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Abstract:

It is now widely acknowledged that analyzing the intrinsic
geometrical features of an underlying image is essentially
needed in image processing. In order to achieve this, sev-
eral directional image representation schemes have been
proposed. In this report, we develop the discrete shearlet
transform (DST) which provides efficient multiscale di-
rectional representation. We also show that the implemen-
tation of the transform is built in the discrete framework
based on a multiresolution analysis. We further assess the
performance of the DST in image denoising and approxi-
mation applications. In image approximation, our adap-
tive approximation scheme using the DST significantly
outperforms the wavelet transform (up to 3.0dB) and other
competing transforms. Also, in image denoising, the DST
compares favorably with other existing methods in the lit-
erature.

1. Introduction

Sharp image transitions or singularities such as edges are
expensive to represent and intergrating the geometric reg-
ularity in the image representation is a key challenge to
improve state of the art applications to image compres-
sion and denoising. To exploit the anisotropic regularity
of a surface along edges, the basis must include elongated
functions that are nearly parallel to the edges.

Several image representations have been proposed to cap-
ture geometric image regularity. They include curvelets
[1], contourlets [2] and bandelets [3]. In particular, the
construction of curvelets is not built directly in the discrete
domain and they do not provide a multiresolution repre-
sentation of the geometry. In consequence, the implemen-
tation and the mathematical analysis are more involved
and less efficient. Contourlets are bases constructed with
elongated basis functions using a combination of a multi-
scale and a directional filter bank. However, contourlets
have less clear directional features than curvelets, which
leads to artifacts in denoising and compression. Ban-
delets are bases adapted to the function that is represented.
Asymptotically, the resulting bandelets are regular func-
tions with compact support, which is not the case for con-
tourlets. However, in order to find bases adapted to an
image, the bandelet transform searches for the optimal ge-
ometry. For an image of IV pixels, the complexity of this
best bandelet basis algorithm is O(N3/2) which requires

extensive computation [3].

Recently, a new representation scheme has been intro-
duced [4]. These so called shearlets are frame elements
which yield (nearly) optimally sparse representations [5].
This new representation system is based on a simple and
rigorous mathematical framework which not only pro-
vides a more flexible theoretical tool for the geometric
representation of multidimensional data, but is also more
natural for implementations. As a result, the shearlet ap-
proach can be associated to a multiresolution analysis [4].
However constructions proposed in [4] do not provide
compactly supported shearlets and this property is essen-
tially needed especially in image processing applications.
In fact, in order to capture local singularities in images ef-
ficiently, basis functions need to be well localized in the
spatial domain.

In this report, we construct compactly supported shearlets
and show that there is a multiresolution analysis associated
with this construction. Based on this, we develop the fast
discrete shearlet transform (DST) which provides efficient
directional representations.

2. Shearlets

A family of vectors {¢, }ner constitutes a frame for a
Hilbert space H if there exist two positive constants A, B
such that for each f € H we have

AlFI2 < D1 en)? < BIFII

nel’

In the event that A = B, the frame is said to be tight.

Let us next introduce some notations that we will use
throughout this paper. For f € L?(R?), the Fourier trans-
form of f is defined by

fw)= | f@)e?miveds,
Rd

Also, fort € R% and A € GL4(R), we define the follow-
ing unitary operators:

Ti(f)(x) = flx—1)

and )
Da(f)(=) =|A|"2 f(A™ 2).
Finally, for ¢ € (3,1] and a > 1, we define

a? 0 1 1
AO:(O aé) and BO:(O 1) (1)



and

1
_f(az O (1 0
A1 = ( 0 aq> and B1 = <1 1) .

We are now ready to define a shearlet frame as follows.

FOI‘CER ’¢0a-~-71/)07¢1,~-~,1/11 €L2(R2)and¢e
L?(R?), we define
{dljkm G k€Z, meZ? i=1

_{wjkm j,k’EZ,mEZQ’i:L._.,L}’
and
\112 = {Tcm¢ tme ZQ}
Ufwle, 1§ >0,-2 <k<2 mez? i=1,.. L}
U{¢]km j207_2jSkS2]7mEZ2,’L:1,7L}
where

Viiem = Dazi g+ Tomd 3)

for{ =0,1,m € Z%i=1,...,Land j k € Z. If U?
is a frame for L?(R?), then we call the functions w;’,fm in
the system W2 shearlets.

Observe that each element w;’,fm in U2 is obtained by ap-
plying an anisotropic scaling matrix A, and a shear ma-
trix By to fixed generating functions 1;. This implies that
the system W2 can provide window functions which can
be elongated along arbitrary directions. Therefore, the
geometrical structures of singularities in images can be
efficiently represented and analyzed using those window
functions. In fact, it was shown that 2-dimensional piece-
wise smooth functions with C2-singularities can be ap-
proximated with nearly optimal approximation rate using
shearlets. We refer to [5] for details. Furthermore, one
can show that shearlets can completely analyze the sin-
gular structures of piecewise smooth images [6]. In fact,
this property of shearlets is useful especially in signal and
image processing, since singularities and irregular struc-
tures carry essential information in a signal. For example,
discontinuities in the intensity of an image indicate the
presence of edges. Figure 1 displays examples of shear-
lets which can be elongated along arbitrary direction in
the spatial domain.

3. Construction of Shearlets

In this section, we will introduce some useful sufficient
conditions to construct compactly supported shearlets.
Using these conditions, we will show that the system W2
can be generated by simple separable functions associated
with a multiresolution analysis. Furthermore, this leads to
the fast DST, and we will discuss this in the next section.

We first discuss sufficient conditions for the existence
of compactly supported shearlets. For this, let o >

max (1,(1 —p)y) and v > max(o‘Tfl, 1%})) be fixed

positive numbers for 0 < p < 1. We choose o/,7" > 0
such that o’ > a+vand ' > o/ —a+. Then we obtain
the following results [7].

Figure 1: Examples of shearlets in the spatial domain. The
top row illustrates shearlet functions ¢/ ,SO associated with
matrices Ag and By in (1). The bottom row shows shearlet
functions w k0 associated with matrices A; and By in (2)..

Theorem 3..1. [7] For ¢ =
Vé(z1,22) = v (21)0(22) such that

., L, we define

Jwr [

y <Ki——7
5 (wi)] < 1(1_|_ w1 [2)7'72

and R )
10(w1)] < Ka(1+ [wn[?)77/2.
If A
ess inf |O(w1)]? > K3 >0 “4)
|w1]<1/2
and

L
ess inf Z |7 (w1)|? > K4 > 0, (5)

—a<|wy|<1
amasll<t i

then there exists co > 0 such that V0 is a frame for L*(R?)
forall c < cy.

Observe that the functions 13, . . . , 1§ are separable func-
tions, and the one-dimensional scaling function 6 and
wavelets v* can be chosen with sufficient vanishing mo-
ments in this case.

We now show some concrete examples of compactly sup-
ported shearlets using Theorem 3.1. Assume that ¢ = 4
and ¢ = 1 in (1) and (2). Let us consider a box spline [1]
of order m defined as follows.

i) = (BTY ™
W1

where € = 1 if m is even, and ¢ = 0 if m is odd. Obvi-

ously, we have the following two scaling equation:

ém(2w1) = mo(wl)ém(wl)

and

mo(w1) = (cosmwy )™ e iemwr,

Let o’ and ' be positive real numbers as in Theorem 3.1.
We now define

>
—~

&
v
~—

9() = VB (smmen ) G(on)i

and



where £ > o’ and m + 1 > +/. Then, by Theorem 3.1, 1)}
and 92 generate a frame W9 for ¢ < ¢ with some ¢ > 0.
There are infinitely many possible choices for ¢ and m.
For example, one can choose £ = 9 and m = 11.

Define
d(x1,22) = O (21)0m (x2),

PH@) = (VR (sinms) B n)ln ()
and

A Two\ ¢ Wa A
w) = () (sin 52 ) 0 (55)0m(w1):

Then similar arguments show that ¢} and )7 generate a

frame W} for ¢ < ¢g with some ¢y > 0. Furthermore, the

functions ¢, z/;é for ¢ = 0,1 and i = 1, 2 generate a frame

U2 with ¢ < ¢ for some ¢y > 0.

4. Discrete Shearlet Transform

In the previous section, we constructed compactly sup-
ported shearlets generated by separable functions associ-
ated with a multiresolution analysis. In this section, we
will show that this multlresolutlon analysis leads to the
fast DST which computes ( f, 1/) - To be more specific,
weleta = 4and g = 1in (l) and (2). For notational
convenience, we let n = (ny,n2),m = (my,ma),d =
(dy,ds) € Z* and I be a 2 by 2 identity matrix.

Let # € L?(R) be a compactly supported function such
that {6(- — n1) : ny € Z} is an orthonormal sequence and

= ) h(n1)v20(221 — na). (6)
ni1€Z

Define

v(z1) = Z g(n1)V20(2z1 — ny) )

niEZ

such that ~y has sufficient vanishing moments and the pair
of the filters h and g is a pair of conjugate mirror filters.
We assume that v and 6 satisfy decay conditions (4) and
(5) in Theorem 3.1. We also define

d(x1,22) = 0(21)0(22),

Vi (21, 29) = Y(2041)0(T2—0) (8

and

U7 (w1, 32) = 2_%7(33@;1)9(%2_@) ©)

for £ = 0,1. Then Theorem 3.1 can be easily generalized
to show that the functions 1, 12, 11, 1? and ¢ generate a
shearlet frame W2 with ¢ < ¢ for some ¢y > 0.

Let J be a positive odd integer. Based on a multiresolution
analysis associated with the two-scale equation (6), we can
now easily derive a fast algorithm for computmg shearlet
coefficients (f, 1/1 o foré =015 =1,. , and
—27 < k<2 as follows.

First, assume that

f=> filn

nez?

)Da-s1,Tn ¢ (10)

(a) (b)

Figure 2: Examples of anisotropic discrete wavelet de-
composition: (a) Anisotropic discrete wavelet decompo-
sition byN W, (b) Anisotropic discrete wavelet decomposi-
tion by W.

where

fi(n) =
define maps D}/

(D) (d) = > dy?(d, m)z(m)

meZ?

(f,Dy-s1,Ty¢). For h = 0,1, let us
L 2(Z2) — (2(Z2) by

where d) (d, m) = (D r/2i T, Tadp) and x € €(Z7).
h

Also we define
1) = Z h(n1)€72iﬂ-w1
ni

and

= Zg(nl)efzm“’l.
n1

Finally, we let 15, g7 and g} be the Fourier coefficients of

Hj(ws) = 127" H(2%w,

GY(wr) =TTy’ H(2%w

for J — 7 >0,
G272 1)),

Ghw) = TTiZe’ ™ H(2Fw1)G (27 % wy),
(1)
respectively. Then we obtain
(F Wjion) = (DG £1) %0 1) 120-5 ¢ G)) 120-2 (),
(o gim) = (D67 £1) %0 hy) 231 % T)) jpa—2s+1 (m),
(i) = (DY £) e hj)j20=s 5 G5) 127-2 (M),
<fa Q;Z)J2k1m> = (((Dk]fJ) *c h])l21 i *p gj)J,QJ 2J+1( )7

(12)
where *. and *, are convolutions along the vertical and
horizontal axes respectively, | 27 is the downsampling by
27 and h(n) = h(—n) for given filter coefficients h(n).
From (12), we observe that the shearlet transform
(f, z/zj km) is the application of the shear transformation
D /2 to f € L?(R?) followed by the wavelet transform
asséciated with anisotropic scaling matrix A,. In this case,
applying Df’ﬂ to f; € (%(Z?) corresponds to applying
the shear transform DBQ‘ /25 1n the discrete domain. Thus
we simply replace the operator Déf’j by the discrete shear

transform Py ; for f; € (>(Z?), where we define the dis-
crete shear transforms Py ; and P ; as follows:

fr(ny+ [(k/27)n2], na),

fr(na,n2 + [(k/27)n4]). (13)

{(P,S,jm(m =
(PL,fr)(n) =

Let M be a fixed positive integer. Since PP ; and P} j
are unitary operators on £(Z?), we can extend the shearlet



transform defined in (12) to a linear transform .S gonsisting
of finitely many orthogonal transforms S and S where

SM(f7) = WPy (f5) and  SM(fs) = WP\ (fs)

and W and W are the wavelet transform associated with
an anisotropic sampling matrices Ay and A1, respectively.
For the precise definitions of ¥V and 17\7, we refer to [7].
In this case, the linear transform S, which we call DST, is
defined by

S:(S%M,...,S%7gﬂ42M,~u7S%4)

for a given M € ZT. Notice that redundancy of the DST
is K = 2M+2 4 2 and the DST merely requires O(K N)
operations for an image of NV pixels. It is obvious that the
inverse DST is simply the adjoint of S with normalization.

5. Image Approximation Using DST

In this section, we present some results of the DST in im-
age compression applications. In this case, we use adap-
tive image representation using the DST. The main idea of
this is similar to the matching pursuit introduced by Mallat
and Zhong [8]. The matching pursuit selects vectors one
by one from a given basis dictionary at each iteration step.
On the other hand, our approximation scheme searches the
optimal directional index k( at each iteration step so that
corresponding the orthogonal transform S ,]C\g or S ,]C\g pro-
vides an optimal nonlinear approximation with P nonzero
terms among all possible 2/+2 42 orthogonal transforms
in S. For a detailed description of this algorithm, we re-
fer to [7]. For numerical tests, we compare the perfor-
mance of the DST to other transforms such as the discrete
biorthogonal CDF 9/7 wavelet transform (DWT)[9] and
contourlet transform (CT)[2] in image compression (see
Figure 3). We used only 2 directions (horizontal and ver-
tical) and 4 level decomposition for our DST. In this case,
our numerical tests indicate that only a few iterations (1-
5) can give significant improvement over other transforms
and computing time is comparable to the wavelet trans-
form. For more results, we refer to [8].

6. Conclusion

We have constructed compactly supported shearlet sys-
tems which can provide efficient directional image rep-
resentations. We also have developed the fast discrete im-
plementation of shearlets called the DST. This algorithm
consists of applying the shear transforms in the discrete
domain followed by the anisotropic wavelet transforms.
Applications of our proposed transform in image approxi-
mation and denoising were studied. In image approxima-
tion, the results obtained with our adaptive image repre-
sentation using the DST are significantly superior to those
of other transforms such as the DWT and CT both visually
and with respect to PSNR.

In denoising, we studied the performance of the DST cou-
pled with a (partially) translation invariant hard treshold-
ing estimator. Our results indicate that the DST consis-
tently outperforms other competing transforms. For de-
tailed numerical results, we refer to [7].

Figure 3: Compression results of ’Barbara’ image of
size 512 x 512: The image is reconstructed from 5024
most significant coefficients. Top left: Zoomed original
image, Top right: Zoomed image reconstructed by the
DWT (PSNR = 25.11), Bottom left: Zoomed image re-
constructed by the CT (PSNR = 25.88), Bottom right:
Zoomed image reconstructed by the DST with only 1 iter-
ation step (PSNR = 26.73).
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