectation of the random variable

I{(s1(X) − s1(X
′)) · (s2(X) − s2(X

′)) > 0}+
1

2
I{s1(X) = s1(X

′)} · I{s2(X) 6= s2(X
′)}+

1

2
I{s1(X) 6= s1(X

′)} · I{s2(X) = s2(X
′)},

which is equal to dτX
(4s1

,4s2
) = (1 − τX(4s1

,4s2
))/2.

C.2 Proof of Proposition 3.3

Recall first that, for all s ∈ S, the AUC deficit 2p(1 −
p){AUC∗ − AUC(s)} may be written as

E [|η(X) − η(X ′)| · I{(X, X ′) ∈ Γs}]
+ P{s(X) = s(X ′), (Y, Y ′) = (−1,+1)},

with

Γs = {(x, x′) ∈ X 2 : (s(x) − s(x′)) · (η(x) − η(x′)) < 0},

refer to Example 1 in [37] for instance. Now, Hölder
inequality combined with noise condition (5) shows that
P{(X,X ′) ∈ Γs} is bounded by

(E [|η(X) − η(X ′)| · I{(X, X ′) ∈ Γs}])a/(1+a) × c1/(1+a).

Therefore, we have for all s∗ ∈ S∗:

dτX
(4s,4s∗) = P{(X, X ′) ∈ Γs} +

1

2
P{s(X) = s(X ′)}.

Notice that p(1− p)P{s(X) = s(X ′) | (Y, Y ′) = (−1,+1)}
can be written as E[I{s(X) = s(X ′)} · η(X ′)(1 − η(X))],
which is larger than ǫ2 ·P{s(X) = s(X ′)} by assumption.
Using concavity of t ≥ 0 7→ ta/(1+a) and the bound
previously established, we eventually obtain the desired
result.

C.3 Proof of Theorem 4.1

By virtue of Proposition 3.2, we have:

AUC∗ − AUC(S̄m) ≤ dτX
(4s∗ ,4S̄m

)

2p(1 − p)
,

for any s∗ ∈ S∗. Using now triangular inequality, one
gets

dτX
(4s∗ ,4S̄m

) ≤ dτX
(4s∗ ,4SDn (.,Zj))

+ dτX
(4SDn (.,Zj),4S̄m

),

for all j ∈ {1, . . . , m}. Averaging then over j and using
the fact that, if one chooses s∗ in S0,

m∑

j=1

dτX
(4SDn (.,Zj),4S̄m

) ≤
m∑

j=1

dτX
(4SDn (.,Zj),4s∗),

one obtains that

dτX
(4s∗ ,4S̄m

) ≤ 2

m

m∑

j=1

dτX
(4SDn (.,Zj),4s∗).

The desired result finally follows from Proposition 3.3
combined with the consistency assumption of the ran-
domized scoring function.

C.4 Proof of Theorem 4.2

Observe that we have:

∆Σ(ˆ̄sN ) − min
s∈S0

∆Σ(s) ≤ 2 · sup
s∈S0

|∆̂N (s) − ∆Σ(s)|

≤ 2

K∑

k=1

sup
s∈S0

|d̂τX
(4s,4Sk

) − dτX
(4s,4Sk

)|.

Now, it results from the strong Law of Large Numbers
for U -processes stated in Corollary 5.2.3 in [54] that

sups∈S0
|d̂τX

(4s,4Sk
) − dτX

(4s,4Sk
)| → 0 as N → ∞,

for all k = 1, . . . , K. The convergence rate OP(n−1/2)
follows from the Central Limit Theorem for U -processes
given in Theorem 5.3.7 in [54].

C.5 Proof of Corollary 4.3

Reproducing the argument of Theorem 4.1, one gets:

dτX
(4s∗ ,4ˆ̄

SN,m
) ≤ 1

m

m∑

j=1

dτX
(4SDn (.,Zj),4s∗)

+
1

m

m∑

j=1

dτX
(4SDn (.,Zj),4ˆ̄

SN,m
).

As in Theorem 4.2’s proof, we also have:

1

m

m∑

j=1

{dτX
(4SDn (.,Zj),4ˆ̄

SN,m
)−dτX

(4SDn (.,Zj),4S̄N,m
)}

≤ 2 · sup
(s,s′)∈S2

0

|d̂τX
(4s,4s′) − dτX

(4s,4s′)|.

Using again Corollary 5.2.3 in [54], we obtain that the
term on the right hand side of the bound above vanishes
as N → ∞. Now the desired result immediately follows
from Theorem 4.1.
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[46] E. Hüllermeier, J. Fürnkranz, W. Cheng, and K. Brinker, “Label
ranking by learning pairwise preferences,” Artificial Intelligence,
vol. 172, pp. 1897–1917, 2008.

[47] G. Biau, L. Devroye, and G. Lugosi, “Consistency of Random
Forests,” J. Mach. Learn. Res., vol. 9, pp. 2039–2057, 2008.

[48] J. T., “Optimizing search engines using clickthrough data,” in
KDD’02 - Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2002, pp.
133–142.

[49] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamil-
ton, and G. Hullender, “Learning to rank using gradient descent,”
in Proceedings of the 22nd International Conference on Machine Learn-
ing. ACM International Conference Proceeding Series 119, 2005,
pp. 89–96.

[50] T. Pahikkala, E. Tsivtsivadze, A. Airola, J. Boberg, and
T. Salakoski, “Learning to rank with pairwise regularized least-
squares,” in Proceedings of SIGIR 2007 Workshop on Learning to Rank
for Information Retrieval, 2007, pp. 27–33.

[51] J. Friedman and P. Hall, “On bagging and non-linear estimation,”
Journal of statistical planning and inference, vol. 137, no. 3, pp. 669–
683, 2007.

[52] Y. Grandvalet, “Bagging Equalizes Influence,” Machine Learning,
vol. 55, pp. 251–270, 2004.

[53] M. Kendall, “The Treatment of Ties in Ranking Problems,”
Biometrika, no. 33, pp. 239–251, 1945.
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