Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications

Abstract : In arbitrary dimension, we consider the semi-discrete elliptic operator $- \d_t^2 + \Am$, where $\Am$ is a finite difference approximation of the operator $-\nabla_x (\Gamma(x) \nabla_x)$. For this operator we derive a global Carleman estimate, in which the usual large parameter is connected to the discretization step-size. We address discretizations on some families of smoothly varying meshes. We present consequences of this estimate such as a partial spectral inequality of the form of that proven by G.~Lebeau and L.~Robbiano for $A^m$ and a null controllability result for the parabolic operator $\partial_t + A^m$, for the lower part of the spectrum of $A^m$. With the control function that we construct (whose norm is uniformly bounded) we prove that the $L^2$-norm of the final state converges to zero exponentially, as the step-size of the discretization goes to zero. A relaxed observability estimate is then deduced.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2010, 48 (8), pp. 5357-5397. 〈10.1137/100784278〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00450854
Contributeur : Franck Boyer <>
Soumis le : vendredi 27 août 2010 - 14:59:41
Dernière modification le : jeudi 7 février 2019 - 14:28:15
Document(s) archivé(s) le : lundi 29 novembre 2010 - 11:56:07

Fichier

BHLR10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Franck Boyer, Florence Hubert, Jérôme Le Rousseau. Discrete Carleman estimates for elliptic operators in arbitrary dimension and applications. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2010, 48 (8), pp. 5357-5397. 〈10.1137/100784278〉. 〈hal-00450854v2〉

Partager

Métriques

Consultations de la notice

429

Téléchargements de fichiers

100