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ABSTRACT

This paper introduces a mathematical model of the spatio-

temporal patterns of visually evoked activity observed using

Voltage-Sensitive Dye Imaging (VSDI) of the visual cortex.

The cortical activity is described using a linear superposi-

tion of waves traveling with different speeds. This model

improves the quality of the wave detection and still respects

the previous approaches, as it integrates several biologically

plausible constraints: 1) separability of the sources in terms

of cortical location; 2) separability of the waves in terms of

propagation speed, and 3) additivity of the depolarizing ef-

fects of the waves. Under these assumptions, a traveling com-

ponent analysis algorithm performs a full separation of the

set of waves and recovers the locations of the neural sources.

Both features could help to better understand the dynamics of

evoked activity in cortical sensory networks.

Index Terms— Optical imaging, Inverse problems, Prop-

agation, Partial differential equations, Signal reconstruction.

1. INTRODUCTION

There is a one-to-one mapping of the world projection on

the retina onto the cortical laminar sheet of the primary vi-

sual cortex. The cortical contribution to the emergence of

non-attentive visual perception also involves the global pro-

cessing of the whole scene by primary and secondary visual

cortical areas, mediated by long-range horizontal connections

and top-down influences from higher-cortical areas. The com-

plexity of the evoked cortical patterns requires advanced pro-

cessing technique to decode this activity.

1.1. Voltage Sensitive Dye Imaging (VSDI)

In VSDI, the dye molecules bind to the external surface of

cell membranes and act as molecular transducers which trans-

form changes in membranes potential into fluorescent optical

signals [1]. These optical changes are monitored with light-

imaging devices. This imaging technique offers the high-
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est spatial resolution (about 50µm) and temporal resolution

(about 1µs) for imaging at the mesoscopic level.

1.2. Traveling Cortical Waves

Forward wave. Several authors [2, 3, 4] have reported

that the activity evoked in the primary visual cortex is char-

acterized by a feedforward and lateral wave of depolarization

originating from the retinotopic center of the stimulation.

This wave is initiated in mammals by the retino-thalamo-

cortical retinotopic projection and relayed intra V1 through

horizontal connection extending over several mm in the plane

of the superficial cortical layers.

Per Roland et al. [5] stained the visual cortex of the ferret

with VSD and presented a short-duration high contrast square

during 133 ms, starting at time 200 ms. Figure 1, top row,

shows the time evolution of a signal X(t, x) obtained by av-

eraging optical signals through 10 trials. This shows the for-

ward traveling wave that emanates from two source points

that correspond to the same retinotopic center.
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Fig. 1. Top row: optical signal X , for several times t in ms.

Middle row: reconstructed signal X⋆. Bottom row: residue

X⋆ − X . Values range from -0.0019 (blue) to 0.0155 (red)

Feedback wave. Per Roland et al show in [5] the ex-

istence of an other propagating wave of intracortical origin.

This wave is interpreted as a feedback wave from higher vi-



sual cortical areas going back to the primary visual cortex. It

is shown in [5] that this feedback wave has several key char-

acteristics that differ from the forward wave. In particular, it

originates from a distinct secondary visual cortical area (cor-

responding a distinct representation of the visual field), travels

faster and have a very small amplitude in comparison with the

forward wave. This wave is extracted in [5] using a pointwise

normalization of the input signal

θ̃2(t, x) = max
(

X(t, x) − max
t′∈[0,T ]

X(t′, x), τ
)

(1)

for a well chosen threshold τ < 0, and θ̃1 = X − θ̃2 is the

first wave, as shown in Figure 2, bottom row.

1.3. Contributions

This paper proposes a mathematical model obeying plau-

sible biological constraints, for both forward and feedback

waves observed in VSDI signal. This model defines the no-

tion of traveling wave component, that enables to separate the

waves and locate their sources using a numerical algorithm.

This approach is more accurate than the normalization (1) be-

cause it integrates global propagation constraints, regularizes

the signal and extracts the sources.

2. MATHEMATICAL MODEL

OF SIGNAL FORMATION

2.1. Optical Signal Formation Model

Our model assumes that the VSDI signal is a linear super-

position of several components

X = θ1 + θ2 + W (2)

where θ1 corresponds to the forward wave, θ2 to the backward

wave, and W takes into account modeling imperfections and

acquisition noise. The linear mixing (2) is a simplifying as-

sumption that is coherent with optical recording and seems to

fit reasonably with experimental observations [5, 1].

2.2. Traveling Component Model

Each propagating component θi, for i = 1, 2, is assumed

to be the solution of the non-homogenous wave equation

∂2θi

∂t2
− c2

i ∆θi = fi in E =]0, T [×R
2

θi = 0,
∂θi

∂t
= 0 in {t = 0} × R

2
(3)

where fi is the source of the component and ci ∈ R
+ is a

fixed speed.

This modeling hypothesis is a simple way to express the

fact that cortical waves are traveling with an approximately

constant speed but that the two speeds c1, c2 may be different.

For smooth enough sources fi ∈ C2(E), where E =
]0, T [×R

2, the equation (3) is known to have a unique so-

lution. We denote as θi = Tci
(fi) the linear mapping from

the sources to the propagating component. The optical data

formation process (2) is rewritten as

X = Tc1
(f1) + Tc2

(f2) + W. (4)

3. SEPARATION OF MULTIPLE

TRAVELING WAVES

The separation problem requires to estimate two sources

(f⋆
1 , f⋆

2 ) from the noisy observations X alone, so that

X ≈ Tc1
(f⋆

1 ) + Tc2
(f⋆

2 ). (5)

In this paper, the speeds c1, c2 are assumed to be fixed by

prior anatomical and electrophysiological knowledge.

This source separation problem is a difficult ill-posed

inverse problem, because the number of parameters (two

space/time sources) to be estimated is vastly larger than the

dimensionality of the observations. This difficulty is further

increased by the presence of noise (biological and instrumen-

tal) and because the linear mappings Tci
might degrade some

of the information present in the sources. This section thus

defines constraints on the sources to ensure uniqueness of the

decomposition (5) in the noiseless case W = 0, and stability

when noise is added to the measurements.

3.1. Sources Localization Constraints

Even in the noiseless case W = 0, the separation (5) is not

always unique. To recover uniqueness, we impose that each

source fi is localized in space in a fixed domain Ωi such that

Ω1 ∩Ω2 = ∅. We thus defines the following set of admissible

sources

Fi = {f ∈ C2(E) : x /∈ Ωi ⇒ f(t, x) = 0}. (6)

The constraint fi ∈ Fi makes sense from the observations

of Per Roland et al. [5], that show that f1 is localized near

the cortical retinotopic impact center of the stimulus, whereas

Tc2
(f2) originates from a surrounding cortical area 19 or 21.

The following theorem, whose proof is given in [6] shows that

the constraints fi ∈ Fi ensures uniqueness of the decomposi-

tion if W = 0.

Theorem 3.1. If c1, c2 ∈ R+ and fci
, fc′

i
∈ Fi, then

Tc1
(fc1

) + Tc2
(fc2

) = Tc1
(fc′

1
) + Tc2

(fc′
2
)

=⇒ fc1
= fc2

= fc′
1

= fc′
2

= 0.

3.2. Sources Smoothness Constraints

To remove the noise while performing the separation, we

assume that each source fi is smooth, and impose that the

following Sobolev energy is small

J(fi) =
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(7)

The parameter η defines the space/time scaling of the source,

and is estimated by anatomical and functional knowledge.



4. TRAVELING COMPONENT ANALYSIS

Constraints (6) and (7) are integrated in an optimization

problem that allows us to recover the sources.

4.1. Variational Formulation

The VSDI signal is acquired on a small portion U ⊂ R
2

of the visual cortex, that has an hexagonal shape of diagonal

length 4.2 mm, as shown on Figure 1. The propagating waves

are however assumed to propagate on the whole plane R
2.

We thus impose the measurement model (4) only for points

x ∈ U .

Using the orthogonal projector on a set A ⊂ R
2

PA(f)(t, x) =

{

f(t, x) if (t, x) ∈ R
+ × A,

0 otherwise,
,

where f ∈ C2(E). the separation (5) is obtained by integrat-

ing constraints (6) and (7) in a penalized least square

min
f̃1,f̃2

∣

∣

∣

∣

∣

∣
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(

X − Tc1
PΩ1

f̃1 − Tc2
PΩ2

f̃2

)∣

∣

∣

∣

∣

∣

2

+ λ1J(f̃1) + λ2J(f̃2) (8)

The parameters λi should be adapted carefully depending

both on the noise level and on the expected smoothness of the

sources.

Although the observations X are available only inside U ,

the sources are retrieved on the whole domain. Reconstruct-

ing a signal X⋆ = Tc1
f⋆
1 + Tc2

f⋆
2 realizes both a denois-

ing and an inpainting calculus, since one extrapolates the data

outside U .

4.2. Discrete Algorithm

The application of the continuous method described in

Section 2 to biological measurements requires the discretiza-

tion of the model (analagous to that performed by the sensor

matrix of the VSD camera). Both the observations X and the

sources fi are discretized on an uniform spatio-temporal grid

of size Nt × N2
x . The propagation is computed using a dis-

cretized operator Tc, that is obtained by solving the PDE (3)

with finite differences.

Solving (8) corresponds to the minimization of a quadratic

functional over the discrete grid, which can be solved using

a conjugate gradient descent. This process requires the com-

putation of the adjoint operator T ⋆
ci

that satisfies 〈T ⋆
ci

u, v〉 =
〈u, Tci

v〉 for the discrete inner product on the computation

grid. This requires the resolution of a wave equation that

propagates backward in time.

5. NUMERICAL RESULTS

5.1. Synthetic Data

We evaluate numerically the efficiency of our traveling

component analysis by applying it to synthetic data where the

ground trust sources are known. This synthetic model aims

at being close to the observation of Per Roland et al. [5] de-

scribed in section 1.2.

In the following, U is an hexagon of diagonal length 4.2.

To study the influence of the size of the supports Ωi, we con-

sider for i = 1, 2 a family of sources fr
i = PΩi(r)fi defined

over a domain Ωi(r) of width r > 0, as shown the figure on

the right

Ωi(r) = {x ∈ R
2 : min

y∈Ωi

||x − y|| 6 r} (9)

where Ω1 = {x1, x2} ⊂ R
2 and

Ω2 = {(x, y) ∈ R
2|x2 + y2 = R2},

where R = 8.

The source f1 is a sum of two gaus-

sians of standard deviation 0.5 local-

ized at the two points of Ω1. Source

f2 is a sum of gaussians of standard

deviation 0.2 localized at all points

of the curve Ω2.
Moreover, ||Tc1

(f1)||∞ = 1, ||Tc2
(f2)||∞ = 1/10, f1 and f2

are of opposite signs. We consider a discrete domain of size

Nt = 46, Nx = 101.

We fix the propagation speeds to c1 = 1.5 and c2 =
10 × c1, and generate the observations X = Xr according

to the model (4) Xr = Tc1
(fr

1 ) + Tc2
(fr

2 ) + W where W is

a gaussian white noise with variance σ2 = 10−3.

For each r > 0, we apply the traveling component analy-

sis algorithm described in Section 4.2 to recover sources fr,⋆
i

that solve (8), and compute the following recovery error

E(r) =
||fr

1 − fr,⋆
1 ||

||fr
1 ||

+
||fr

2 − fr,⋆
2 ||

||fr
2 ||

. (10)

The parameters λ1 and λ2 are chosen in an oracle manner,

to minimize the recovery error (10).

As the width r increases, the recovery problem becomes

increasingly ill-posed, so that the error E(r) increases. Ul-

timately for large enough r, the sets Ωi(r) overlap and the

uniqueness result of Theorem 3.1 does not holds anymore.

Figure 3 shows that even in this noisy setting, our algo-

rithm performs well for a constraint domain of width smaller

than r = 1 and we obtain E(1) = 0.3.

5.2. VSDI Data

We apply our traveling wave separation algorithm on the

VSDI data shown on figure 1, that were studied in [5]. We

use the supports constraint Ωi(ri) defined in (9), and choose

r1 = 1.5 and r2 = 0.5, that works well in the synthetic ex-

periments shown in Figure 2 while being in agreement with

physiological knowledges. Points x1 and x2 in subsection 5.1

correspond to the retinotopical centers. U is an hexagon with

a diagonal of length 4.2 and R = 8.
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Fig. 2. Comparaison between the separation (θ̃1, θ̃2) obtained with the method of [5] defined in (1) and (θ⋆
1 , θ⋆

2) obtained with

our method. Left side. Top row: θ̃1. Bottom row: θ⋆
1 . Values range from blue=-0.0039 to red =0.0155. Right side. Top row:

θ̃2. Bottom row: θ⋆
2 . Values range from blue=-0.0024 to red=0.0020).

Fig. 3. Curve of recovery error E(r) as a function of r.

t = 215ms t = 264ms t = 300ms t = 344ms

t = 245ms t = 270ms t = 307ms t = 344ms

Fig. 4. Leftmost three images: source f⋆
1 (t, x) for several

times t (blue=-1.3701 to red=2.2228). Rightmost image:

source f⋆
2 (t, x) for a single time t the black hexagon shows

the domain U (blue=–5.5823 to red=1.5545).

The input data X has been denoised prior to applying

our method, by considering a signal averaged over 10 re-

peated trials. We impose large regularization parameters λ1,

λ2 fixed such that ||X − X⋆||/||X|| ≈ 0.14 to cope with im-

perfections in our model and ensure the recovery of smooth

sources. Moreover, we fit λ1, λ2 to give a good visual result

on both sources. Figure 1, bottom row, shows that the resid-

ual X − X⋆ has a small amplitude, which indicates that our

model is able to efficiently represent the data with localized

sources. Figure 2 compares the separation obtained by our

approach and with the simpler thresholding (1). Our method

confirms the existence of a feedback waves that propagates

in the same direction as described in [5]. We achieve a full

separation and retrieve smooth waves which is not possible

with the thresholding (1). Figure 4 shows that our method

estimates localized sources (f⋆
1 , f⋆

2 ) with a complicated tem-

poral dynamic. We observed empiricaly a good separation for

a ratio of c1/c2 = 10 which differs from the findings of [5].

6. CONCLUSION/PERSPECTIVE

This paper proposed a mathematical model of cortical

traveling waves that integrates several plausible biological

constraints. This allows to better represent the propagating

components and to recover the sources of the activity. We

applied our method on both synthetic data and real biolog-

ical data. In future works, we would like to improve the

separation process by finding optimal speeds that could be

integrated into our variational optimization.
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