Uniqueness and existence of spirals moving by forced mean curvature motion

Abstract : In this paper, we study the motion of spirals by mean curvature type motion in the (two dimensional) plane. Our motivation comes from dislocation dynamics; in this context, spirals appear when a screw dislocation line reaches the surface of a crystal. The first main result of this paper is a comparison principle for the corresponding parabolic quasi-linear equation. As far as motion of spirals are concerned, the novelty and originality of our setting and results come from the fact that, first, the singularity generated by the attached end point of spirals is taken into account for the first time, and second, spirals are studied in the whole space. Our second main result states that the Cauchy problem is well-posed in the class of sub-linear weak (viscosity) solutions. We also explain how to get the existence of smooth solutions when initial data satisfy an additional compatibility condition.
Type de document :
Article dans une revue
Interfaces and Free Boundaries, European Mathematical Society, 2012, 14 (3), pp.365-400. 〈10.4171/IFB/285〉
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00452241
Contributeur : Cyril Imbert <>
Soumis le : jeudi 14 juillet 2011 - 17:40:38
Dernière modification le : mercredi 25 avril 2018 - 01:22:04
Document(s) archivé(s) le : samedi 15 octobre 2011 - 02:20:13

Fichiers

FIM-spirales-hal3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Forcadel, Cyril Imbert, Régis Monneau. Uniqueness and existence of spirals moving by forced mean curvature motion. Interfaces and Free Boundaries, European Mathematical Society, 2012, 14 (3), pp.365-400. 〈10.4171/IFB/285〉. 〈hal-00452241v3〉

Partager

Métriques

Consultations de la notice

460

Téléchargements de fichiers

93