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Abstract. In this work we analyze the quantum controllability of rotational motion

under the influence of an external laser field coupled through a permanent dipole

moment. The analysis takes into consideration up to three polarization fields, but we

also discuss the consequences for working with fewer polarized fields.
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1. Introduction

The manipulation of quantum phenomena is receiving increasing attention with

laboratory demonstrations, including for control of rotational motion [1, 2, 3, 4, 5, 6]. A

fundamental issue underlying such experiments is a basic assessment of the possibility of

attaining full control in any particular physical circumstance. An assessment of this type

concerns the controllability of quantum systems, and studies exist [7, 8, 9, 10, 11] based

on the spectrum of the system field free Hamiltonian along with the coupling interaction

to the control field. However, the treatment when the spectrum has degeneracies remains

incomplete with the existing approaches either attempting to lift the degeneracy [8] or

considering special coupling operators [10]. In particular, neither treatment permits

the fundamental analysis of controllability of pure molecular rotational motion. This

work addresses this situation in the context of dipole coupling and obtains positive

controllability results. In addition, the analysis takes into consideration multi-

polarization fields. This paper is relevant to other (non)-sudden alignment / orientation

works [12, 13, 14, 15] and can also be seen as a step towards extending the treatment

to a general assessment of controllability of vibration-rotation states. An additional

related topic is rotational control through non-resonant polarization interactions [16],

which will be treated in a separate work.

2. Physical picture

Consider a linear rigid molecule described by the Hamiltonian H = BĴ2 where B is

the rotational constant and Ĵ the is the angular momentum operator. The molecule’s

rotational motion is subject to control through external interactions with an electric

field
−→
ǫ(t), which couples to the molecule through the dipole operator

−→
d . The time

dependent Schrödinger equation is

i~
∂

∂t
|ψ(θ, φ, t)〉 = (BĴ2 −

−→
ǫ(t) ·

−→
d ) |ψ(θ, φ, t)〉 (1)

|ψ(0)〉 = |ψ0〉 , (2)

where θ and φ are the standard polar coordinates. We consider that the external field
−→
ǫ(t) is multi-polarized i.e. any of its x, y, z components can be tuned independently as

a function of time. See Section 4 for discussion of other situations.

For convenience we express the problem in spherical harmonics |Y m
J 〉, J ≥ 0 and

−J ≤ m ≤ J as the eigenbasis of the operator H = BĴ2 such that BĴ2 |Y m
J 〉 = EJ |Y

m
J 〉,

EJ = BJ(J + 1). The difference between two consecutive eigenvalues EJ+1 − EJ =

2B(J + 1) increases with J . Thus, beyond some threshold value of J depending on the

control field characteristics, this gap will lie outside of the available frequency range

of the field in any practical situation. As such, we will truncate the set of spherical

harmonics |Y M
J 〉 at a suitable value Jmax and consider control over the domain of states

J ≤ Jmax.
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Remark 1 The truncation is supported here by the convenient spectral properties of

the operator BĴ2 having only discrete eigenvalues which become increasingly sparse as

the energy increases. In particular, no accumulation of the discrete spectrum towards

a continuous spectral region is present. However, the impact of truncation in other

contexts is not always transparent for assessing controllability. For instance, any finite

dimensional truncation of the linearly driven harmonic oscillator [10, 17] is controllable,

but the infinite dimensional system is not. In that situation the gaps between consecutive

eigenvalues are all equal, and a sufficiently long external control pulse can lead to

excitation of states indefinitely high in the spectrum.

Remark 2 A circumstance may occur when the wavefunction is stimulated to populate

eigenfunctions of increasing energy and even go to dissociation [6]; the field frequency

increases indefinitely in order to address this increasing energy gap between two

consecutive eigenvalues. This situation is beyond the treatment here that only considers

bound states remaining within a given energy range.

The dipole interaction
−→
ǫ(t) ·

−→
d may be expressed as ǫx(t)x + ǫy(t)y + ǫz(t)z in

terms of space fixed cartesian coordinates −→x , −→y and −→z , where each of the components

ǫx(t), ǫy(t), ǫz(t) of the field can be tuned independently.

The J = 1 spherical harmonics

Y ±1
1 =

∓1

2

√

3

2π

x ± iy

r
, Y 0

1 =
1

2

√

3

π

z

r
, (3)

may be written in the rotated frame
−→x +i

−→y√
2

,
−→x −i

−→y√
2

and −→z . Choosing this latter frame

we obtain
−→
ǫ(t) ·

−→
d = ǫ0(t)d10Y

0
1 + ǫ+1(t)d11Y

1
1 + ǫ−1(t)d1−1Y

−1
1 . For convenience the

components d10, d11, d1−1 of
−→
d are assumed to be all nonzero and will be rescaled to 1

(this is equivalent to rescaling the components ǫ0, ǫ+1 and ǫ−1 of
−→
ǫ(t)) so that we obtain

−→
ǫ(t) ·

−→
d = ǫ0(t)Y

0
1 + ǫ+1(t)Y

1
1 + ǫ−1(t)Y

−1
1 .

Let Dk be the matrix of the spherical harmonic operator Y k
1 (k = −1, 0, 1). The

associated matrix elements may be written as [18]:

(Dk)(Jm),(J ′m′) = 〈Y m
J |Y k

1 |Y
m′

J ′ 〉 =

∫

(Y m
J )∗(θ, φ)Y k

1 (θ, φ)Y m′

J ′ (θ, φ) sin(θ)dθdφ

=

√

3(2J + 1)(2J ′ + 1)

4π

(

J 1 J ′

0 0 0

) (

J 1 J ′

m k m′

)

. (4)

where the real constants

(

J 1 J ′

0 0 0

)

and

(

J 1 J ′

m k m′

)

are Wigner 3J-symbols (see

[19] Chapter 2 for formulas and details). The non-zero elements satisfy the criteria

m + k + m′ = 0 and |J − J ′| = 1. Thus, the only non-zero entries of the matrix D−1

are between states |Y m
J 〉 and |Y −m+1

J+1 〉; we will say that D−1 couples states |Y m
J 〉 and

|Y −m+1
J+1 〉; similarly D0 only couples |Y m

J 〉 and |Y −m
J+1〉 and D1 only couples |Y m

J 〉 and

|Y −m−1
J+1 〉.
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J=2

J=1

J=0
0

0

0

1

1 2−2 −1

−1

Figure 1. The three matrices Dk, k = −1, 0, 1 coupling the eigenstates are each

represented by a different line style (dotted, solid and dashed) for Jmax = 2. On the

J-th line from bottom, the states are from left to right in order |Y m=−J

J
〉 , ..., |Y m=J

J
〉

for even values of J and |Y m=J

J
〉 , ..., |Y m=−J

J
〉 for odd values of J . The m quantum

number labelings are indicated in the figure. The coupling pattern above continues in

a similar fashion for Jmax > 2.

Denoting by Ψ(t) the coefficients of ψ(θ, φ, t) with respect to the spherical harmonic

basis, the Schrödinger equation in matrix form is
{

i ∂
∂t

Ψ(t) = (E − ǫ0(t)D0 − ǫ−1(t)D−1 − ǫ1(t)D1)Ψ(t)

Ψ(t = 0) = Ψ0.
(5)

where E is the diagonal matrix with entries EJ for all dual indexes Jm with −J ≤ m ≤ J

and J ≤ Jmax.

3. Controllability assessment with three independently polarized field

components

We desire to determine whether the system is controllable over all of its J and m states

up to Jmax provided that all of the control field components ǫk(t) k = −1, 0, 1 can be

chosen independently. Intuitive arguments were given in [15] (pages 437-438) on why the

answer to this question should be positive for all truncation values Jmax. The material

below provides a rigorous grounding for this claim.

Theorem 1 Let Jmax ≥ 1 and denote N = (Jmax + 1)2. Let E, Dk, k = −1, 0, 1 be

N × N matrices indexed by Jm with J = 0, ..., Jmax, |m| ≤ J where:

EJm;J ′m′ = δJJ ′δmm′EJ (6)

(D0)Jm,J ′m′ 6= 0 ⇔ |J − J ′| = 1, m + m′ = 0 (7)

(D1)Jm,J ′m′ 6= 0 ⇔ |J − J ′| = 1, m + m′ + 1 = 0 (8)

(D−1)Jm,J ′m′ 6= 0 ⇔ |J − J ′| = 1, m + m′ − 1 = 0. (9)

and recall that

EJ = J(J + 1). (10)

Then the system described by E,D−1, D0, D1 is controllable.

Proof. In view of the criterion in [7] we have to prove that the Lie algebra L generated

by iE and iDk k = −1, 0, 1 is u(N).
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We label by e(ab) the N × N matrix whose entry at row a and column b is 1

and all others are zero and denote V(ab) = i
(

e(ab) + e(ba)

)

, S(ab) =
(

e(ab) − e(ba)

)

and

∆a = i
(

e(aa) − e(a+1;a+1)

)

. Note that S(ab), V(ab), (a < b, a, b = 1, N) and ∆a

(a = 1, ..., N − 1) form a basis for su(N). We index by ξ ∈ Ξ (of cardinality K)

the entries ξ = (ab) , a < b such that at least one matrix Dk has a non-zero entry

(Dk)ξ=(ab) 6= 0 and denote by ξ† the pair (ba).

We will index the matrices E and Dk with a, b running from 1 to N : E = (E)N
a,b=1,

Dk = (Dk)
N
a,b=1, k = −1, 0, 1 where we choose the order for (Jm) : (00) corresponds

to a = 1, (11) corresponds to a = 2, (10) to a = 3, (1 − 1) to a = 4, then

(2−2), (2−1), (20), (21), (22), ... etc (see Fig 1). Note that (Jm) traverses from m = −J

to m = J for even values of J and from m = J down to m = −J for odd values of J . For

instance E44 = E(1−1),(1−1) = 2. When there is no ambiguity we will use interchangeably

(1 −1) or 4, etc.

For k = −1, 0, 1 and ℓ ≥ 1 we compute adℓ
iEiDk = [iE, ..., [iE, iDk]...] =

(iℓ+1ωℓ
ab(Dk)ab)

N
a,b=1 (ωab = Eaa − Ebb) with the iterative commutators taken ℓ times.

Consider the basis






vJ
k =





∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)ξeξ



 ,

v
J†
k =





∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)
∗
ξ†eξ†



 ; J = 0, ..., Jmax







(11)

and note that adℓ
iEiDk =

∑

k,J iℓ+1ωℓ
ξv

J
k + iℓ+1(−1)ℓ(ωξ)

ℓv
J†
k . We obtain as in [20] that,

since ωξ are all different, adℓ
iEiDk generates any vector in the linear space

V ect











∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)ξSξ



 ,





∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)
∗
ξ†Vξ†



 ; J = 0, ..., Jmax







. (12)

In particular,





∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)ξSξ



 and





∑

ξ=(ab),ωξ=EJ+1−EJ ;a<b;(Dk)ξ 6=0

(Dk)
∗
ξ†Vξ†





will belong to L, J = 0, ..., Jmax.

For J = 0 we obtain S(a=(00),b=(10)), S(a=(00),b=(1−1)), S(a=(00),b=(11)) ∈ L and the same

for V(a=(00),b=(1m)), m = −1, 0, 1. We recall now the relations

for a 6= b 6= c 6= a : [S(ab), S(bc)] = S(ac), [S(ab), V(bc)] = V(ac),

for a, b, a′, b′ all different : [S(ab), S(a′b′)] = 0, [S(ab), V(a′b′)] = 0,

for a = 1, ..., N − 1 : [S(a,a+1), V(a,a+1)] = ∆a, (13)
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and note that the commutators


S(a=(00),b),





∑

ξ=(b′c′),ωξ=E2−E1;b′<c′;(Dk)ξ 6=0

(Dk)ξSξ









contain only one term (Dk)(bc)S(ac) where c = (2c2) is the (level J = 2) state coupled

with state b = (1b2) (level J = 1) through the same matrix Dk that also couples

the state a (level J = 0) and b: (Dk)(ab) 6= 0 6= (Dk)(bc). Thus S(ac) ∈ L and, by

using the commutator of S(ab) and S(ac), we obtain that S(bc) is in L as well for any

ξ = (b = (1m), c = (2m′)) such that (Dk)ξ 6= 0 for some k = −1, 0, 1. It remains now

to iterate the above treatment for all levels J = 2, ..., Jmax to obtain that all Sξ and Vξ

coupled by some matrix k : (Dk)ξ 6= 0 are in L. We note that the graph [8, 9, 11] of

the system is connected and conclude that L = u(N). ¤

Remark 3 The same conclusion as that of Thm. 1 holds if one replaces (10) by the

more general condition

EJ+1 − EJ 6= EJ ′+1 − EJ ′ ,∀J 6= J ′. (14)

Theorem 2 Consider a finite dimensional system where a set of states, indexed as

a = (Jm) with J = 0, ..., Jmax, m = 1, ...,mmax
J , mmax

0 = 1, are such that

EJm;J ′m′ = δJJ ′δmm′EJ (15)

EJ+1 − EJ 6= EJ ′+1 − EJ ′ ,∀J 6= J ′. (16)

We also introduce the set of K external interactions with corresponding matrices Dk,

k = 1, ..., K where Dk only couples states (Jm) and (J ′m′) such that |J − J ′| = 1 and

only one non-zero coupling exists for any (Jm):

(Dk)(Jm),(J ′m′) 6= 0 ⇒ |J − J ′| = 1 (17)

(Dk)(Jm),(J ′m′) 6= 0, (Dk)(Jm),(J ′′m′′) 6= 0, J ≤ J ′ ≤ J ′′ ⇒ J ′ = J ′′,m′ = m′′(18)

We also suppose that the graph [8, 9, 11] of the system is connected. Then the system

described by EJ , Dk (J = 0, ..., Jmax, k = 1, ..., K) is controllable.

Proof. Under the assumptions above, the proof follows exactly the same path as the

one of the Thm. 1.¤

Remark 4 The transition energy condition in Eqns. (14) and (16) is consistent with the

rotation of a linear rigid molecule. In addition the further flexibility encompasses broader

circumstances including the possibility of hindered rotation of a molecule residing in a

trapped nanoscale environment. Moreover, when hypothesis (15) is not satisfied because

the system is not degenerate previous results apply [8, 9, 10, 11].
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Remark 5 The results above can be extended to the case of a symmetric top molecule;

in such a circumstance [18] the energy levels are described by three quantum numbers

EJKm with |m| ≤ J , |K| ≤ J and

EJKm = C1J(J + 1) + C2K
2, (19)

for some constants C1 and C2. If the initial state is in the ground state, or any other

state with K = 0 the coupling operators have the same structure as in Thm. 1 and thus

any linear combination of eigenstates with quantum numbers J,K = 0,m can be reached

(same result directly applies). A more detailed analysis of symmetric top molecules will

be presented in a future work.

4. Controllability for a locked combination of lasers

We consider here whether the positive result above is still true when ǫk(t), k = −1, 0, 1

are not chosen independently but with a locked linear dependence through coefficients

αk such that
−→
ǫ(t) ·

−→
d = ǫ(t){α−1Y

−1
1 + α0Y

0
1 + α1Y

1
1 }. Note that there may exist cases

that are not controllable for any given linear combination. One such example is :

E =











0 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2











,
−−→
e(t) ·

−→
d = ǫ(t)µ, µ =











0 α−1 α0 α1

α−1 0 0 0

α0 0 0 0

α1 0 0 0











.(20)

This system is such that for all αk (k = −1, 0, 1 ) the Lie algebra generated by iE and iµ

is u(2), thus the system is not controllable with one laser field. However, Thm. 1 shows

that it will become controllable provided that the three components ǫk(t), k = −1, 0, 1

can be chosen independently.

The following result describes this situation further.

Theorem 3 Let A,B1,...,BK be elements of a finite dimensional Lie algebra L. For α =

(α1, ..., αK) ∈ R
K we denote Lα as the Lie algebra generated by A and Bα =

∑K

k=1 αkBk.

Define the maximal dimension of Lα

d1
A,B1,...,BK

= max
α∈RK

dimR(Lα). (21)

Then with probability one with respect to α, dim(Lα) = d1
A,B1,...,BK

.

Remark 6 This theorem states that for fixed A, B1, ..., BK all choices of α give a Lie

algebra Lα of maximal dimension with the possible exception of at most a null measure

set. This dimension d1
A,B1,...,BK

is specific to the choice of coupling operators Bk but

can be easily computed by the property above. On the other hand, recall that [21] when

A,B1, ..., BK are r×r skew-hermitian matrices the system is generically controllable i.e.,

we have d1
A,B1,...,BK

= r2 for generic A,B1, ..., BK .

Proof. Consider the (countable) collection Cα = {ζα
1 = A, ζα

2 = B, ζα
3 = [A,Bα], ζα

4 =

[Bα, A], ζα
5 = [A, [A,Bα]], ...} listing all possible iterative commutators constructed from
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A and Bα. Now take a subset {ζα
i1
, ..., ζα

ir
} of Cα; the vectors ζα

i1
, ..., ζα

ir
are linearly

independent when the Gram determinant is non-null. Note that the Gram determinant

is an analytic function of α; hence one of the following alternatives is true: either this

function is identically null for all α (which is the case e.g., for {ζα
3 , ζα

4 } ) or it is non-

null everywhere with the possible exception of a zero measure set. Since the number of

subsets {ζα
i1
, ..., ζα

ir
} of Cα is countable, we can construct F ⊂ R

K whose complement

R
K \ F is of zero measure such that if ζα

i1
, ..., ζα

ir
are linearly independent for one value

of α ∈ R
K then they are linearly independent for all α′ ∈ F . Denote by α⋆ some value

such that dimR(Lα⋆) = d1
A,B1,...,BK

; then there exists a set such that {ζα⋆

i1
, ..., ζα⋆

i
d1
A,B1,...,BK

}

are linearly independent implying that {ζα⋆

i1
, ..., ζα⋆

i
d1
M

} are linearly independent for any

α ∈ F ; thus dimR(Lα) ≥ d1
A,B1,...,BK

for all α ∈ F and the conclusion follows by the

maximality of d1
A,B1,...,BK

.

We invoked Remark 6 and performed numerical tests by computing the Lie algebra

generated by iE and iDα = i
∑1

k=−1 αkDk. The theorem was verified and we obtained

for any fixed Jmax and randomly chosen values of α that the dimensions of the Lie algebra

are the same. We also observed that the Lie algebra generated by iE and i
∑1

k=−1 αkDk

always had dimension (N − 2)2 which leads to the conjecture that generically in α (see

Thm 3) the Lie algebra generated by iE and i
∑1

k=−1 αkDk is isomorphic to u(N − 2).

Recall that by Thm. 1 when three independent control intensities are allowed then this

Lie algebra is u(N). We have as yet no theoretical explanation of why this appears to

be true. This observation shows, nevertheless, the extent to which a locked set of laser

intensities is sufficient to obtain specific attainable control targets.

5. Controllability with two lasers

We consider in this section the situation when two laser fields are used i.e. one

can independently shape the intensity along two vectors −→α and
−→
β :

−→
ǫ(t) ·

−→
d =

ǫα(t){α−1Y
−1
1 + α0Y

0
1 + α1Y

1
1 } + ǫβ(t){β−1Y

−1
1 + β0Y

0
1 + β1Y

1
1 }. Examples of such

situations are shaping along −→x and −→z directions, −→x and −→y directions or any other two

independent vectors.

Theorem 4 Let A,B1,...,BK be elements of a finite dimensional Lie algebra L. We

denote for α = (α1, ..., αK) ∈ R
K and β = (β1, ..., βK) ∈ R

K by Lα,β the Lie algebra

generated by A, Bα =
∑K

k=1 αkBk and Bβ =
∑K

k=1 βkBk.

Define the maximal dimension of Lα

d2
A,B1,...,BK

= max
α∈RK

dimR(Lα,β). (22)

Then with probability one with respect to α, β, dim(Lα,β) = d2
A,B1,...,BK

.

Proof. The proof is similar to that of Thm.3. ¤

This theorem states that all choices of α, β give the maximal Lie algebra dimension

dim(Lα,β) = d2
A,B1,...,BK

with the possible exception of at most a null measure set. We

will analyze in the following two particular cases.
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J=2

J=1

J=0
0

0

0

1

1 2−2 −1

−1

Figure 2. The same conventions as in Fig. 1 are used except that we do not draw

on the coupling by D
−1. We note that the state |Y m=Jmax

Jmax

〉 is not connected with the

others.

5.1. Field shaped in the −→z and
−→x +i

−→y√
2

directions

When the field is shaped in the −→z and
−→x +i

−→y√
2

directions we obtain, with the notation of

previous sections, that ǫ0(t) and ǫ1(t) are arbitrary and ǫ−1 is null. This is not a generic

case in the sense of Thm. 4 because the shaping directions are precisely related to the

system structure. We note that since ǫ−1 = 0 the coupling realized by the operator D−1

(dotted in Fig. 1) disappears and the state |Y m=Jmax

Jmax
〉 will not be reachable (see Fig. 2).

This means that the population in state |Y m=Jmax

Jmax
〉 cannot be changed by the two lasers

and thus will be a conserved quantity.

Theorem 5 Consider the model of Thm.1 with ǫ−1 = 0. Let |ψI〉 and |ψF 〉 be two states

that have the same population in |Y m=Jmax

Jmax
〉 i.e., |〈ψI , Y

m=Jmax

Jmax
〉|2 = |〈ψF , Y m=Jmax

Jmax
〉|2.

Then |ψF 〉 can be reached from |ψI〉 with controls ǫ0(t) and ǫ1(t).

Proof: The conclusion is a consequence of Thm. 2 for K = 2 and using all spherical

harmonics |Y m
J 〉 except |Y m=Jmax

Jmax
〉. Thus we conclude that the Lie algebra has dimension

N2 and by the independent system controllability criterion in [22, 23] we obtain the

conclusion. ¤

A similar analysis applies when the field is shaped in the −→z and
−→x −i

−→y√
2

directions

with the modification that in this case the population of |Y m=−Jmax

Jmax
〉 is conserved and

the compatibility relation reads:

|〈ψI , Y
m=−Jmax

Jmax
〉|2 = |〈ψF , Y m=−Jmax

Jmax
〉|2. (23)

5.2. Field shaped in the
−→x +i

−→y√
2

and
−→x −i

−→y√
2

directions

Using the same notation, now ǫ−1(t) and ǫ1(t) are arbitrary and ǫ0 is null. Thus, the

states are divided in two components cf. Fig. 3: X1 = {|Y 0
0 〉 , |Y ±1

1 〉 , |Y ±2
2 〉 , |Y 0

2 〉 , ...}

and X2 = {|Y 0
1 〉 , |Y ±1

2 〉 , |Y ±2
3 〉 , |Y 0

3 〉 , ...} with no coupling between the two components.

The conservation law reads
∑

|Y m
J

〉∈X1

|〈ψI , Y
m
J 〉|2 =

∑

|Y m
J

〉∈X1

|〈ψF , Y m
J 〉|2. (24)



Multi-polarization quantum control of rotational motion through dipole coupling 10

J=2

J=1

J=0
0

0

0

1

1 2−2 −1

−1

Figure 3. The same conventions as in Fig. 1 are used except that we do not draw on

the coupling by D0. We note that two connectivity sets appear: those connected with

|Y 0

0
〉 (filled black rectangles) and those connected with |Y 0

1
〉 (empty rectangles).

Theorem 6 Consider the model of the Thm.1 with ǫ−1 = 0. Let |ψI〉 and |ψF 〉 be two

states compatible in the sense of Eqn. (24). Then |ψF 〉 can be reached from |ψI〉 with

controls ǫ−1(t) and ǫ1(t).

Proof: The proof follows that of Thm. 2 except that the system has now two

independent graphs instead of one, both satisfying the hypothesis of the theorem. The

same computation alows one to generate the full Lie algebra for X1 (using that for

the graph containing the states X1 we have mmax
0 = 1). Next, one works with the

second graph and constructs its associated algebra. The conclusion is obtained by the

independent system controllability criterion in [22, 23]. ¤

6. Conclusions

This paper discussed the controllability properties of molecular rotation with multi-

polarization fields that act through a permanent dipole moment. A first conclusion

is that the degeneracy of the energy levels brings no additional restriction on the

controllability. Positive results are found for the controllability of an arbitrary number

of rotation eigenstates. We also discussed the situation of a symmetric top molecule

when the magnetic quantum number m is zero.

The dependence of the controllability result on the the coupling operators is not

surprising; however as in [9] the numeric values of the entries of the coupling matrices

are not important as soon as they are non-null. Thus, we can say that the controllability

depends only on the ”selection rules” i.e. on the fact that two states may, or may not,

have a non-vanishing coupling through one of the external (laser) interactions.

The situation with one and two polarized fields was also examined based on the

generic dimension of the Lie algebra. For the particular situations where the field is

shaped in any combination of two of the three directions −→z ,
−→x +i

−→y√
2

and
−→x −i

−→y√
2

we

showed that the system is still controllable provided that the target is consistent with

the selection rules. Breaking those symmetries would require a third independently

shaped pulse.

The specific situation with two fields depends on which dual polarization

components are available: if one can shape the polarization in the −→z and
−→x +i

−→y√
2
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directions everything can be controlled except the population of the state |Y m=Jmax

Jmax
〉

(respectively |Y m=−Jmax

Jmax
〉 for the −→z and

−→x −i
−→y√

2
directions). If on the contrary the

field can be shaped in the
−→x +i

−→y√
2

and
−→x −i

−→y√
2

directions, then the initial and target

state have to be compatible in the sense of the selection rules. We note that in both

cases with two polarization field components (in the list above) one only has a single

compatibility constraint to satisfy. This is to be contrasted with the situation when only

one polarization component is available : in this case there are many constraints on the

target state (e.g., when only ǫ0 is available the selection rules impose 2Jmax+1 constraints

because m is conserved). In summary, the most substantial increase in controllability

(based on our analysis of these particular cases and on the general controllability result)

is witnessed when replacing a linear polarized field by a field independently shaped in

two directions.

Finally, it is important to place this work in the larger context of molecular,

and more generally quantum system, controllability. A pertinent issue is whether

any randomly chosen Hamiltonian (i.e., a particular physical system drawn from the

stockroom) is likely to be controllable. Building on theoretical results [21], recent

numerical work [24] argued that virtually any Hamiltonian-coupling operator (i.e., the

dipole) expressed in the eigenbasis of the field free Hamiltonian H0 will generate a

connected graph (e.g., as in Fig. 1 versus that in Fig. 2). Although this statement is

short of establishing controllability, it is a necessary criteria. Furthermore, to arrange

a special relationship amongst the Hamiltonian’s matrix elements in order to violate

controllability is a demand whose solution lies in the null space of all Hamiltonians [8, 11].

In particular we proved in this paper that this null space does not contain the degenerate

Hamiltonian for rotational motion. Thus, although uncontrollable Hamiltonians can be

designed, the chance of finding one in the laboratory is very small. This conclusion

provides the basis to expect that suitable control fields will virtually always exist yielding

high quality results.
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