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Abstract 12 

The present study focuses on the sensitivity among freshwater invertebrate species to acidic 13 

stress. Three common macroinvertebrate species in the Vosges Mountains (North-Estern 14 

France), Gammarus fossarum (Amphipoda), Hydropsyche pellucidula (Trichoptera) and 15 

Dinocras cephatotes (Plecoptera) were exposed for 24, 72 and 120 hours to natural acidified 16 

water (pH= 4.73 ± 0.08, [Ca2+]= 39.1 ± 0.6 µmol.L-1, [Altot]= 28.4 ± 1 µmol.L-1). Short-term 17 

exposure to acid stress caused significant decreases both in survival rate and haemolymph 18 

ions ([Cl-] and [Na+]). The relative sensitivity to a natural acidic stress slightly differed among 19 

the species and was in the following order: G. fossarum, as the most sensitive, then H. 20 

pellucidula and D. cephalotes. Results of this study confirm the interest of in situ tests to 21 

assess the toxicity of short-term acid exposure. Finally, our results reinforce the hypothesis 22 

that transient acidification can offset the recovery of sensitive species of macroinvertebrates 23 

in streams chemically recovering from acidification either through liming or declining 24 

deposition. 25 
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 27 

INTRODUCTION  28 

Acidification of freshwater ecosystems related to anthropogenic emissions of SO2 and NOX 29 

has been one of the most striking ecological problems throughout the northern hemisphere 30 

during the 20th century. National and international legislation in the 1980s and 1990s aimed 31 

at reducing the emissions of acidifying pollutants (e.g. Clean Air Act in the USA and the 32 

Convention on Long-Range Transboundary Air Pollution in Europe) have led to the decline in 33 

acidic depositions across wide areas of Europe and North America (Stoddard et al., 1999, 34 

Lawrence et al., 2000, Evans et al., 2001, Likens et al., 2001, Folster and Wilander, 2002). 35 

Consequently, it has been assumed that the 'acidification problem' was solved. However, even 36 

if recent studies have shown that recovery of alkalinity has occurred in several areas of 37 

Europe and North America (Stoddard et al., 1999, Skjelkvale et al., 2001), acidification still 38 

occurs in many areas. (Driscoll et al., 2001, Evans et al., 2001, Wright et al., 2005).  39 

Concomitantly, a decline of base cations (mainly Ca2+ and Mg2+) in soils and surface waters 40 

has been reported in most areas where high rates of sulphur depositions occurred previously 41 

(Likens et al., 1996, 1998, Bouchard, 1997, Lawrence et al., 1999, Castro & Morgan, 2000, 42 

Driscoll et al., 2001, Tessier et al., 2002). If such cation depletion continues, it will represent 43 

another serious threat to aquatic ecosystems. In addition, acidification of aquatic ecosystems 44 

is now reported across other large areas of the world, such as China (Thorjørn et al., 1999, 45 

Tang et al., 2001) and India (Aggarwal et al., 2001). Therefore, it appears that acidification of 46 

soils and water remains an important environmental problem.  47 

One of the most striking consequences of freshwater acidification is the loss of biodiversity 48 

(Muniz, 1991). An ion-regulation failure leading to a severe deficiency of extracellular ions 49 

(i.e. Na+ and Cl-) has been recognised to be the major response in fish to acid stress (Neville, 50 
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1985, Booth et al., 1988, Wood et al., 1988, McDonald et al., 1989, Potts & McWilliams, 51 

1989, Wood, 1989, Masson et al., 2002). Similar results have been also reported in crayfish 52 

(Morgan & McMahon, 1982, Wood & Ronago, 1986, McMahon & Stuart, 1989, Jensen & 53 

Malte, 1990), and molluscs (Malley et al., 1988, Pynnönen, 1990, 1991). 54 

Surprisingly, and despite the numerous papers reporting detrimental effects of acidification on 55 

macroinvertebrate communities, few realistic studies have been performed to assess the 56 

ecophysiology of smaller acid-sensitive species and finally, relatively little is known about 57 

their physiological responses to short-term acid stress. In previous studies (Felten & Guérold, 58 

2001, 2004), we showed that Gammarus fossarum (Crustacea: Amphipoda), a common acid-59 

sensitive species in west Palearctica, also sustained a severe depletion of haemolymph Na+ 60 

and Cl- ions when exposed to acidic conditions. Conjointly, we determined relationship 61 

between acidification level and haemolymph ion losses (Felten & Guérold, 2004).  62 

In order to better understand the ecology of ecosystems recovering from acidification and 63 

because episodic acid-stresses generated by heavy rainfall and snowmelt continue to affect 64 

streams, the purpose of the present study was to investigate and to compare in situ the 65 

physiological responses and survival rates of three common acid-sensitive species to realistic 66 

episodic acid stress.  67 

 68 

MATERIALS AND METHODS 69 

Study sites. The study was performed in the Vosges Mountains (North-Eastern France). Two 70 

headwater streams located in the same area were selected because they presented very similar 71 

morphological characteristics (Table 1) but contrasted buffer capacities: a circumneutral 72 

stream (La Maix) and a strongly acidified stream (Gentil Sapin).  73 

 74 
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Study organisms. Three macroinvertebrate species were selected because they are known to 75 

be acid-sensitive, widespread in European inland waters and easy to collect: Hydropsyche 76 

pellucidula (Trichoptera, Hydropsychidae), Dinocras cephatotes (Plecoptera, Perlidae) and 77 

Gammarus fossarum (Amphipoda, Gammaridae). Organisms were collected by using a net 78 

from a circumneutral stream, La Maix.  79 

  80 

Experimental design. A total of 1728 males of Gammarus fossarum with 8 to 10mm body 81 

lengths were collected. 288 organisms were placed in 2 Plexiglas flow-through enclosures 82 

each consisting of 18 compartments each with 8 organisms. 83 

Conjointly, we used 216 Dinocras Cephalotes and 216 Hydropsyche pellucidula with body 84 

lengths of 20mm and 15 mm respectively. For both species, 36 organisms were placed in 2 85 

Plexiglas flow-through enclosures each consisting of 18 compartments (10-cm long and 5-cm 86 

i.d.) each filled with 1 organism to avoid potential cannibalism.  87 

The enclosures were then transferred to the 2 streams (circumneutral and strongly acid). For 88 

each stream, one enclosure was used for haemolymph analyses and the other for the 89 

assessment of survival. For each stream and species, there were 3 pairs of enclosure each 90 

corresponding to one exposure time (24, 72 and 120 h).  91 

In order to evaluate the initial concentrations of haemolymph Cl- and Na+ in each species, 92 

organisms (12 individuals for G. fossarum, 8 individuals for D. cephalotes and 8 individuals 93 

for H. pellucidula) were sampled in the neutral “native” stream just before the onset of the 94 

experiments (T0, control). At 24, 72 and 120 h after exposure transfer, survival was assessed 95 

and samples of haemolymph from 8 (G. fossarum) or 6 (D. cephalotes, H. pellucidula) 96 

organisms were randomly collected in each stream for analysis (in enclosure corresponding to 97 

exposure time). The organisms were not fed during the experiment. However, the 98 

experimental design allowed drifting material (organic particles, algae and small invertebrates 99 
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< 1 mm) to enter the compartments. For more details concerning enclosure technique see 100 

Felten & Guérold (2004). 101 

 102 

Survival, haemolymph sampling and analysis. The survival was assessed in each stream for 103 

each species and exposure time (G. fossarum: 3 replicates of 48 organisms; D. cephalotes and 104 

H. pellucidula: 3 replicates of 6 organisms).  105 

For D. cephalotes and H. pellucidula samples of haemolymph were taken from the base of the 106 

cephalic capsule with a 5-µl microcapillary tube (n = 6). For G. fossarum, samples were taken 107 

from the telson (n = 8) using a microsyringe and then transferred to a gauged 5-µl 108 

microcapillary. After centrifugation of the microcapillary tubes (10 min at 6596 g), the liquid 109 

phase was diluted in 2 ml of Nanopur water to determine chloride and sodium concentrations 110 

in haemolymph by ionic chromatography (Dionex 4500i with Ion Pac AS4A column) and 111 

atomic absorption spectrophotometry (AAS) (Perkin Elmer Analyst 100), respectively. 112 

 113 

Water analysis. Water was collected at the initiation of the experiment (T0) and at each 114 

exposure time (24, 72 and 120 h). Cations were analysed by flame AAS and anions by ionic 115 

chromatography as described previously. Total aluminium was determined by graphite 116 

furnace AAS (Varian Spectraa 300) after acidification with 0.25% HNO3. Acid neutralising 117 

capacity (ANC) was measured by Gran’s titration and pH (glass electrode), and conductivity 118 

with a multi-parametric equipment (WTW). Chemical characteristics of water of each stream 119 

are given in Table 2. 120 

 121 

Statistical analysis. All data are reported as mean ± SD. Statistical comparisons of 122 

experimental data were performed by two-way analysis of variance (ANOVA) and Ficher’s 123 

Least Significant Difference test (LSD). The analyses were carried out using STATISTICA 124 
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(Microsoft), with a probability limit of p ≤ 0.05 considered as significant. 125 

  126 

RESULTS 127 

To study and compare the effect of acidification on haemolymph [Na+] and [Cl-] and survival 128 

of the 3 species, specimens were transferred from the native circumneutral stream to a 129 

strongly acidified stream. Acidified stream was characterized by low pH (i.e. high [H+]), low 130 

ANC, low [Mg2+] and low [Ca2+] and high [Altot]. Note that, small-scale differences in 131 

mineral composition of the underlying bedrock explain the marked differences in buffering 132 

capacity, ion content and acidification (Table2). The 2-way analysis of variance (ANOVA) 133 

indicated that the factors “exposure time” and “stream” (acidification level) exerted a 134 

significant effect on haemolymph parameters ([Na+], [Cl-]) and survival (Table 3). 135 

 136 

Gammarus fossarum 137 

G. fossarum baseline levels of haemolymph [Cl-] and [Na+] on the onset of the exposure were 138 

61.4 ± 9.2 and 77.5 ± 15.5 mmol.L-1 (mean ± SD), respectively, in control organisms 139 

collected in La Maix (Fig. 1a&b).  140 

Haemolymph [Na+] and [Cl-] in organisms exposed in the circumneutral stream (mean pH = 141 

7.42) remained constant over the 120-h exposure period, but significantly decreased in 142 

organisms exposed in the strongly acidic one (mean pH = 4.73) (Fig. 1a&b). Indeed, in the 143 

acidic stream, the loss of haemolymph Cl- (Fig. 1a) ranged from about 44.4% after 72h (mean 144 

haemolymph [Cl-] = 33.6 ± 4.8 mmol.L-1) to 58.7% after 120 h of exposure (mean 145 

haemolymph Cl- = 23.2 ± 3.7 mmol.L-1) compared with the control (mean haemolymph Cl- = 146 

61.4 ± 9.2 mmol.L-1).  147 

The same trend was observed for haemolymph [Na+] (Fig. 1b). In the acidic stream, the 148 

significant loss of haemolymph Na+ ranged from 48.5% after 72 h of exposure (mean 149 
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haemolymph Na+ = 38.5 ± 6.1 mmol.L-1) to 57.4% after 120 h of exposure (mean 150 

haemolymph Na+ = 31.1 ± 3.5 mmol.L-1) compared with the control (mean haemolymph Na+ 151 

= 77.5 ± 15.5 mmol.L-1). 152 

For each exposure time, the survival rate in G. fossarum transferred to the circumneutral 153 

stream (La Maix) remained very high and above 96%. On the contrary, the survival rate in 154 

organisms exposed to acidic water significantly decreased from 79.9 ± 10.8% after 24h of 155 

exposure to 20.5 ± 6.2 % after 120h of exposure (Fig. 1c).  156 

 157 

Hydropsyche pellucidula 158 

 As observed for G. fossarum, the factors “exposure time” and “stream” (acidification level) 159 

exerted a significant effect on haemolymph parameters ([Na+], [Cl-]) and survival (2-way 160 

ANOVA, Table 3). H. pellucidula baseline levels of haemolymph [Cl-] and [Na+] on the 161 

onset of the exposure were 37.2 ± 5.7 and 132.2 ± 8.8 mmol.L-1 (mean ± SD) respectively, in 162 

control organisms collected in the neutral stream (Fig. 2a&b).  163 

Haemolymph [Na+] and [Cl-] in organisms exposed into the circumneutral stream remained 164 

constant over the 120-h exposure period, but significantly decreased in organisms exposed to 165 

the strongly acidic stream. Indeed, in the acidic stream, the loss of haemolymph Cl- ranged 166 

from 33.6% after 24 h of exposure (mean haemolymph [Cl-] = 23.5 ± 6.3 mmol.L-1) to 51% 167 

after 120 h of exposure (mean haemolymph Cl- = 16.7 ± 5.6 mmol.L-1) compared with the 168 

control (mean haemolymph Cl- = 37.2 ± 5.7 mmol.L-1) (Fig. 2a).  169 

A similar trend was observed for haemolymph [Na+]. In the acidic stream, the significant loss 170 

of haemolymph Na+ ranged from 12.1% after 24 h of exposure (mean haemolymph Na+ = 171 

120.7 ± 5.3 mmol.L-1) to 20.8% after 120 h of exposure (mean haemolymph Na+ = 100.5 ± 172 

9.2 mmol.L-1) compared with the control (mean haemolymph Na+ = 132.2 ± 8.8 mmol.L-1) 173 

(Fig. 2b). 174 
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Throughout the exposure period the survival rate in H. pellucidula transferred to the 175 

circumneutral stream remained very high and above 94%. In contrast, survival decreased 176 

significantly in organisms exposed to the acidic stream, where the survival rate ranged from 177 

72.2 ± 9.6% after 24h of exposure to 58.3 ± 14.4 % after 120h (Fig. 2c).  178 

 179 

Dinocras cephalotes 180 

The exposure time had a significant effect on haemolymph  [Cl-] and [Na+] and survival, but a 181 

significant effect of stream was only observed on [Cl-] and survival (2-way ANOVA, Table 182 

3). D. cephalotes baseline levels of haemolymph [Cl-] and [Na+] on the onset of the exposure 183 

were 126.6 ± 12.6 and 133.0 ± 6.8 mmol.L-1 (mean ± SD), respectively, in control organisms 184 

collected in the neutral stream (Fig. 3a&b).  185 

Haemolymph [Na+] and [Cl-] in D. cephalotes exposed into the circumneutral stream 186 

remained constant over the 120-h exposure period. In organisms exposed into the acidic 187 

steam, a significant loss was observed only after 120h of exposure. The loss of haemolymph 188 

Cl- and Na+ reached respectively 20.6% (mean haemolymph [Cl-] = 96.7 ± 17.3 mmol.L-1) 189 

and 13.1% (mean haemolymph Na+ = 109.3 ± 22.2 mmol.L-1) compared with the control 190 

(mean haemolymph Cl- = 126.6 ± 12.6 mmol.L-1; mean haemolymph Na+ = 133.0 ± 6.8 191 

mmol.L-1).  192 

No mortality was observed in D. cephalotes transferred to the circumneutral stream (La Maix) 193 

during the experiment. Survival rate in organisms exposed to the acidic stream remained also 194 

high after 24h, but decreased significantly after 72h and 120h exposure (reaching 83.3 ± 195 

8.3%, Fig. 3c).  196 

 197 

Species sensitivity comparison 198 

The baseline level of haemolymph [Cl-] in D. cephalotes was respectively 2 and 3.5 times 199 
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higher than in G. fossarum and H. pellucidula. Haemolymph [Na+] baseline levels in D. 200 

cephalotes an H. pellucidula were similar and 1.8 times higher than in G. fossarum. 201 

Haemolymph [Na+] was always higher than [Cl-] representing a difference of 5%, 21.7% and 202 

74.4% in D. cephalotes, G. fossarum and H. pellucidula, respectively.  203 

Under the experimental conditions of this study, D. cephalotes was the least acid-sensitive 204 

species, since it presented the lowest ion losses and mortality rate. G. fossarum was the most 205 

acid-sensitive species, showing both the highest losses of ions and mortality.  206 

 207 

DISCUSSION 208 

Over recent years, the loss of biodiversity has become a major concern (see Gaston, 2000, 209 

Loreau et al., 2001, Naeem et al., 1999). Acidification of freshwater due to anthropogenic 210 

activities has been recognized as an important cause of biodiversity loss in ecosystems located 211 

in remote areas. In the Vosges Mountains, acidification of headwater streams has been 212 

identified as being the major threat to aquatic biota. Acidified streams are strongly 213 

impoverished. For example, macroinvertebrate communities have lost between 50 and 70% of 214 

the original species (Guérold et al., 2000).  215 

Although all major taxonomic groups are affected by acidification, species sensitivity appears 216 

different among macroinvertebrates groups. Studies carried out in Europe and in North 217 

America have highlighted the high sensitivity of molluscs, Ephemeroptera and crustacean 218 

(Hall et al., 1980, Harriman & Morison, 1982, Sutcliffe, 1983, Engblom & Lingbell, 1984, 219 

Perterson et al., 1985, Guérold et al., 2000). The response of Trichoptera to acidification is 220 

more variable: several species disappear (e.g Hydropsyche sp.) whereas some others exhibit 221 

higher densities (e.g. Plectrocnemia conspersa). Thus, many works have reported the acid-222 

sensitivity of Hydropsychidae and Philopotamidae as well as the acid-tolerance of 223 

Plectrocnemia, Rhyacophyla and Limnephilidae (Sutcliffe & Carrick, 1973, Ziemann, 1975, 224 
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Harriman & Morrison, 1982, Havas & Hutchinson, 1982, Townsend et al., 1983, Raddum & 225 

Fjellheim, 1984, Simpson et al., 1985). Although Perlidae (e.g., Dinocras cephalotes) and, to 226 

a lesser extent, Perlodidiae are recognized as being acid-sensitive, the majority of Plecoptera 227 

(especially Nemouridae and Leuctridae) are acid-tolerant and can be very abundant in acid 228 

streams (Sutcliffe & Carrick, 1973, Raddum & Fjellheim, 1984, Tixier & Guérold, 2005).  229 

The toxicity of acid water seems to be the principal hypothesis (often referred to as the 230 

ecotoxicological hypothesis) explaining the loss of species. In the present study we showed 231 

that a short-term exposure of G. fossarum, H. pellucidula and D. cephalotes to strongly 232 

natural acidic water caused significant losses of haemolymph [Na+] and [Cl-] accompanied by 233 

significant mortality. However, the intensity and rapidity of ion loss depends on the species 234 

considered: in G. fossarum and H. pellucidula significant ion losses occurred as early as 24h 235 

of exposure in an acidic stream whereas in D. cephalotes a significant decrease of 236 

haemolymph [Cl-] and [Na+] was observed only after 120h of exposure.  237 

The magnitude of ion loss also differs among species: after 120h of exposure in acidic stream, 238 

haemolymph [Cl-] and [Na+] losses reached respectively 58.7% and 57.4% in G. fossarum, 239 

51% and 20.8% in H. pellucidula and only 20.6% and 13.1% in D. cephalotes. Similarly, the 240 

lowest survival rate was observed for G. fossarum (20.5%), the highest for D. cephalotes 241 

(83.3%) whereas it was intermediate for H. pellucidula (58.3%). 242 

Although some studies have clearly identified a depletion of ion concentrations in invertebrate 243 

exposed to acidic waters, most of these studies were performed on moderately acid-sensitive 244 

species (Corixia dentipes, C. punctata: Vangenechten et al., 1989; Cenocorixia blaisdelli: 245 

Needham, 1990; Libellula julia: Rockwood & Coler, 1991; Pteronarcys proteus: Leichleitner 246 

et al., 1985) and/or on organisms experimentally exposed to conditions that were not 247 

environmentally meaningful; e.g. pH 2.8-3.0 (Lechleitner et al., 1985; pH 3.0, Rupprecht, 248 

1992) or aluminium concentrations of 30 mg.L-1 (Rockwood & Coler, 1991). Similar results 249 
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have also been obtained from pooled samples of haemolymph (Needham, 1990) or from 250 

whole body analyses (Hermann, 1987, Rowe et al. 1988, 1989, Havens, 1992). 251 

Because of the protocol and the realistic in situ conditions of exposure, our results study 252 

provides more rigorous results and consolidates the experimental studies previously 253 

mentioned (see above). There is no doubt that significant ion loss and mortality in acid 254 

sensitive species can be induced by short exposures to acidic stresses. This is particularly 255 

pertinent to running water ecosystems experiencing acute acid stresses that are, for most of 256 

the time, within the pH range that could sustain such taxa. For example, in the Vosges 257 

Mountains, several circumneutral streams draining sandstone are subjected to rare acid 258 

stresses. These streams exhibit communities of invertebrates that are rather typical of 259 

moderately acidified streams despite their average chemical characteristics.  260 

Depending on their duration, magnitude and frequency, such acid stresses can lead to the loss 261 

of sensitive species or simply impair their abundances. This has been recently evidenced by 262 

Lepori and Ormerod (2005) who have shown that the distribution and the density of the 263 

bivoltine species, Baetis alpinus (Ephemeroptera) in areas subjected to acidification in the 264 

Alps, depend on the toxicity of acid run-off during snowmelt. However, concerning species 265 

which are monovoltine or semi-voltine, repeated acid stresses are more likely to eradicate 266 

them from sensitive ecosystems.  267 

Finally, our results sustain the hypothesis proposed by Bradley and Ormerod (2002) that short 268 

episodes of low pH can offset the recovery of sensitive species of macroinvertebrates in 269 

streams that have chemically recovered from acidification following catchment liming.  270 

Understanding both the biological effect and ecological consequences of episodic acidity has 271 

real management implications in defining strategies. Given the general context of recovery 272 

from acidification, in response to reduced acidic depositions as well as following liming, the 273 

use of physiological variables such as haemolymph [Cl+] and [Na-], would be helpful to 274 
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predict whether the ecosystem meets again the chemical quality that can allow the re-275 

colonization of acid-sensitive species. Likewise, the development and the use of methods 276 

based on macroinvertebrate communities would provide important information of ecological 277 

relevance (for example on the settlement of sensitive species populations and the 278 

sustainability of these populations). Finally, in the context of ecological toxicology (sensu 279 

Chapman, 2002) a combination of both approaches would greatly enhance the pertinence of 280 

biological monitoring with minimal uncertainty, especially in national or international survey 281 

programs aiming to assess the consequences of the reduction of atmospheric emissions of 282 

acidic pollutants as well as the effectiveness of liming.  283 
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 490 

 491 

Figure 1. Mean (±SD) [Cl-] haemolymph (a), [Na+] haemolymph (b), and survival (c) of 492 

Gammarus fossarum exposed to circumneutral and acidic water. Significant differences 493 

against T0 are indicated by asterisks (Ficher’s Least Significant Difference test; * : p < 0.05; 494 

** : p < 0.01; *** : p < 0.001).    495 
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 516 

Figure 2. Mean (±SD) [Cl-] haemolymph (a), [Na+] haemolymph (b), and survival (c) of 517 

Hydropsyche pellucidula exposed to circumneutral and acidic water. Significant differences 518 

against T0 are indicated by asterisks (Ficher’s Least Significant Difference test; * : p < 0.05; 519 

** : p < 0.01; *** : p < 0.001).  520 
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 541 

Figure 3. Mean (±SD) [Cl-] haemolymph (a), [Na+] haemolymph (b), and survival (c) of 542 

Dinocras cephalotes exposed to circumneutral and acidic waters. Significant differences 543 

against T0 are indicated by asterisks (Ficher’s Least Significant Difference test; * : p < 0.05; 544 

** : p < 0.01; *** : p < 0.001).   545 
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stream name La Maix Gentil Sapin
stream order 2 2
elevation (m) 439 501
distance from spring (m) 3870 3280
latitude N 48°29'02.1" 48°26'56.8"
longitude E 007°04'08.5" 007°03'33.5"
width (m) 1.8 2.3
depth (m) 0.35 0.30

Table 1. Description of the two study sites. 546 
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Table 2. Mean (±SD) values of various chemicals of each exposure stream (n=4). ANC: Acid 576 

Neutralizing Capacity. 577 
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 595 
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 598 

 599 

Mean SD Mean SD
pH 7,42 0,13 4,73 0,08
Temperature (°C) 11,9 0,7 14,0 1,5
conductivity (µS.cm-1) 74,3 4,3 31,5 2,4
ANC (µeq.L-1) 618,3 13,5 -15,5 7,0
Ca2+ (µmol.L-1) 222,9 3,1 39,1 0,6
Mg2+ (µmol.L-1) 188,3 0,8 28,6 0,2
Na+ (µmol.L-1) 64,1 0,4 49,4 1,4
K+ (µmol.L-1) 56,4 0,3 35,4 1,3
SO4

2- (µmol.L-1) 75,7 0,6 62,5 0,8
NO3

- (µmol.L-1) 60,0 0,9 88,5 1,1
Cl- (µmol.L-1) 54,0 0,6 44,9 0,7
Total Al (µmol.L-1) 2,1 0,4 28,4 1,0

La Maix Gentil Sapin
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Table 3. Summary of the 2-way analysis of variance. F : F ratio ; p : probability; d.f. : degrees 600 

of freedom. 601 

 602 

d.f. F p d.f. F p d.f. F p

a) Gammarus fossarum
Factor a (Stream) 1 79,4 < 10-3 1 99,3 < 10-3 1 228,3 < 10-3

Factor b (Exposure time) 3 18,1 < 10-3 3 20,1 < 10-3 3 54,2 < 10-3

Interaction 3 10,7 < 10-3 3 14,2 < 10-3 3 47,2 < 10-3

b) Hydropsyche pellucidula
Factor a (Stream) 1 32,3 < 10-3 1 28,9 < 10-3 1 33,0 < 10-3

Factor b (Exposure time) 3 12,9 < 10-3 3 9,3 < 10-3 3 6,7 < 5*10-5

Interaction 3 6,8 < 10-3 3 5,9 < 5*10-5 3 3,9 < 10-2

c) Dinocras cephalotes
Factor a (Stream) 1 5,4 < 10-2 1 3,0 n.s. 1 16,8 < 10-3

Factor b (Exposure time) 3 4,9 < 5*10-5 3 3,7 < 10-2 3 3,5 < 10-2

Interaction 3 2,0 n.s. 3 0,8 n.s. 3 3,5 < 10-2

[Cl-] haemolymph [Na+] haemolymph Survival


