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1. Introduction ticular, the results of [5, 11, 8, 17, 14] strongly support
(also apparently do not accurately formulate and prove)

This paper presents some results on a well-known problenine follpwing conjjecture: _ .

in Algebraic Signal Sampling and in other areas of applied There_ is a non-llnear algel_aralc procedure_reconstructmg
mathematics: reconstruction of piecewise-smooth func-any signal in a class of piecewige®-functions (of one
tions from their integral measurements (like moments, O Several variables) from its firs Fourier coefficients,
Fourier coefficients, Radon transform, etc.). Our resultsWith the overall accuracy of ordez . This includes the
concern reconstruction (from the moments) of signals in discontinuities’ positions, as well as the smooth pieces
two specific classes: linear combinations of shifts of a OVer the continuity domains. _

given function, and “piecewis®-finite functions” which At present there are many approaches available to a robust

satisfy on each continuity interval a linear differential detection of discontinuities from Fourier data (see [8, 5,
equation with polynomial coefficients. 11] and references therein). The remaining problem seems

. . to be an accurate estimate of the accuracy of the solution
Let us start with some general remarks and a conjecture,

Itis well known that the error in the best approximation of of the nonlinear systems arising. Our results below can be

aC*-function f by anN-th degree Fourier polynomial is considered, in particular, as a step in this direction. On

of order C-. The same holds for algebraic polynomial the other hand, they have been motivated by the results in
NE* .

approximation and for other basic approximation tools. [4.12, 14] andin [9, 6].

However, forf with singularities, in particular, with dis- . L . .
continuities, the error is much larger: its order is 0%. 2. Linear combinations of shifts of a given

Considering the so-called KolmogoraW-width of fam- function

ilies of signals with moving discontinuities one can show
thatany linear approximation method provides the same
order of error, if we do not fix a priori the discontinuities’
position(see [7], Theorem 2.10). Another manifestation
of the same problem is th&ibbs effect” - a relatively

Reconstruction of this class of signals from sampling has

been described in [4, 12]. We study a rather similar prob-

lem of reconstruction from the moments. Our method is

based on the following approach: we construct convolu-

strong oscillation of the approximating function near the tion kernels dual to the monomials. Applylng these ker—

discontinuities Practically important signals usually do nels, we QEt a Prony-type system of equations on the shifts
and amplitudes.

have discontinuities, so the above feature of linear rep- ot Us restate a aeneral reconstruction problem. as it a
resentation methods presents a serious problem in signalr g P ' P

reconstruction. In particular, it visibly appears near the pears in our specific setting. We want to reconstruct sig-

edges of images compressed by JPEG, as well as in th&2S Of the form

noise and low resolution of the CT and MRI images. N W i

Recent non-linear reconstruction methods, in particular, Fz) = Zzai’j’lfi (2 +27) (1)
Compressed Sensing ([2, 3]) and Algebraic Sampling =1

([4, 12, 14, 6, 9]), address this problem in many cases.where thef;’s are known functions of = (z1,...,z4),
Both approaches appeal to an a priori information on theand the form (1) of the signal is known a priori. The pa-
character of the signals to be reconstructed, assumingameterss; ;;, =7 = (z1,...,z7) are to be found from a

their “simplicity” in one or another sense. Compressed finite number of “measurements”, i.e. of linear (usually
sensing assumes only a sparse representation in a ceintegral) functionals like polynomial moments, Fourier
tain (wavelets) basis, and thus it presents a rather generahoments, shifted kernels, evaluation over some grid and
and “universal” approach. Algebraic Sampling usually re- more.

quires more specific a priori assumptions on the structureln this paper we consider only linear combinations of
of the signals, but it promises a better reconstruction ac-shifts of one known functionf (although the method
curacy. In fact, we believe that ultimately the Algebraic of “convolution dual” can be extended to several shifted
Sampling approach has a potential to reconstruct “simplefunctions and their derivatives - see [16]). First we con-
signals with singularities” as good as smooth ones. In par-sider general integral “measurements” and then restrict



ourselves to the moments and Fourier coefficients. In whatSo herey,, (z) = 7 ---z);* for each multi-index: =

follows z = (z1,...,2q4),t = (t1,...,tq), j iSascalar (ng,...,nq). We look for the dual functions,, satisfying
index, whilek = (k1,...,kq), i = (i1,...,4q) andn = the convolution equation
(n1,...,nq) are multi-indices. Partial ordering of multi-
indices is given byt < k' < k, < k,, p=1,...,d. So /f(t + )Y (t)dt = 2" ©)
we have .
. i for each multi-indexn. To solve this equation we ap-
F(z) = Z; a; f(z + 7). 2) ply Fourier transform to both sides of (7). Assuming that
a . flw) € C>(RY), £(0) # 0 we find (see [16]) that there is
Let the measurements,(F) be given byuw(F) = 3 unique solution to (7) provided by
J E(t)er(t)dt, for a certain (multi)-sequence of functions
@k(t% k20:(0730) @n(x): ch,kmkv (8)
Given f andp = {¢x(t)}, & > 0 we now try to find k<n
certain “triangular” linear combinations
where
Y (t) = Z Cirpi(t) ) o 1 n\, opan | OF 1
0<i<k ok an) <k>( i) 5o )|

forming, in a sense, somg “convolution dual” functions
(similar to a bi-orthogonal set of function) with respect to
the systempy (t). More accurately, we require that

This calculation is symbolic and works for more general
cases. The actual calculation in our polynomial case is
done using straightforward matrix calculations. We set the

/f(t +2)n(t) = or(@). 4) generalized polynomial moments as
M, = C, 9
We shall call a sequenag = {1 (t)} satisfying (3), (4) Igl T 9)

f - convolution dual tap. Below we find convolution dual
systems to the usual and exponential monomials. :
We consider a general problem of finding convolution dual 1ONS: s

sequences to a given sequence of measurements as an im- Z a;(z9)" = M, n > 0. (10)
portant step in the reconstruction problem. Notice that it =1

can be generalized by dropping the requirement of a spe

and obtain, as in Theorem 1, the following system of equa-

This system can be solved explicitly in a standard way

cific representation (3)4x(t) = > ;o Cikwi(t). In- (see, for example, [13, 4, 15]). In one-dimensional case
stead we can require only thtf (t)yx (t) be expressible it goes as follows (see [13]): from (10) we get that for
in terms of the measurements sequepge Also ¢y, in z = (z1,...,2q4) the generalized moments generating

(4) can be replaced by another a priori chosen sequencgnction ( = 1 yet, notice that the formulas are still multi-
nk- This problem leads, in particular, to certain func- gimensional)

tional equations, satisfied by polynomials and exponents

(as well as exponential polynomials and some kinds of el- 5 d 1
liptic functions). I(2) = Y Mnz" = Z%‘ e (11)
Now we have the following result: neNd j=1 =1 !

is a rational function. Hence its Taylor coefficients sat-
isfy linear recurrence relation, which can be reconstructed
through a linear system with the Hankel-type matrix
formed by an appropriate number of the momelfs's.
This is, essentially, a procedure of the diagonaléPag-

s . proximation forl(z) (see [13]). The parameteds, 27 are
Z ajpr(a’) = My, k=0,.... (5)  finally reconstructed as the poles and the residud$of
j=1 For several variables, although the formulas are the same

Theorem 1. Let a sequence = v (t) be f-convolution
dual top. DefineM;, by Mj, = >~ -, ;. Cikpi- Then the
parameters:; andz’ in (2) satisfy the following system of
equations (“generalized Prony system”):

as above, the generalization of the solution of the Prony

Proof We have M, = Y o<i<k Ci ki ) .

N system is more involved and should be addressed sepa-
JFO Coeien Crpidt = [F@e) = 20 P
> =10 [ F(E+a)Pp(t)dt = 375 ajon(a?). In one dimensional case with the derivativé8 included

In specific examples we can find the minimal number of | o have
equations in (5) necessary to uniquely reconstruct the pa-

rameters:; andz’ in (2). Fz) = Z Zai O (z + 29). (12)
=1 1=0
2.1 Reconstruction from moments !

) . . The corresponding moment-generating function in this
We are given a finite number of moments of a sighas case takes the form

in (2) in the form

N m - (1 (F1)THay /(@)
mn:/F(t)t”dt. (6) I<Z>ZZZ<q> (1_szl)q+1 - 13

j=1 1=0 q=0



which is still a rational function (d-dimensional case with We term such functiong “piecewise D-finite”. Many
derivatives is similar). We would like to stress that in this real-world signals may be represented as pieceviise
case the dual polynomialg; are not changed and they finite functions, in particular: polynomials, trigonometric
are given as in (8). Therefore also the formula for the functions, algebraic functions.

generalized moment¥,, is the same as in (9). The sequencém; = my(g)} is given by the usual mo-
ments ,
2.2 Fourier case my(g) = / 2k g(z)dz
In the same manner as in section 2.1 we now choose “ )
on(z) = e**. We get immediately)y,(z) = f(lk)e—um_ We subsequently formulate the following
Indeed, Piecewise D-finite Reconstruction Problem. Given
R N, {k;},K,a,b and the moment sequenden;} of a
/f(t + z)¢i(t)dt = /f(t + ) ) e™dt = piecewiseD-finite functiong, reconstruct all the parame-
R ters {ai,j}, {gz}, {Oéi’n}.
f(k)e*““’ = ¢_(z). (14) Below we state some results (see [1] for detailed proofs)
f(k) which provideexplicit algebraic connectionisetween the
Here the triangular system of equations (3) is actually notabove parameters and the measuremgnts}.
triangular any more but still sincgy(z) = ﬁgo_k(az) The first two theorems assume a single continuity interval

we can express the generalized moments through the origicompare [10]).

i i - 1

inal one§ vieM, = i {c)“”“m' Now exgctly as before Theorem 2. LetC = 0 and® g = 0 with D given by(16).

we can find a generalized Prony system in the form Then the moment sequenie;,(g)} satisfies a linear re-
1 currence relation

- _ _ a'eiikmj _ Qi k
fc(k):u‘—k[F] Mk ; J ; Jp] (15)

k]
, . . ((E —a)V
wherep; = e~ **s. In this case we get a rational expo-

N
E-0DV -3 a;; (”)k:E))mk:O

7=0 i=0

nential generating function and we can find its poles and (18)

residues on the unit complex circle as we did in the poly-

nomial case. where E is the discrete forward shift operator and
1G9 (k, E) are monomials inE whose coefficients are

2.3 Further extensions polynomials ink: TI“3) (k, E) = (—1)7 il B .

The approach above can be extended in the following di-Theorem 3. Denote

rections: 1. Reconstruction of signals built from several

functions or with the addition of dilations also can be in- g(&) £ def (E—aD)NE-bDN, P def (E(B) - 116D (k, E) ),
vestigated (a perturbation approach where the dilations are

approximately 1 is studied in [15]). 2. Further study of defz (0.4, G(z) E'e(@) = @’ g9(z)
J dzi

“convolution duality” can significantly extend the class of

signals and measurements allowing for a closed - form sig- .

nal reconstruction. Assume the conditions of Theorem 2. Then

_ _ _ . (1) The vector of the coefficienis= (a; ;) satisfies a lin-
3. Reconstruction of piecewis@-finite func- ear homogeneous system
tions from moments

(0 0) (1 0) (()kN, ) "
. 0.0
Letg : [a,b] — R consist oflC+1 “pieces”go, . . . gk with (0 0) (1 0 ) a1
K€ > 0 jump points Ha = T l=0
a=& <E... <& <bcp=b L0000 k) | \g,
. . . . M M M
Furthermore, leg satisfy on each continuity interval some (19)
linear homogeneous differential equation with polynomial .
coefficients® g, =0, n=0,..., K where forall M € N.

N kj 5 (27]) 1
D\ & (2) v;,”" =my (Gj(x)). Consequentlyh;(z) is the
D= Z(Z di,j® )dxj (aij €R)  (16) moment generating function 6f; ().
kj i .

Eachg, may be therefore written as a linear combina- (3) Denotep;(z) = Zi:O a;jz*. Then the functions
tion of functions{u, }Y, which are a basis for the space ® ={1, hO( ),---hn(2)} are polynomially depen-
No={f:Df=0} dent: ijo J( )( maxkip.(z71)) = Q(z) where
Q(z) is a polynomial withdeg @ < max k;. The sys-

B B tem of polynomials{z™ax*ip.(2~1)} is called the
o Zai’”ui(m)’ n=0L...,K (17) Pacde-Hermite form ford.



To handle the piecewise case, we represent the jump dis-

def 0 <0
)1 z>0

continuities by the step functick (z) and

[1]
write g as a distribution

(2]

K
9(@) =go+ > gn(z)H(z — &) (20)

Theorem 4. Let K > 0 and letg be as in(20) with oper-
ator ® annihilating every piec@,,. Then the operator

ﬁ‘ff{ﬁ(azgi)Nl} D

n=1

(3]

1) (4]

annihilates the entirgy as a distribution. Consequently,
conclusions of Theorems 2 and 3 hold watreplaced by
D as in(21).

Proposition 5. LetC > 0 and {u;}}¥, be a basis for the
spaceNp, where® annihilates every piece gf Assume

(17) and denoter}, = fn"“ zFu;(x) forn =0,..., K.

A straightforward computation giveﬁv eN:

(5]

(6]

[7]

1,0
0 0 . ™o
€10 CN,0 CN,0 : m
' 1
: : ano | = .
0 0 IC .
1.0 CN,IT CN,aT M
QN K
(22) [

The above results can be combined as follows to provide
a solution of the Reconstruction Problem:

(10]
(@) LetN,{k;},K,a,band{m(g)} be given. IfK > 0,
replace® (still unknown) with® according to (21).
(11]
(b) Build the matrixH as in (19). SolveHa = 0 and
obtain the operatdd™ = ©, which annihilateg.
(c) If K€ > 0, factor out all the common roots of the poly-
nomial coefficients oo™ with multiplicity V. These (12]

are the locations of the jump poin{s,, }. The remain-
ing part is the operatd® ' which annihilates every,,.

(d) By now®' and{¢, } are known. So compute the basis [13]
for Ng+ and solve (22).

The constants/ and M determine the minimal required

size of the corresponding linear systems (19) and (22) in(14]
order for all the solutions of these systems to be also solu-
tions of the original problem. It can be shown that:

1. There exists no uniform bound & without any ad-
ditional information on the nature of the solutions.
Explicit bounds may be obtained for simple function
classes such as piecewise polynomials of bounded16]
degrees or real algebraic functions.

(15]

2. For every specifi®, an explicit bound\/ = JTI(@) (7]

may be computed for the system (22).

The above algorithm has been tested on exact reconstruc-
tion of piecewise polynomials, piecewise sinusoids and ra-
tional functions.
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