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Abstract14

Ecologists primarily use δ15N values to estimate the trophic level of organisms, while 15

δ13C, and even recently δ15N, are utilized to delineate foraging habitats. However, many 16

factors can influence the stable isotopic composition of consumers, e.g. age, starvation or 17

isotopic signature of primary producers. Such sources of variability make the interpretation of 18

stable isotope data rather complex. To examine these potential sources of variability, muscle 19

tissues of yellowfin tuna (Thunnus albacares) and swordfish (Xiphias gladius) of various 20

sizes were sampled between 2001 and 2004 in the western Indian Ocean during different 21

seasons and along a latitudinal gradient (23°S to 5°N). Size and latitude effects on δ15N and 22

δ13C were investigated using linear models. Both latitude and size significantly affect the 23

stable isotope values of the studied species but variations were much more pronounced for 24

δ15N. We explain the latitudinal effect by differences in nitrogen dynamics existing at the base 25

of the food web and propagating along the food chain up to top predators. This spatial pattern26

suggests that yellowfin and swordfish populations exhibit a relatively unexpected resident 27

behaviour at the temporal scale of their muscle tissue turnover. The size effect is significant 28

for both species and indicates an increase in prey size through ontogeny. However, this effect29

is more pronounced in swordfish as a consequence of their different foraging strategies, 30

reflecting specific physiological abilities. Swordfish adults are able to reach very deep water31

and have access to a larger size range of prey than yellowfin tuna. In contrast, yellowfin 32

juveniles and adults spend most of their time in the surface waters and large yellowfin tuna 33

continue to prey on small organisms. Consequently, nitrogen isotopic signatures of swordfish 34

tissues are higher than those of yellowfin tuna and provide evidence for different trophic 35

levels between these species. Thus, in contrast to δ13C, δ15N analyses of tropical Indian Ocean 36

marine predators allow the investigation of complex vertical and spatial segregation, both 37

within and between species, even in the case of highly opportunistic feeding behaviours. The 38



3

linear models developed in this study allow us to make predictions of δ15N values and to 39

correct for any size or latitude differences in future food web studies. 40
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Introduction41

Catches of tunas and billfishes have increased dramatically the past twenty years in the 42

western Indian Ocean, very likely altering the structure and functioning of the ecosystems 43

through trophic cascades (Essington et al. 2002; FAO 2006). Concomitantly to these top-44

down controls, bottom-up effects, via environmental and climatic changes, are also 45

controlling abundance and spatial dynamics of top predators that depend on food availability 46

(Cury et al. 2003; Franck et al. 2006; Frederiksen et al. 2006). Therefore, studies based on47

trophic ecology and movements of top predators are useful to assess the impact of fisheries 48

and climate on marine resources, and to provide basic elements for an ecosystem approach to 49

fisheries management (Sinclair and Valdimarsson 2003; FAO 2003). Unlike the Pacific and 50

Atlantic oceans, few studies have investigated the diet of tunas and tuna-like species from 51

stomach content analyses in the Indian Ocean (Watanabe 1960; Kornilova 1981; Roger 1994; 52

Maldeniya 1996; Potier et al. 2004, 2007). Furthermore, stomach content analyses only reflect 53

the composition of the most recent meal and limit our ability to address spatial and temporal 54

variability of feeding behaviours.55

Small- and large-scale movements of top predators are now assessed using conventional 56

and electronic tagging programs combined with catch statistics (e.g., Block et al. 2005). A 57

tagging programme, the Regional Tuna Tagging Programme of the Indian Ocean Tuna 58

Commission (RTTP-IO, http://www.rttp-io.org/en/about/) is underway in the Indian Ocean. 59

So far, few tag returns are available and catch statistics themselves do not reflect the real 60

movement patterns (Hilborn and Walters 1992; Walters 2003). The knowledge of the spatial 61

dynamics of tuna in the Indian Ocean is therefore still minimal.62

Additional information on dietary sources, trophic levels, foraging strategies or movement 63

patterns of migratory species can be obtained from stable isotope analyses of animal tissues64

(Rau et al. 1983; Fry 1988; Kelly 2000; Rubenstein and Hobson 2004; Cherel and Hobson, 65
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2005, 2007). The stable isotope composition of an organism depends on its diet, its trophic 66

level, but also on the isotopic signature at the base of the food web (DeNiro and Epstein, 67

1978, 1981; Post 2002; Fry 2006). δ15N measurements mainly serve as indicators of 68

consumer’s trophic position, while δ13C values are used to determine primary sources, inshore 69

versus offshore or pelagic versus benthic contribution to food intake (Hobson 1999). Indeed, 70

different oceanic processes affect isotopic baselines of δ15N and δ13C in marine pelagic food 71

webs (Rau et al. 1982; Altabet et al. 1995; Gruber and Sarmiento 1997; Lourey et al. 2003). 72

δ13C values of phytoplankton decrease from low to high latitudes (Lourey et al. 2003) while 73

δ15N of particulate organic matter is driven by nutrient utilization and the nitrogen source 74

used by primary producers (nitrate, ammonium, N2 gas; Wada and Hattory 1991). The 75

resulting spatial and temporal variability in the isotopic baseline has been shown to be 76

incorporated and conserved through several trophic levels (up to pelagic consumers) across 77

ocean basins (Takai et al. 2000; Wallace et al. 2006) or within a region of a single basin 78

(Schell et al. 1989; Lesage et al. 2001; Quillfeldt et al. 2005; Cherel and Hobson 2005, 2007; 79

Cherel et al. 2005). Hobson (1999) illustrated this approach by the new maxim “you are what 80

you swim in” that complements the well-known dogma of stable isotopy “you are what you 81

eat.” Consequently, the stable isotope ratios of animal tissues have the potential of 82

characterizing the isotopically distinct regions crossed by migrating fish and investigating 83

their foraging ecology. Graham et al. (2006) successfully applied this approach to yellowfin 84

tunas (Thunnus albacares) of the Pacific Ocean. One objective of the present study is 85

therefore to investigate the relationships between the isotopic signature of yellowfin tuna and 86

swordfish (Xiphias gladius) versus latitude in the western Indian Ocean, and their relative 87

degree of residency. Indeed, for migratory species, the variability of the isotopic signature in 88

their tissue is supposed to be low if the migration rate is quicker than isotopic tissue turnover. 89

Conversely, for more resident species, stable isotope ratios of tissues would reflect the 90
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isotopic patterns at the base of the food web (Fry 2006; Graham et al. 2006; Popp et al. in 91

press). A second objective was to document the foraging ecology of yellowfin tuna and 92

swordfish, and potential ontogenetic effects on their trophic status. Ontogenetic shifts in tuna 93

and swordfish foraging behaviour are also expected as larger fish usually expand their 94

foraging habitat and exploit a larger size range of prey in the environment (Ménard et al. 95

2006; Young et al. 2006; Graham et al. 2007).96

Inter-specific, spatial and ontogenetic differences in the stable isotope composition of 97

muscle tissues were thus investigated for these two migratory top predators of the western 98

Indian Ocean. Linear models and linear mixed-effects models were developed to test and 99

disentangle potential latitudinal and size effects on the stable isotope values (15N and δ13C)100

of each species. According to the model predictions, the trophic positions of individuals of 101

different sizes caught in different oceanic regions can then be compared. It is indeed a 102

prerequisite to understand these geographical and ontogenetic variations before determining 103

the trophic position of these species. This paper is however not intended to provide a 104

comprehensive study of the pelagic food web of the western Indian Ocean. Rather, we 105

implement the isotope approach to gain insight into the foraging ecology and movement 106

patterns on the studied predators, the first initiative of this nature in the Indian Ocean.107

108

Materials and methods109

Sample collection110

Fish were caught by industrial purse seiners with scientific observers onboard; a 20-m 111

research longliner “Amitié” of the Seychelles Fishing Authority, and the French 24-m 112

industrial longliner “Cap Morgane”. Samples were collected from 2001 to 2004 in the western 113

Indian Ocean along a latitudinal gradient (23°S to 5°N, Fig. 1). A total of 245 yellowfin tuna 114

(Thunnus albacares) and 136 swordfish (Xiphias gladius) from various sizes were collected 115
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during these cruises. Fork length (FL) ranged from 40 to 160 cm for yellowfin tuna (mean = 116

103 cm and median = 108 cm) and Lower Jaw Fork length (LJFL) for swordfish ranged from 117

68 to 225 cm (mean = 135 cm and median = 133 cm). LJFL is a reliable measure of swordfish 118

body size that allows comparisons with tunas by reducing the bias due to the bill. Table 1 119

displays all the sample characteristics. Muscle tissues from the dorsal region were collected 120

onboard from freshly caught fishes and were stored frozen at -20°C until processing.121

Sample preparation and analysis122

Samples were freeze dried and ground to a fine powder. Lipid extraction was 123

performed using 20 ml of cyclohexane on powder aliquots of about 1 g, and the lipid-124

extracted sample was dried at 60°C before processing. One milligram sample was then placed 125

into 85 mm tin cups for CF-IRMS analysis, using a Europea Scientific ANCA-NT 20-20 126

Stable Isotope Analyser with ANCA-NT Solid/Liquid Preparation Module (PDZ Europa Ltd., 127

Crewz, UK). Replicate measurements of internal laboratory standards indicate measurement 128

errors of ± 0.2‰ for δ13C and δ15N. Triplicate analyses performed on some samples 129

confirmed that analytical reproducibility was very good (0.2‰ maximum variation). Isotopic 130

ratios are expressed in the conventional δ notation as parts per thousand (‰) deviation from 131

the international standards: atmospheric nitrogen for 15N and VPDB Belemnite for δ13C: 132

X = (Rsample / Rstandard – 1) × 1000,133

where X is 15N or 13C and R the corresponding ratio 15N/14N or 13C/12C.134

Lipid content in tuna and swordfish muscles may be high (greater than 50%, unpublished 135

data). As lipids are highly depleted in 13C (Tieszen et al. 1983), C/N mass ratios were used to 136

check the lipid extraction process. 13C outliers (15 for yellowfin tuna and 33 for swordfish) 137

were removed from the analyses according to the distributions of C/N values for each species. 138

We estimated the corresponding thresholds to suppress any relationships between 13C and 139

C/N mass ratios (3.62 and 3.70 for yellowfin tuna and swordfish, respectively). The resulting 140
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distributions of C/N were normal (mean ± standard deviation of 3.36 ± 0.11 141

and 3.50 ± 0.11 for yellowfin tuna and swordfish, respectively) and the sampling ranges 142

of latitude and body size were not reduced for both species.143

Statistical analysis144

Linear regressions were used on the 15N and 13C data for each species to test the 145

covariates of interest, i.e. latitude and body size. However, all the individuals of one species 146

are not independent and the sampling scheme is clearly unbalanced. The individuals can be 147

grouped according to different factors (e.g. cruise, year, season, etc.; Table 1). We use the two 148

main seasons of the monsoon system to group the individuals of each species caught during 149

the cruises carried out from 2001 to 2004. Indeed, the ocean circulation in the West Indian 150

Ocean is strongly related to the wind monsoon regime, which in turn strongly affects 151

biological productivity (Tomczak and Godfrey 1994; Longhurst 1998; Schott and McCreary 152

2001). The Northeast (NE) monsoon becomes established in boreal winter (December to 153

March). It is characterized by winds blowing from the Asian continent to the equatorial zone, 154

a weak circulation north of the equator and a well marked counter-current flowing East 155

between 2°S and 7°S. The Southwest (SW) monsoon becomes established in boreal summer 156

(June-September), and is characterized by a reversal of the winds in the northern Indian 157

Ocean, the development of the northward-flowing Somali Current, and an eastward flow that 158

dominates the northern Indian Ocean. Therefore, each observation can be classified according 159

to the season on which it was made (NE or SW monsoon, Table 1). The 5 cruises which took 160

place during the inter-monsoons are relocated in their nearest monsoon: October and May in 161

the SW monsoon, and November in the NE monsoon. A classification based on the 4 seasons 162

(including the 2 additional inter-monsoon seasons) was also tested but not retained as the 163

various models fit to the δ15N and δ13C values gave similar results to the monsoon only 164

scenario. To test this grouping, the seasonal effect was treated as random variations around a 165
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population mean, and the body size and the latitude were assessed as two fixed continuous 166

covariates, using linear mixed-effects models (lme models; Pinheiro and Bates 2000). These 167

lme models combine a random-effects analysis of variance model (variability amongst 168

seasons) with a linear regression model. Lme models were tested against simple linear 169

regression models using likelihood ratio tests. Population predicted values (obtained by 170

setting the random effects to zero in the lme models) were used to compare latitude and body 171

size effects for yellowfin tuna, for swordfish, and between the two species. All the 172

computations and tests were performed on S-Plus (Insightful 2005).173

174

Results175

Muscle 15N and 13C values for yellowfin tuna and swordfish plotted versus body 176

size, latitude and season (NE and SW monsoons) are shown in Figs. 2 and 3. The δ15N values 177

for yellowfin tuna ranged from 10.2 to 15.2‰ and from 11.8 to 16.2‰ for swordfish (Fig. 2). 178

The 13C values for yellowfin tuna ranged from 17.4 to 15.2 ‰ and from 17.4 to 15.0‰ 179

for swordfish (Fig. 3). The range of variation for the 13C values is therefore much more 180

reduced than the δ15N range (≈ 2‰ vs. 5‰).181

Linear regression models with latitude and size added sequentially were significant (p 182

= 0.026 for 15N and p < 0.001 for 13C for yellowfin tuna; p < 0.001 for 15N and 13C for 183

swordfish). However, deviations from the models suggest that other models might be 184

appropriate. For example, Fig. 2 reveals that intercepts of the models for 15N may differ 185

between seasons.186

Linear mixed-effects models (lme models) were fitted to the muscle 15N values 187

grouped by season. The most parsimonious model for swordfish was obtained with both188

latitude and size as fixed-effect covariates (p < 0.0001). For yellowfin tuna, when body size189

was added to a lme model containing latitude only, the fit was only marginally improved (p =190
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0.092). This p-value evidences the low significance of body size for yellowfin tuna 15N 191

values, a result already exhibited in Fig. 2. According to the likelihood ratio test, lme models 192

for both species provided a much better description of the 15N data than the linear regression193

models did (p < 0.0007 and p < 0.0001 for yellowfin tuna and swordfish, respectively). Fig. 4 194

displays the predicted lines for each season (using the estimated random effects) and the 195

original data for model checking. These plots exhibit the large variability of the 15N values196

for each season, and confirm that latitude was the strongest linear fixed-effect for yellowfin 197

tuna, while body size was the most significant fixed-effect for swordfish. For both species, the 198

random effects were associated with the intercepts only. Therefore within-season intercept 199

estimates for 15N data were different, while slopes were identical. Interestingly, within-200

season intercepts exhibited a similar pattern whatever the species: the NE monsoon intercept 201

was always greater than the SW monsoon intercept (difference estimated at 0.37 and 0.67‰ 202

for yellowfin tuna and swordfish, respectively). The assumption of normality and 203

independence for the random effect and the residuals were graphically assessed (not shown). 204

On the other hand, lme models fit to the fish muscle 13C values were not significantly better 205

than the linear regression models (p > 0.50 for yellowfin tuna and p = 0.33 for swordfish). 206

Table 2 lists the coefficients and standard errors estimated by the most parsimonious models 207

fit to the 15N and 13C data.208

209

Discussion210

Our results provide evidence for a genuine relationship between latitude and body size211

with 15N and 13C values of yellowfin tuna and swordfish. Linear mixed-effects models were 212

used for 15N data and provided identical slopes with different intercepts between the two 213

seasons for both latitude and body size. Simple linear models with no seasonal effect were 214

selected for 13C data. Both size and latitude influence δ15N values of the two species more 215
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strongly than δ13C values. Model predictions at the population level allow us to analyse these 216

effects separately. Fig. 5A illustrates 15N and δ13C predicted values of yellowfin tuna and 217

swordfish as a function of varying sizes for fish caught at different latitudes (-10° and 0°). In 218

the same way, Fig. 5B represents 15N and δ13C predicted values for fish of different sizes (80 219

and 160 cm) as a function of a latitudinal gradient. We now attempt to examine some 220

hypotheses supported by our results with respect to the trophic ecology of yellowfin tuna and 221

swordfish, and to the oceanic processes affecting the isotopic baseline of δ15N and δ13C in 222

marine food webs.223

224

Latitudinal effect225

The range of variation for the δ15N values of yellowfin tuna and swordfish is of 2‰ 226

along a latitudinal gradient of 30° (2.4 and 1.1‰ for yellowfin tuna and swordfish, 227

respectively, Fig 5B), whereas those variations are less than 1‰ for δ13C (0.8 and 0.7‰ for 228

yellowfin tuna and swordfish, respectively). Three hypotheses can be put forward to explain 229

the δ15N and δ13C increase from the Mozambique Channel to the Somali basin: 1) dietary 230

changes, 2) starvation and 3) a shift in δ15N baseline. Trophic level differences or starvation 231

of the northern individuals seem highly unlikely given the regularity of the observed 232

variations, and are not supported by any ecological data. We argue that this spatial pattern 233

results from different oceanic processes at the base of the food web that vary by region in the 234

western Indian Ocean, and that are conserved through different trophic levels up to top 235

predators.236

Particulate organic matter (POM) δ15N and δ13C isotopic values are not available in 237

the western Indian Ocean to document a latitudinal pattern at the base of the food chain. 238

However, knowledge of nitrogen dynamics in several zones of the western Indian Ocean 239

suggests that differences in δ15N values of POM might occur. In particular, the Somali region 240
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should have higher δ15N baseline values compared to Mozambique Channel. This is because 241

the Arabian Sea is a major area of anoxia (Gruber and Sarmiento 1997), and is characterized 242

by intensive denitrification that leads to an accumulation of isotopically enriched nitrate in 243

subsurface waters (Gaye-Haake et al. 2005; Naqvi et al. 2006). Conversely, different tracers 244

and biological indicators in the surface waters of the South Indian subtropical gyre (around 245

20°S, 57°E) have shown a prevailing N2 fixation, known to generate lower δ15N values for 246

phytoplankton (Capone and Carpenter 1982; Carpenter 1983; Gruber and Sarmiento 1997).247

Gruber and Sarmiento (1997) also found a latitudinal gradient between the Arabian Sea and 248

25°S in the western Indian Ocean with decreasing denitrification and increasing N2 fixation 249

from North to South. We did not sample the core of the South Indian subtropical gyre, nor the 250

Arabian Sea; however, the northern and southern edges of our sampling zone are connected 251

through the current system to the two most contrasted zones of denitrification (the Arabian 252

Sea) and N2 fixation (subtropical gyre, Tomczak and Godfrey 1994; Schott and McCreary 253

2001, Davis 2005). Therefore, the δ15N baseline values of the Somali region are likely to be254

strongly influenced by the Arabian Sea while those of the Mozambique Channel are under the 255

influence of the subtropical gyre (Davis 2005).256

In several studies using stable isotopes to delineate foraging locations of marine 257

predators of the southern Ocean, δ13C displayed strong variations with latitude, whereas δ15N 258

values responded mainly to trophic enrichment (Quillfeldt et al. 2005; Cherel and Hobson 259

2005, 2007). Indeed, in the southern hemisphere, the geographical δ13C gradient in POM of 260

surface waters is well defined, and ranges from high δ13C values in warm subtropical waters 261

in the North, to low values in cold Antarctic waters in the South (François et al. 1993; Trull 262

and Armand 2001), with abrupt changes at fronts (Subtropical, Subantarctic and Polar fronts). 263

Gradients in terms of sea temperature are much more reduced in our sampling zone (Tomczak 264

and Godfrey 1994), which could explain the weak δ13C variations in the western tropical 265
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Indian Ocean revealed by our study. Broad δ15N gradients, as observed in this study, have 266

been found in other open ocean regions. Comparing leatherback turtle δ15N signatures in the 267

Eastern Tropical Pacific and in the Atlantic Ocean, Wallace et al. (2006) found inter-basin 268

differences of 5‰ between denitrification and N2 fixation zones. In the Equatorial Pacific, 269

Graham et al. (2006) have shown basin-wide δ15N differences as high as 11‰ in tuna muscle270

tissue. In the Indian Ocean, we detected a much lower intra-basin difference (i.e., maximum 271

of 2.4‰ for yellowfin tuna), most probably because our samples did not cover the core areas 272

mentioned earlier. Consequently, even if yellowfin tuna and swordfish are migrating between 273

the two contrasted region (the Arabian Sea versus the subtropical gyre), we are probably 274

observing a diluted effect of this general intra-basin difference. Furthermore, muscle tissues 275

of these species might never be at isotopic equilibrium with their recent diet because of their276

continuous movement, their opportunistic foraging behaviour and their muscle tissue isotopic 277

turnover (half-life around 50 days, Graham, unpublished data). All these reasons generate 278

variability in the data, reduce the effect of the latitudinal gradient, but do not challenge its 279

occurrence.280

The observed conservation of the δ15N baseline characteristics in these top predators 281

has several implications. First, these species are known to be highly migratory and thus such a 282

gradient in the data is not expected. Indeed, these data suggest that yellowfin tuna and 283

swordfish are relatively resident species at the temporal scale of their tissue isotopic turnover, 284

i.e., three months for yellowfin tuna (Graham, unpublished data). However, this does not 285

preclude large basin-wide movement patterns at the temporal scale of their life time.286

Furthermore, the coexistence of migrating fish among more resident fish might occur and 287

explain the rather high intra-season variability found in our study. Interestingly, the 15N 288

predictions along the latitudinal gradient varied two times more for yellowfin tuna than for 289

swordfish (differences of 2.4‰ and of 1.2‰, respectively). This can be interpreted in 290
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different ways: (i) yellowfin tuna are more resident than swordfish, (ii) swordfish have a 291

slower turnover rate or tissue growth than yellowfin tuna, (iii) swordfish do not migrate to292

highly 15N depleted areas such as the Arabian Sea, which the very low catch records of this293

species in this region suggests (Fonteneau 1997). The third hypothesis seems the most 294

plausible given our present knowledge; however, we cannot preclude a mixed influence of the295

three hypotheses.296

297

Seasonal effect298

In the mixed-effects models implemented in this paper for δ15N values, the seasonal 299

effect is random and induced by the grouping of the data. Only intercepts differ between NE 300

and SW monsoon predictions: compared to the SW monsoon, the NE monsoon intercepts are301

0.36 and 0.67‰ higher for yellowfin tuna and swordfish, respectively. During the NE 302

monsoon, the waters of the Arabian sea are advected to the South and invade the Somali basin 303

(where part of our data collection was undertaken), potentially increasing the δ15N values of 304

the baseline of this zone compared to SW monsoon (Davis 2005). Conversely, during the SW 305

monsoon, there is a broad equatorward flow of waters from the South Equatorial Current 306

(SEC) along the East African Coast reaching the Somali region (Tomczak and Godfrey 1994; 307

Schott and McCreary 2001; Davis 2005). Further studies involving measurements of the δ15N308

of the POM over an annual cycle should be investigated to shed some light on the seasonal 309

variations that may occur in the western Indian Ocean.310

Interestingly, the seasonal effect is not significant for δ13C values. We believe that 311

seasonal changes in the monsoon regime do not have strong consequences on the carbon 312

isotopes ratios in the sampled areas. In addition, the δ13C ranges we observed in our data were 313

low compared to the intra-individual variability. Our results suggest that muscle δ13C values 314

of fish in these open sea ecosystems of the western Indian Ocean might not be useful to 315
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document seasonal changes, to delineate foraging locations or to track fish movement. This is316

in contrast to studies conducted in the southern Indian Ocean where δ13C has been shown to 317

be a useful tool (Cherel and Hobson 2005, 2007).318

319

Size effect320

Figure 5A indicates changes in the 15N and δ13C model predictions along a gradient 321

of body size, for fish caught at two different latitudes. In each case, the 15N values exhibited 322

a stronger size effect for swordfish than for yellowfin tuna. The isotopic difference between 323

large (200 cm) and small (80 cm) swordfish was about 2‰, whereas it was less than 0.5‰ for 324

yellowfin tuna of 40 to 160 cm. The same pattern is supported by δ13C values, but isotopic325

differences are much more reduced (0.8 and 0.4‰ for swordfish and yellowfin tuna, 326

respectively). The lower differences for δ13C are not surprising given that δ15N is known to 327

increase much more with trophic levels than δ13C (DeNiro and Epstein, 1981). Body size is 328

indeed known to play a crucial role in predator-prey interactions (Sheldon et al. 1977; Cury et329

al. 2003). Analyses of stomach contents and nitrogen isotope ratios conducted on fish 330

communities in different marine ecosystems have shown that prey size and trophic level 331

generally increase with increasing predatory body size (Scharf et al. 2000; Jennings et al. 332

2002). In open-sea ecosystems, few studies have yet dealt specifically with size-based 333

predation. Ménard et al. (2006) have shown that the maximum size of the prey consumed by 334

yellowfin tunas tends to increase with tuna body length, but that large yellowfin tunas 335

continue to consume small prey in great proportions. In addition, both adults and juveniles of336

yellowfin tuna generally show only minor differences in depth distributions (Brill et al. 1999, 337

2005). Yellowfin tuna spend most of their time in the surface layer, even if some exceptional 338

deep dives have been evidenced by one archival tag (Dagorn et al. 2006). The diet of 339

yellowfin tunas is then mainly composed of organisms present in the upper 100 m (Moteki et 340
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al. 2001; Bertrand et al. 2002; Potier et al. 2004, 2007), with no major ontogenetic changes 341

(Ménard et al. 2006). An outstanding diet shift was revealed by Graham et al. (2007) but this 342

study only concerned small juveniles of yellowfin tunas ranging around 45 cm and caught in 343

areas surrounding Hawaiian Islands. Therefore, we conclude that the size of yellowfin tuna 344

does not have a strong impact on its 15N values. On the other hand, large swordfish mainly 345

consume cephalopods (Hernandez-Garcia 1995; Markaida and Hochberg 2005; Young et al. 346

2006; Potier et al. 2007), while smaller swordfish have a diet focused on mesopelagic fish347

such as myctophids (Young et al. 2006; Potier et al. 2007). This shift in the dominant prey 348

items has consequences on the 15N values because mesopelagic fish such as myctophids and 349

paralepidids have shown lower mean 15N values than cephalopods (Young et al. 2006). In 350

addition, swordfish can catch larger prey specimens as they grow, due to an increase of 351

mouth-gape size, chasing predation, and diving capability (Carey and Robinson 1981).352

Therefore, we fully confirm that body size influences the 15N values of swordfish, as already353

shown by Young et al. (2006) with much fewer data. This influence is much more 354

pronounced than for yellowfin tuna, due to the change in the foraging ecology of swordfish355

through its ontogeny.356

357

Trophic level differences 358

Over the body sizes and latitudes common to both species, and for a similar size or 359

latitude, the 15N values of swordfish were about 0.7 to 2.8‰ higher than those of yellowfin 360

tuna (Fig. 5). The greatest 15N differences were found in large fish (160 cm) sampled in the 361

south (25°S), while the smallest differences occurred in small fish (80 cm) sampled in the 362

north (5°N). In a recent study conducted in the same area, Potier et al. (2007) established that 363

(i) the diet composition of swordfish was dominated by mesopelagic cephalopods 364

(Ommastrephidae and to a lesser extent Onychoteuthidae) and by mesopelagic fish365



17

(Nomeidae and Diretmidae), while epipelagic prey dominated the diet of yellowfin tuna, (ii) 366

swordfish catch larger specimens of the same prey species than yellowfin tuna. This general 367

diet pattern reflects a well-known resource partitioning between both species. Swordfish 368

undertake large vertical migrations, allowing them to prey actively at great depth, while both 369

adult and juvenile yellowfin tuna spend the vast majority of their time in the surface layer and 370

prey on small organisms (Brill et al. 2005; Ménard et al. 2006; Potier et al. 2007).371

Consequently, swordfish have access to a larger size range of prey in the environment than 372

yellowfin tuna, and can feed on the predators of yellowfin tuna’s prey. Thus, the observed 373

differences in δ15N values of swordfish and yellowfin tuna, once the size and latitudinal 374

effects are removed, illustrate different trophic levels between both species due to distinct 375

foraging strategies. Graham et al. (2007) hypothesized that mesopelagic prey might have δ15N 376

values higher than epipelagic species. This assumption could strengthen the δ15N differences 377

between both species, but further investigations should be carried out on the isotopic values of 378

the forage fauna of large pelagics.379

380

Summary and conclusion381

This study revealed body size and latitudinal effects on δ15N and δ13C values of two 382

migratory highly opportunistic predators: yellowfin tuna (Thunnus albacares) and swordfish383

(Xiphias gladius). However, in these open sea ecosystems of the western Indian Ocean, δ15N 384

was much more useful than δ13C to delineate trophic relationships and to track fish 385

movements. Linear mixed-effects models developed here will allow us to make predictions of 386

δ15N values and to correct for any size or latitude differences in future food web studies. This 387

study also confirmed that baseline δ15N isotopic variations can be conserved through several 388

trophic levels, and even up to high trophic levels such as tunas and swordfish. These spatial 389

differences together with differences in the size effects according to species illustrated the 390
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potential of stable isotopes to investigate complex trophic ecology and foraging strategies,391

both within and between species, even in the case of highly opportunistic feeding behaviours.392

To further investigate these spatial and size variations in the δ15N values of yellowfin 393

tuna and swordfish, isotopic analyses of mesopelagic species together with particulate organic 394

matter from these regions are needed. Spatial and size-based variation in the 15N of marine 395

pelagic fish should be considered when using 15N to detect trophic-level variation in natural 396

communities.397
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Table 1. Sample characteristics of yellowfin tuna and swordfish576
577

N N

Cruise Time period Year Group min max min max min max min max

AM1 Aug. 13-24 2001 SW monsoon 0 18 108 156 -4 2
AM2 Oct. 16-26 2001 SW monsoon 4 94 111 -4 0 5 122 140 0 0
AM6 Jul. 13-30 2002 SW monsoon 13 100 203 -4 -3 1 136 136 -3 -3
AM9 Jul. 4-9 2004 SW monsoon 5 90 226 -4 -2 1 123 123 -3 -3

ECO6 May 5-19 2004 SW monsoon 47 76 209 -17 -11 34 65 156 -17 -11
ECO9 Sept. 11-19 2003 SW monsoon 16 108 205 -23 -22 6 124 150 -22 -21
TG2 May 2 - June 21 2001 SW monsoon 0 32 42 160 -10 -6
GU1 Oct. 6 - Nov. 7 2001 SW monsoon 0 66 39 149 -4 5
AM3 Nov. 19-30 2001 NE monsoon 3 111 190 -5 -5 8 112 136 -5 -4
AM4 Jan. 28 - Feb. 8 2002 NE monsoon 3 113 162 -4 -3 10 102 153 -4 -3
AM5 Feb. 27 - Mar. 12 2002 NE monsoon 3 145 149 -1 1 0
AM7 Dec. 10-20 2002 NE monsoon 2 114 137 -5 -5 5 88 141 -6 4
AM8 Jan. 29 - Feb. 9 2003 NE monsoon 7 76 162 -4 0 27 56 151 -5 0

ECO7 Nov. 10 - 29 2004 NE monsoon 33 68 199 -23 -18 9 96 160 -23 -18
TAL March 28 - Apr. 29 2002 NE monsoon 0 2 58 60 -15 -14

AVAD Feb. 2-10 2003 NE monsoon 0 21 61 164 -7 -5

Swordfish Yellowfin
Size Latitude Size Latitude 

578

579
580
581
582

Table 2. Estimated intercepts and slopes (with standard errors) and within-season standard 583

deviations season for the random effects for linear mixed-effects models fit to the 15N values 584

of yellowfin tuna and swordfish, and estimated intercepts and slopes (with standard errors) for 585

linear regression models fit to the 13C values of yellowfin tuna and swordfish.586

Coefficients 15N 13C

Yellowfin tuna 12.995 (0.245) 16.418 (0.0759)
Intercept

Swordfish 12.613 (0.414) 16.568 (0.162)

Yellowfin tuna 0.0807 (0.0085) 0.0266 (0.0042)
Latitude

Swordfish 0.0418 (0.0072) 0.0282 (0.0047)

Yellowfin tuna 0.0025 (0.0015) 0.0030 (0.0007)
Size

Swordfish 0.0163 (0.0016) 0.0060 (0.0011)

Yellowfin tuna 0.267 -
season

Swordfish 0.481 -
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Legends of the figures 587

588

Figure 1. Muscle sample collection sites of swordfish (open circles) and yellowfin tuna 589

(crosses) in the western Indian Ocean.590

591

Figure 2. Muscle δ15N values from yellowfin tuna (A) and swordfish (B) plotted versus size 592

or latitude according to the considered season: SW monsoon (full symbols) and NE monsoon 593

(open symbols).594

595

Figure 3. Muscle δ13C values from yellowfin tuna (A) and swordfish (B) plotted versus size 596

or latitude according to the considered season: SW monsoon (full symbols) and NE monsoon597

(open symbols).598

599

Figure 4. Within-season predicted muscle δ15N values (solid lines) from the linear mixed-600

effects models for yellowfin tuna (A) and swordfish (B) plotted versus size or latitude. The 601

original data (open circles) were superimposed on the predicted lines within each season, SW 602

monsoon (left side) and NE monsoon (right side).603

604

Figure 5. Population predicted muscle δ15N and δ13C values from the linear models (linear 605

mixed-effects models for δ15N and simple linear models for δ13C) for swordfish (dashed line) 606

and yellowfin tuna (full line) plotted versus size  (A) considering two different fixed latitudes 607

( 0°N or l0°S); and plotted versus latitude (B) for two different sizes (80cm or 160cm).608

609
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Figure 1. Muscle sample collection sites of swordfish (open circles) and yellowfin tuna 612
(crosses) in the western Indian Ocean.613
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Figure 2. Muscle δ15N values from yellowfin tuna (A) and swordfish (B) plotted versus size or latitude according to the considered season: SW
monsoon (full symbols) and NE monsoon (open symbols).
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A) Yellowfin
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Figure 3. Muscle δ13C values from yellowfin tuna (A) and swordfish (B) plotted versus size or latitude according to the considered season: SW 
monsoon (full symbols) and NE monsoon (open symbols).
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Figure 4. Within-season predicted muscle δ15N values (solid lines) from the linear mixed-effects models for yellowfin tuna (A) and swordfish 
(B) plotted versus size or latitude. The original data (open circles) were superimposed on the predicted lines within each season, SW monsoon 
(left side) and NE monsoon (right side).
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Fig 5. Population predicted muscle δ15N and δ13C values from the linear models (linear 
mixed-effects models for δ15N and simple linear models for δ13C) for swordfish (dashed line) 
and yellowfin tuna (full line) plotted versus size  (A) considering two different fixed latitudes 
( 0°N or l0°S); and plotted versus latitude (B) for two different sizes (80cm or 160cm).


