Directional Dynamics along Arbitrary Curves in Cellular Automata

Abstract : This paper studies directional dynamics on one-dimensional cellular automata, a formalism previously introduced by the third author. The central idea is to study the dynamical behavior of a cellular automaton through the conjoint action of its global rule (temporal action) and the shift map (spacial action): qualitative behaviors inherited from topological dynamics (equicontinuity, sensitivity, expansivity) are thus considered along arbitrary curves in space-time. The main contributions of the paper concern equicontinuous dynamics which can be connected to the notion of consequences of a word. We show that there is a cellular automaton with an equicontinuous dynamics along a parabola, but which is sensitive along any linear direction. We also show that real numbers that occur as the slope of a limit linear direction with equicontinuous dynamics in some cellular automaton are exactly the computably enumerable numbers.
Type de document :
Article dans une revue
Theoretical Computer Science, Elsevier, 2011, 412, pp.3800-3821
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/hal-00451729
Contributeur : Victor Poupet <>
Soumis le : vendredi 28 juin 2013 - 10:19:09
Dernière modification le : mercredi 10 octobre 2018 - 01:26:33
Document(s) archivé(s) le : mercredi 5 avril 2017 - 04:45:11

Fichier

dpst.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00451729, version 3
  • ARXIV : 1001.5470

Citation

Martin Delacourt, Victor Poupet, Mathieu Sablik, Guillaume Theyssier. Directional Dynamics along Arbitrary Curves in Cellular Automata. Theoretical Computer Science, Elsevier, 2011, 412, pp.3800-3821. 〈hal-00451729v3〉

Partager

Métriques

Consultations de la notice

500

Téléchargements de fichiers

266