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Abstract:

Astronomical images of galaxies can be modeled as a
superposition of pointlike and curvelike structures. As-
tronomers typically face the problem of extracting those
components as accurate as possible. Although this prob-
lem seems unsolvable — as there are two unknowns for
every datum — suggestive empirical results have been
achieved by employing a dictionary consisting of wavelets
and curvelets combined with ¢; minimization techniques.
In this paper we present a theoretical analysis in a model
problem showing that accurate geometric separation can
be achieved by ¢; minimization. We introduce the notions
of cluster coherence and clustered sparse objects as a ma-
chinery to show that the underdetermined system of equa-
tions can be stably solved by ¢; minimization. We prove
that not only a radial wavelet-curvelet dictionary achieves
nearly-perfect separation at all sufficiently fine scales, but,
in particular, also an orthonormal wavelet-shearlet dictio-
nary, thereby proposing this dictionary as an interesting al-
ternative for geometric separation of pointlike and curve-
like structures. To derive this final result we show that
curvelets and shearlets are sparsity equivalent in the sense
of a finite p-norm (0 < p < 1) of the cross-Grammian
matrix.

1. Introduction

Cosmological data analysts face tasks of geometric sep-
aration. Gravitation, acting over time, drives an ini-
tially quasi-uniform distribution of matter in 3D to con-
centrate near lower-dimensional structures: points, fila-
ments, and sheets. It would be desirable to process sin-
gle ‘maps’ of matter density and somehow extract three
‘pure’ maps containing just the points, just the filaments,
and just the sheets around which matter is concentrating.
However, this problem contains three unknowns for every
datum which seems impossible to solve on mathematical
grounds.

Surprisingly, astronomer Jean-Luc Starck and collabora-
tors have recently been empirically successful in numer-
ical experiments with component separation. They used
two or more overcomplete frames, each one specially
adapted to particular geometric structures, and were able
to obtain separation despite the fact that the underlying
system of equations is highly underdetermined.

Here we analyze such approaches in a mathematical

framework where we can show that success stems from
an interplay between geometric properties of the objects
to be separated, and the harmonic analysis for singulari-
ties of various geometric types.

1.1 Singularities and Sparsity

As a mathematical idealization of ’image’, consider a
Schwartz distribution f with domain R?. The distribu-
tion f will be given singularities with specified geometry:
points and curves.

We plan to represent such an ’image’ using tools of har-
monic analysis; in particular bases and frames. While
many such representations are conceivable, we are inter-
ested here just in those bases or frames which can sparsely
represent f.

The type of basis which best sparsifies f depends on the
geometry of its singularities. If the singularities occur at
a finite number of (variable) points, then wavelets give
what is, roughly speaking, an optimally sparse representa-
tion. If the singularities occur at a finite number of smooth
curves, then one of the recently studied directional multi-
scale representations (curvelets or shearlets) will do the
best job of sparsification.

Since we are concerned with f being a mixture of content
types, i.e., points and curves, presumably both systems are
needed to represent f sparsely.

1.2 Minimum ¢; Decomposition and Perfect Sep-
aration

In the early 1990’s, R. R. Coifman, Wickerhauser and co-
workers became interested in the problem of represent-
ing signals using more than one basis and started a first
heuristic exploration motivated intuitively, see [5]. A few
years later, one of us worked with S .S. Chen to develop a
formal, optimization-based approach to the multiple-basis
representation problem [4]. Given bases ®;, ¢ = 1,2, one
solves the following problem

(BP) min ||y |1 +||az|l1 subjectto S = a1+ Paan,

thereby exploiting that the /1 norm has a tendency to find
sparse solutions when they exist. This can be regarded as
the starting point for ¢; decomposition techniques. For
theoretical work on this topic we refer to, e.g., [6, 10, 15,
16], and for empirical work see, for instance, [9,12,14,15].



For further references we would like to mention the survey
paper [1].

1.3 A Geometric Separation Problem

The work just cited, while suggestive and inspiring, con-
cerns discretely indexed signal/image processing, and so
is either empirical or else rigorously analytical but not di-
rectly relevant to geometric separation tasks, which will
involve always continuum ideas.

In this paper we develop related methods in a mathemat-
ical setting where the notion of successful separation can
be made definitionally precise and can be established by
mathematical analysis. For this, we pose a simple but clear
model problem of geometric separation.

Consider a ‘pointlike’ object P made of point singulari-

ties:
P
P=> |o—az|"
i=1

Consider as well a curvelike object C, a singularity along
a closed curve 7 : [0,1] — R

C= /5T(t)dt,

where J,, is the usual Dirac Delta at z. By this choice, we
arrange that one of the two distributions does not become
dramatically larger than the other as we go to finer and
finer scales; rather the ratio of energies is more or less
independent of scale. This makes the separation problem
challenging at every scale.

Now assume that we observe the ‘Signal’

f=P+C, 1)

however, the distributions PP and C are unknown to us. The
Geometric Separation Problem now consists in recovering
‘P and C from knowledge of f.

1.4 Two Geometric Frames

We focus on two pairs of overcomplete systems for repre-
senting the object f:

o Radial Wavelets — a tight frame with perfectly
isotropic generating elements.

e Curvelets — a highly directional tight frame with in-
creasingly anisotropic elements at fine scales.

as well as the pair

e Orthonormal Separable Meyer Wavelets — an or-
thonormal basis of perfectly isotropic generating ele-
ments.

e Shearlets — a highly directional tight frame with in-
creasingly anisotropic elements at fine scales and a
unified treatment of both the continuous and digital
setting.

We pick these because, as is well known, point singulari-
ties are coherent in wavelets and curvilinear singularities
are coherent in curvelets/shearlets. For the precise defini-
tions we refer to [2,3], [11, 13], as well as [7].
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Figure 1: Frequency tilings of radial wavelets and
curvelets as well as of orthonormal wavelets and shearlets
(from left to right).

Since the scaling subband of each pair are similar as il-
lustrated in Figure 1, we can define two families of filters
(ch) ;j and (Fjs ); which allows to decompose a function
f into pieces f{ (resp. f7) with different scales j. The
piece f]C (resp. ij ) at subband j arises from filtering f
using Fi{’ (resp. F7):

[ =F{«fand f7 = F « f,

so that the Fourier transform ff (resp. fJS ) is supported
in the scaling subband of scale j of the associated pair of
tight frames. The filters are defined in such as way, that
we can reconstruct the original function from these pieces
using the formula

F=Y_FCxf0 =) "F’«f’, feL’R.

J

For the precise construction of those filters and further
properties, we refer to [7].

We can now use these tools to attack the Geometric Sepa-
ration Problem scale-by-scale. For this, we filter the model
problem (1) to derive the sequences of filtered images

ij = PjC +Cjc and fjs = 77]5 +Cj$ for all scales j. (2)

1.5 Outline

In Section 2 we will develop and analyze the decomposi-
tion technique based on ¢; minimization we intend to em-
ploy, first in a very general Hilbert space setting. These re-
sults will then be applied to the scale-dependent Geomet-
ric Separation Problem (2) proving that the radial wavelet-
curvelet as well as the orthonormal wavelet-shearlet dic-
tionary achieves nearly-perfect separation at all sufficient
fine scales (Theorems 1 and 3). The sparsity equivalence
between curvelets and shearlets we derive in Subsection
3.2 thereby allows transference of this result from the ra-
dial wavelet-curvelet to the orthonormal wavelet-shearlet
dictionary.

2. General Component Separation

We now first study the behavior of ¢! minimization in
the general two-frame case. Suppose we have two tight
frames ®,, ®, in a Hilbert space H, and a signal vector
S € H. We know a priori that there exists a decomposi-
tion

S =97+ 59,



where SV is sparse in ®; and SY is sparsely represented
by ®,. Our analysis will center on the use of cluster co-
herence to exploit the geometric structure of the sparse
expansions rather than merely the fact that the vector is
sparse.

2.1 Cluster Coherence

Typically, separation results employ the notion of mutual
coherence between two tight frames ® = (¢;); and ¥ =
(%55

WP, W) = mj?iX m?‘x (5, ¥5) E

whose importance was shown by [6], as a means to impose
conditions on the interactions between the dictionary ele-
ments. However, this notion is too weak for our purposes.
Our novel contribution to sparse recovery and ¢; mini-
mization consists in exploiting the facts that

o the nonzeros of sparse vectors often do not arise in ar-
bitrary patterns, but are rather highly structured, and
that

e the interactions between the dictionary elements in
ill-posed problems are not arbitrary, but rather geo-
metrically driven.

These key observations lead to the following new notion.

Definition 1. Given tight frames ® = (¢;); and ¥ =
(vj); and an index subset S associated with expansions
in frame ®, we define the cluster coherence

He(S5 @, W) = max 3 |60, )]

€S

Thus cluster coherence bounds between a single member
of frame W and a cluster of members of frame ®, clus-
tered at S, in contrast to mutual coherence, which can be
thought of as singleton coherence.

A related notion called ‘cumulative coherence’ was intro-
duced in [16], but notice that here we fix a specific set of
significant coefficients and do not maximize over all such
subsets. The key idea for our analysis is that the index sub-
sets we consider are not abstract, but have a specific geo-
metric interpretation. Maximizing over all subsets with
a common combinatorial property would prohibit utiliz-
ing this interpretation, hence cumulative coherence is not
suitable for our purposes.

2.2 Component Separation by ¢; Minimization

Now consider the following optimization problem:

(SEP) (S%,S3) = argming, g, [[®7 511 + (|3 S
subjectto S = S1 + Ss.

Notice that in this problem, the norm is placed on the anal-
ysis coefficients rather than on the synthesis coefficients
as in (BP) to avoid ‘self-terms’ in the frame expansions.
The introduction of cluster coherence now ensures that the
principle (SEP) gives a successful approximate separation.

Proposition 1 ( [7]). Suppose that S can be decomposed
as S = 59 + SY so that each component SY is relatively
sparse in ®;, 1 =1,2, ie.,

s ®1S7N1 + 155 @3 S3ll < 6.
Let (ST, S%) solve (SEP). Then

26

157 = S+ 1185 — S8 < 75—

where

pre = max(ic(S1; @1, P2), f1c(S2; P2, P1)).

3. Geometric Separation of Pointlike and
Curvelike Structures

3.1 Radial Wavelet-Curvelet Dictionary

The concepts of the previous section will now be applied
to S = ij = PjC + Cjc, our signal of interest from (2).
The tight frames are ®4, the full radial wavelet frame, and
®,, the full curvelet tight frame. The subsignals ST, S5 we
derive by applying the optimization problem (SEP) will be
relabel to W}, the wavelet component, and C};, the curvelet
component.
The main difficulty in applying Proposition 1 consists in
choosing the sets of significant coefficients suitably. We
achieve this by using microlocal analysis to understand
heuristically the location of the significant coefficients in
phase space. Roughly speaking, we then employ the Hart-
Smith phase space metric defined by

d((b,0); (v,60")) = [{eo,b— V)| + [{eo, b — V)]
o= b'*+ 0 -0

to define an ‘approximate’ set of significant wavelet coef-
ficients

A1 ; = {wavelet lattice}

N{(b,0) : d((b,0); WF(P)) < nja;}

and an ‘approximate’ set of significant curvelet coeffi-
cients

Ap; = {curvelet lattice}

N{(0,0) = d((b,0); WF(C)) < nja;}

for carefully chosen n;; W F' denotes the wavefront set.
Tedious, highly technical estimates then lead to the fol-
lowing separation result:

Theorem 1 ( [7]). ASYMPTOTIC SEPARATION USING A
RADIAL WAVELET-CURVELET DICTIONARY.

[W; = P72 + 1G5 = 5 l2
IPE 2 + 11CS |2

— 0, j — oo.

This result shows that components are recovered asymp-
totically: at fine scales, the energy in the curvelike com-
ponent is all captured by the curvelet coefficients and the
energy in the pointlike component is all captured by the
wavelet coefficients.



3.2 Sparsity Equivalence

We now aim to show that curvelets and shearlets are spar-
sity equivalent in the sense that, for 0 < p < 1, the £,
norm of the curvelet coefficient sequence is finite if and
only if the same is true for the shearlet coefficient se-
quence.

First we observe that for two tight frames ® = (¢;); and
U = (1););, their cross-Grammian matrix

(Bis05)

contains all information on the relation between coeffi-
cient sequences ®7'S and W' S for some signal S. Spar-
sity equivalence can therefore be proven by analyzing the
p-norm, 0 < p < 1 defined by

M(Zm?) =

1], = max ((sup 3 1M )I),
(sup D210 )P) )

of a cross-Grammian matrix M.

Now setting (o), to be the shearlet tight frame and (y,,),,
to be the curvelet tight frame, we derive the following re-
sult. We remark that the low frequency part has to be dealt
with particular care, but for these technicalities we refer
to [7].

Proposition 2 ( [8]). Forall0 < p <1,

H(<o'na’yu>)n,y||p < o0.

Using basic estimates from frame theory and the previ-
ous proposition, we can show that shearlets and curvelets
are indeed sparsity equivalent, thereby allowing us to eas-
ily transfer results about sparsity from one system to the
other.

Theorem 2 ( [8]). Let f € L>(R?) and 0 < p < 1. Then
[({fson))nllp < oo if and only if [|((f, vu))ullp < oo

3.3 Orthonormal Wavelet-Shearlet Dictionary

Similar to Subsection 3.1, S = [ = P +C¥ (see (2)) is
now our signal of interest, and the tight frames are @1, the
full orthonormal wavelet frame, and ®5 the full shearlet
tight frame. The subsignals ST, 53, we derive by applying
the optimization problem (SEP) will be relabel to W, the
wavelet component, and S}, the shearlet component.

The results from Subsection 3.2 as well as similar cor-
respondences between radial wavelets and orthonormal
wavelets now form the backbone for the transfer of The-
orem 1 to the orthonormal wavelet-shearlet dictionary.
Careful application of those to the key estimates in the
proof of Theorem 1 leads to a similar result for the or-
thonormal wavelet-shearlet dictionary.

Theorem 3 (7]). ASYMPTOTIC SEPARATION USING AN
ORTHONORMAL WAVELET-SHEARLET DICTIONARY.

W, =Pl + 1S5 = CFll>
P32+ 1IC7 112 ’

J — oo.

4. Conclusion

We first considered signals, being a superposition of two
subsignals, each of which is relatively sparse with respect
to some tight frame. As a model procedure for separa-
tion we considered /1 minimization of the analysis (rather
than synthesis) frame coefficients. By introducing clus-
ter coherence as a new concept for analyzing the inter-
action of the two tight frames by taking the geometry of
the sparse component expansions into account, we de-
rived an estimate for the /5 norm of the separation error.
We then considered signals, which are a superposition of
pointlike and curvelike structures. Using the previously
derived estimate, we proved that for both pairs of tight
frames (radial wavelets/curvelets) as well as (orthonor-
mal wavelets/shearlets) at sufficiently fine scale, nearly-
perfect separation is achieved using the model procedure,
thereby proposing the orthonormal wavelet-shearlet dic-
tionary as an interesting alternative for geometric separa-
tion of pointlike and curvelike structures. The sparsity
equivalence between curvelets and shearlets we further
proved thereby allows to derive this separation result only
for one dictionary and easily transfer it to the other one.
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