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Abstract: In this paper, we formulate the problem of sam-
pling sparse signals in fractional Fourier domain. The
fractional Fourier transform (FrFT) can be seen as a gen-
eralization of the classical Fourier transform. Extension
of Shannon’s sampling theorem to the class of signals
which are fractional bandlimited shows its association to
a Nyquist-like bound. Thus proving that signals that have
a non-bandlimited representation in FrFT domain cannot
be sampled. We prove that under suitable conditions, it is
possible to sample sparse (in time) signals by using theFi-
nite Rate of Innovation(FRI) signal model. In particular,
we propose a uniform sampling and reconstruction proce-
dure for a periodic stream of Diracs, which have a non-
bandlimited representation in FrFT domain. This gener-
alizes the FRI sampling and reconstruction scheme in the
Fourier domain to the FrFT domain.

1. Introduction

Shannon’s sampling theorem [1] provides access to the
digital world. Our understanding of this sampling theorem
together with the reconstruction formula is solely based
on the frequency content of the signal of interest. This is
where the indispensable Fourier transform comes into the
picture.
Almeida [2] introduced the fractional Fourier transform
or the FrFT–a generalization of the Fourier transform–to
the signal processing community in 1994. The general-
ization of the Fourier transform by FrFT has several inter-
esting consequences from the signal processing perspec-
tive. For instance, non-bandlimited signals in the Fourier
domain can still have a compactly supported representa-
tion in FrFT domain [3], when dealing with non stationary
distortions, the FrFT based filters can perform better than
Fourier domain based filters (in sense of mean square er-
ror) [4] etc. To give the reader an idea about the growing
popularity of FrFT, it would be worth mentioning that on
at least eight occasions including, [3, 5, 6, 7, 8, 9, 10, 11],
Shannon’s sampling theorem [1, 12] was independently
extended to the class of fractional bandlimited signals. In
[13], the FrFT of a signal or a function, sayx(t), is defined
by

x̂θ (ω) = FrFT{x(t)} =

∫
x(t)Kθ(t, ω)dt (1)

where

Kθ(t, ω)
def
=





√
1−j cot θ

2π ej t
2+ω

2

2 cot θ−jωt csc θ, θ 6= pπ

δ(t− ω), θ = 2pπ
δ(t + ω), θ + π = 2pπ

(2)

is the transformation kernel, parametrized by the frac-
tional orderθ ∈ R andp is some integer.
The FrFT of a time-frequency representation e.g. Gabor
Transform results in rotation of the plane by the fractional
order of the FrFT [2]. Thus, we denote fractional order by
θ and from now on, we will use fractional order and angle
interchangeably. The inverse-FrFT with respect to angleθ
is the FrFT at angle−θ, given by,

x(t) =

∫ ∞

−∞

x̂θ (ω) K−θ (t, ω) dω. (3)

Wheneverθ = π/2, (1) collapses to the classical Fourier
transform definition. A direct consequence of the gener-
alization of the Fourier transform by the FrFT results in a
modification in the idea of bandlimitedness. Its impact is
visible in the change that manifests in Shannon’s sampling
theorem for fractional bandlimited signals [11], which is
stated in Theorem 1.

Theorem 1 (Shannon–FrFT). Let x(t) be a continuous-
time signal. If the spectrum ofx(t), i.e. x̂θ(ω) is frac-
tional bandlimited toωm which means,̂xθ(ω) = 0, when
|ω| > ωm, then x(t) is completely determined by giv-
ing its ordinates at a series of equidistant points spaced
T = π

ωm
sin θ seconds apart.

This theorem has an equivalence to the Shannon’s sam-
pling theorem forθ = π/2. The reconstruction formula
for fractional bandlimited signals is given in [11],

x(t) = λ∗
θ (t)

∑

n∈Z

λθ (nT ) x(nT )sinc((t− nT ) ωm csc θ)

(4)

whereλθ (·) def
= ej(·)2 cot θ

2 is a domain independent chirp
modulation function and the ‘*’ in the superscript denotes
complex conjugation. If̃x (t) is the approximation of
x(t), then‖x̃ (t)− x(t)‖2 = 0 whenωm 6 ωs

2 sin θ–the
Nyquist rate for FrFT–whereωs = 2π/T is the sampling
frequency. Note that all the aforementioned results are
equivalent to Shannon’s sampling theorem with respect to



Fourier domain forθ = π/2. Theorem 1 (for FrFT) has
a striking similarity with the Shannon’s sampling theorem
(for FT), in that, sampling non-bandlimited signals is im-
possible. Consider Dirac’s delta function orδ(t). Using
(2), we have,

δ̂θ(ω) = FrFT{δ (t)} =
√

1−j cot θ
2π λθ (ω) (5)

which is a non-bandlimited function (and least sparse
when compared to the time-domain counterpart) and thus,
Theorem 1 fails to answer the following question: Ifx(t)
is a fractional non-bandlimited signal, then, how can we
sample and reconstruct such a signal? To make this state-
ment clear, we introduce the fractional convolution opera-
tor, which is denoted by ‘∗θ∗θ∗θ ’. Accordingly, filteringx(t)
by a filter,h(t), in ‘fractional sense’1 is equivalent to [14],

x(t)∗θh(t) =
√

1−j cot θ
2π λ∗

θ(t)·([x(t)λθ(t)] ∗ [h(t)λθ(t)])
(6)

where ‘∗’ denotes the usual convolution operator. In light
of this definition, we wish to address the problem of re-
coveringparsimoniousx(t) from the samples of its fil-
tered version, i.e.,y(nT ) = x(t) ∗θ h(t)|t=nT , n ∈ Z.
This problem has a natural/strong link with that of sparse
sampling [15, 16, 17]. The Heisenberg-Gabor uncertainty
principle for the FrFT [18] (a generalization of the Fourier
duality) asserts that the product of spreads ofx̂θ (ω) and
x(t) has a lower bound which is proportional tosin2 θ

4 (as-
suming that‖x‖ = 1). This implies that sparsity in one
domain will lead to loss of compact support in canonically
conjugate domain.
Our contribution in this article is to propose a sampling
and reconstruction scheme for signals which have a sparse
representation in time domain and whose fractional spec-
trum is non-bandlimited. We model our sparse signal as
a continuous periodic stream of Diracs which is being
observed by an acquisition device which deploys asinc-
based filter.
The paper is organized as follows: We assume that the
reader is familiar with basic ideas outlined in [12, 16, 17].
In Section II, we introduce our sparse signal model and
the definition of the fractional Fourier series (FrFS). Us-
ing these as preliminaries, in Section III, we derive an
equivalent representation of our signal in FrFT domain.
In Section IV, we discuss the sampling theorem and its
completeness and Section V is the conclusion.

2. Preliminaries

2.1 Sparse Signal Model

We model our sparse signal as a periodic stream ofK
Diracs, i.e.

x(t) =

K−1∑

k=0

ck

∑

n∈Z

δ(t− tk − nτ) (7)

1We adhere to this modified definition of convolution opera-
tor as it inherits the fractional Fourier duality property,in that,
FrFT{x(t) ∗θ h(t)} = λ∗

θ
(ω) · x̂θ(ω)ĥθ(ω), which does not hold for

the FrFT ofx(t) ∗ h(t) unlessθ = π

2
.

with period τ , weights {ck}K−1
k=0 and arbitrary shifts,

{tk}K−1
k=0 ⊂ [0, τ). In sense of [16], the signal has2K

degrees of freedom per period and the rate of innovation
beingρ = 2K

τ . From now on, the signalx(t) will denote
the stream of Diracs.

2.2 Fractional Fourier Series (FrFS)

Periodic signals can be expanded in FrFT domain as a
fractional Fourier series or FrFS [19]. The FrFS of a peri-
odic signal, sayx(t), can be written as,

x(t) =
∑

m∈Z

x̂θ[m]Φθ(m, t) (8)

where,

Φ∗
θ(m, t) =

√
sin θ − j cos θ

τ
ej

t
2+(2πm sin θ/τ)2

2 cot θ−j2πmt/τ

constitutes the basis for FrFS expansion for aτ -periodic
x(t). The FrFS coefficients are given by,

x̂θ[m] =

∫

〈τ〉

x(t)Φ∗
θ(m, t)dt = 〈x,Φθ(m, ·)〉 (9)

where 〈τ〉 denotes the integral width and〈a, b〉 =∫
a(t)b∗(t)dt denotes the inner product. The well-known

Fourier series (FS) is just a special case of FrFS forθ = π
2 .

3. Stream of Diracs in Fractional Fourier
Domain

In Fourier analysis, the Poisson summation formula (PSF)
plays an important role. It is a well-known fact that a
stream of Diracs (Dirac comb) in time-domain is another
stream of Diracs in Fourier domain. In this subsection, we
will derive the equivalent representation of Dirac comb in
FrFT domain. This can be seen as a generalization of the
Poisson summation formula for Dirac comb in FrFT do-
main.

Theorem 2. Let
∑

n∈Z
δ(t− nτ) be a Dirac comb, then

∑

n∈Z

δ (t− nτ)
FrFT←→

1

τ

√
2π

1−j cot θ

∑

k∈Z

δ̂θ [kω0 sin θ] e
−j

(
t2+

(kω0 sin θ)2

2

)
cot θ+jkω0t

whereω0 = 2π
τ .

Proof. Let s(t)
def
=
∑

n∈Z
δ(t− nτ). The proof is done

by expandings(t) in FrFS basis or,

s(t) =
∑

k∈Z

〈s,Φθ〉︸ ︷︷ ︸
ŝθ[k]

Φθ (k, t). (10)



The coefficients of this expansion are given by,

ŝθ [k]
(9)
= 〈s,Φθ (k, t)〉

=
κ (θ)√

τ

t0+τ∫

t0

s (t) Φ∗
θ (k, t) dt, ∀t0 ∈ R

=
κ (θ)√

τ

τ/2∫

−τ/2

δ (t) ej(t2+(kω0 sin θ)2/2) cot θ−jkω0tdt

(sinces(t + τ) = s(t) ands(t) = δ (t) , t ∈
[
−τ
2 , τ

2

]
)

=
κ (θ)√

τ
ej((kω0 sin θ)2/2) cot θ

(5)
=

κ (θ)√
τ

√
2π

1− j cot θ
δ̂θ [kω0 sin θ] (11)

whereκ (θ) =
√

sin θ − j cos θ. Back substitution of (11)
in (10) results in,

s(t) =
1

τ

√
2π

1−j cot θ

×
∑

k∈Z

δ̂θ [kω0 sin θ] e
−j

(
t2+

(kω0 sin θ)2

2

)
cot θ+jkω0t

.

This concludes the proof. �

For sake of convenience, we will assume that the constant√
1−j cot θ

2π has been absorbed inτ . Note that atθ = π
2 ,

s(t) = 1
τ

∑
k∈Z

ejkω0t which is the result of applying the
PSF ons(t) in Fourier domain. Our immediate goal now
is to derive the FrFS equivalent ofx(t) in (7). Sincex(t)
is a linear combination of somes(t) delayed by some time
shift tk, it will be useful to recall shift property of FrFT [2]
which states that,

FrFT{s (t− tk)}

= ŝθ (ω − tk cos θ) ej
1
2 t2

k
sin θ cos θ−jωtk sin θ. (12)

Therefore, callx(t) =
∑K−1

k=0 ck · sk(t) wheresk(t) is the
time-shifted version ofs(t) with shift parametertk. Using
Theorem 2 and the shift-property of FrFT, we have,

sk(t) =
∑

n∈Z

δ(t− tk − nτ)

(8)
=
∑

m∈Z

FrFT{ δ(t− tk)} |ω=mω0 sin θΦθ (m, t)

(12)
=

1

τ

∑
m∈Z

ej cot θ

2 (t2
k
−t2)+jmω0(t−tk)

︸ ︷︷ ︸
PSF for Dirac Comb in FrFT

.

Having obtained the FrFT-version ofsk(t), we can write,

x(t) =

K−1∑

k=0

ck ·
∑

n∈Z

δ(t− tk − nτ)

=
K−1∑

k=0

ck

∑

m∈Z

ej cot θ

2 (t2
k
−t2)+jmω0(t−tk)

= e−jt2 cot θ

2

∑

m∈Z

1

τ

(
K−1∑

k=0

ckej cot θ

2 (t2
k)−jmω0tk

)

︸ ︷︷ ︸
p[m]

ej 2πm

τ
t.

Note thatx(t) is non-bandlimited, however, it can be com-
pletely described by the knowledge ofp[m] which in turn
can be expanded as a linear combination ofK complex
exponentials.

4. Sampling and Reconstruction of Sparse
Signals in Fractional Fourier Domain

We assume that asinc–based kernel is used to pre-
filter x(t). In particular, we let the sampling ker-

nel to be ϕn(t) = e−j
cot θ

2 t2 sinc(t − nT ). Inte-
ger translates ofϕn(t) form an orthonormal basis and
the FrFT of ϕ(t)(= ϕ0(t)) is given by ϕ̂θ(ω) =√

1−j cot θ
2π

(
e−j

cot θ
2 ω2

)
rect(ω/2π). In light of the def-

inition in (6), prefiltering the input signalx(t) with the
kernel/low-pass filterϕ(−t) and sampling can be written
as,y (nT ) = x(t) ∗θ ϕ(−t)|t=nT . The main result is in
the form of the following theorem.

Theorem 3. Let x(t) be a τ -periodic stream of Diracs
weighted by coefficients{ck}K−1

k=0 and locations{tk}K−1
k=0

with finite rate of innovationρ = 2K
τ . Let the sampling

kernel/prefilterϕ(t) be an ideal low-pass filter which has
fractional bandwidth[−Bπ,Bπ], whereB is chosen such
that B ≥ ρ. If the filtered version ofx(t), i.e. y(t) =
x(t) ∗θ ϕ(−t) is sampled uniformly at locationst = nT ,
n = 0, . . . , N − 1 then the samples,

y (nT ) = x(t) ∗θ ϕ (−t)|t=nT , n = 0, . . . , N − 1,

are a sufficient characterization ofx(t), provided that
N ≥ 2Mθ + 1 andMθ =

⌊
Bτ csc θ

2

⌋
.

Proof. Using the following FrFT pair,
√

1−j cot θ
2π λ∗

θ (ω) · rect( ω
2πB )

FrFT←→
(B csc θ) λ∗

θ (t) sinc (Bt csc θ)

we define our sampling kernel as,

ϕB(t− nT ) = λ∗
θ (t) ϕ (B csc θ (t− nT ))

which is compactly supported over[−Bπ,Bπ]. Prefilter-
ing and samplingx(t) results in,

y (nT ) = x(t) ∗θ ϕ (−t)|t=nT , n = 0, . . . , N − 1

=
λ∗

θ (nT )

τ

∑

m∈Z

p[m]

×
〈
ej 2πm

τ
t, (B csc θ) sinc ((B csc θ) (t− nT ))

〉
.

The inner product in the above step is further simplified
using the Fourier integral,

〈
ej 2πm

τ
t, (B csc θ) sinc ((B csc θ) (t− nT ))

〉
=

rect( m
Bτ csc θ )ej 2πm

τ
(nT ).

We can therefore conclude that,

y (nT ) =
λ∗

θ (nT )

τ

∑

m∈Z

p[m] rect( m
Bτ csc θ )ej 2πm

τ
(nT )

=
λ∗

θ (nT )

τ

Mθ∑

m=−Mθ

p[m]ej 2πm

τ
(nT ), n = 0, . . . , N − 1



Figure 1: Sampling and reconstruction of periodic stream ofDiracs in FrFT domain.

whereMθ =
⌊

Bτ csc θ
2

⌋
.

Signal reconstruction from its samples: Call p[m] =∑K−1
k=0 akum

k – a linear combination ofK-complex ex-
ponentials,uk = λ∗

π/2

(√
ω0tk

)
with weights ak =

ck · λθ (tk). The problem of calculating{ak}K−1
k=0

and {uk}K−1
k=0 is based on finding a suitable polyno-

mial A(z) =
∏K−1

k=0

(
1− ukz−1

)
whose inversez-

transform yields the annihilating filter coefficients,A[m]
which annihilatep[m]. In matrix notation, findingA[m]
is equivalent to finding a corresponding vectorA that
forms a null space of a suitable submatrix ofp[m]

i.e. P(2Mθ−K+1)×(K+1) – which is essentially the set
Null(P) =

{
A ∈ R

K+1 : P · A = 0
}

. For details of this
computation, the reader is referred to (cf. Pg. 1427, [16]).
Figure 1 shows the layout of this algorithm. �

5. Conclusion

We presented a scheme for sampling and reconstruction
of sparse signals in fractional Fourier domain. A direct
consequence of modeling our signal of interest as aFinite
Rate of Innovationsignal, is that, the outcome bears an
acute resemblance with the results previously derived, for
the Fourier domain case. This simplifies the problem to
the extent that reconstruction strategy remains unchanged
and as we have shown, one can obtain the precise locations
and amplitudes of the stream of Diracs using the annihi-
lating filter method. Since time and frequency domains
are special cases of the FrFT domain, it turns out that the
number of values (Mθ) required for exact reconstruction
of time domain signal depends on the chirp rate of trans-
formation, i.e.θ.
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