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Surface framed braids

Paolo Bellingeri and Sylvain Gervais

Abstract

In this paper we introduce the framed pure braid group on n strands of
an oriented surface, a topological generalisation of the pure braid group FP,.
We give different equivalents definitions for framed pure braid groups and we
study exact sequences relating these groups with other generalisations of P,
usually called surface pure braid groups. The notion of surface framed braid
groups is also introduced.

1 Introduction

Let ¥ = X, be an oriented surface of genus g with b boundary components (we will
note X, := X, ) and let P = {p1,...,p,} be a set of n distinct points (punctures) in
the interior of 3. Let C,(X) = X"\ A, where A is the set of n-tuples z = (z1,...,x,)
for which z; = x; for some i # j. The fundamental group m (C,,(X), p) is called pure
braid group on n strands of the surface ¥; it shall be denoted by Pn_(E).

The symmetric group &,, acts freely on C,(X) by permutation of coordinates. We
denote 6’;(2) the quotient space C,(X)/S,. The fundamental group of @(E) is
called braid group on n strands of the surface ¥; it shall be denoted by B, (X%).
Since the projection map C,, (%) — 6’;(2) is a regular covering space with trans-
formation group &,,, one has the following exact sequence:

1 — P,(¥) — B,(Y¥) — 6, — 1.
On the other hand, from the homotopy exact sequence associated to the fibration
Crim(E) — Cn(2), we get ([FN|, Bii]) an exact sequence:
(SPB) 1— P, (X \npoints ) — Pin(X) — P (X)) — 1

when ¥ has positive genus or genus equal to zero and non-empty boundary (in the
case of the sphere such a sequence holds for n +m > 4). In the following we will
denote this sequence by (SPB) (Surface Pure Braids).
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When ¥ has boundary, the (SPB) sequence has an evident geometric section,
which corresponds to add m punctures ”at the infinity” (see [BZ, [GQ]); if X is closed
and different from the sphere and the torus, the (SPB) sequence splits if and only if
n =1 (see for the general case and for an algebraical section in the case
n = 1). In the case of the disk this sequence has some additional features [FR] and
it is a powerful tool in the study of finite type invariants for links [F]. In the general
case the (SPB) sequence can be used to find a group presentation for P, (X) (see for
instance [BJ]).

In this paper we introduce framed braid groups F'B,,(32) and F'P,(X) of a surface
Y., which generalise respectively framed braid groups introduced in [KY] and framed
pure braid groups considered in Theorem 5.1 of [MM]. These groups turn out also
to be related to generalisations of Hilden groups introduced in [BJ]. For surfaces of
genus greater than 1, with boundary or closed, we give three equivalent definitions
of these groups: in terms of configuration spaces, as subgroups of mapping class
groups (Section f) and as subgroups of braid groups of surfaces (Section fj and []).
We prove that, when the surface is closed and of genus greater than 1, these groups
are non trivial central extensions of surface pure braid groups (Section ) and we
provide a group presentation for F'P,(X) (Section [, Theorem §) and therefore for
FB,(32) (Theorem [[J). We show also that the sequence (SPB) extends naturally
to a sequence on framed braids, that we will call framed surface pure braid sequence
(denoted by (FSPB)) and which splits even in the case of closed surfaces (Section [,
Theorem f). In the case of the torus the proposed definitions are not equivalent and
let arise different notions of framings: this case will treated separately in the last
Section.

2 Framed braids: possible definitions

2.1 Framed braids via configuration spaces

Let UX be the unit tangent bundle of X and 7 : UX — X be the natural projection.
We denote by F,(¥) the subspace (7")~1(C,(X)) of (UX)" and fix a unit tangent

.....

group S, acts freely on F,,(X): we denote F,,(3) the quotient space F,,(2)/&,,.

DEFINITION 1 The pure framed braid group F P, (%) onn strands of ¥ is the funda-
mental group of F,,(X). The framed braid group onn strands of ¥ is the fundamental

group of F,(%).



Thus, a framed braid can be seen as a family of n continuous paths b; : [0,1] — UX
for i =1,...,n such that :

1) b;(0) = (ps,v;) for alli € {1,...,n};
2) do € &, such that b;(1) = (Po(i), Vo)) for alli € {1,...,n};
3) wbi(t) # mwb;(t) when i # j for any ¢ € [0, 1].

Since the projection map F,(¥) — E(E) is a regular covering space with
transformation group &,,, the framed braid group and the pure framed braid group
are related by the following exact sequence:

1 — FPy(S) — FBy(S) — &, — 1 (1)

2.2 Framed braids as mapping classes

In this section we will give an interpretation of framed braid groups of an oriented
surface different from the sphere and the torus in terms of mapping classes.

2.2.1 Notations

Let Diff*(%, ;) denote the group of orientation preserving diffeomorphisms of ¥,
which are the identity on the boundary. Recall that the mapping class group of X,
denoted Iy, is defined to be mo(Diff (3, 4)), where Diff (3, ;) is equipped with the
compact open topology. Note that we will denote the composition in the mapping
class groups from left to rightf]. In the following, greek letters will be used to denote
simple closed curves on X ; and if « is such a curve, 7, will denote the Dehn twist
along «.

We shall also consider different subgroups of Diff*(%,;) and associated mapping
class groups:

e Diff " (3,4, P) = {h € Diff *(2,,) / 30 € G, h(p:) = Po(iy}, and the punctured
mapping class group T, = mo(Diff " (3y 4, P));

e Diff '(Z,;,p) = {h € Diff " (3,4, P) / h(p;) = p;} and the pure punctured map-

ping class group Pl";b = 7T0(Diff+(zg,b7£));

° Diff*(ngb, V) = {h - Diff*(Zg,b) / do € Gn, h(pl) = Po(i) and dpzh(’l}l) = ’l}a(i)}
(where V = {(p1,v1), ..., (Pn,vn)} is a set of n distinct points on X, equipped with

n unit tangent vectors vq,...,v,) and the framed punctured mapping class group
FI'y, = mo(Diff 7 (2,5, V));

"'We do this in order to have the same group-composition in braid groups and mapping class
groups.



e Diff "(X,4,v) = {h € Diff*(Z,,,V) / h(p;) = pi and d,,h(v;) = v;}, and the
pure framed punctured mapping class group PFI'}, = 7T0<D1ff (Xg0,0)).

REMARK 1 A preserving orientation diffeomorphism h of ¥, such that h(p;) = p;
and d,,h(v;) = v; is isotopic to a diffeomorphism which is equal to identity on a
small dlSC around p;. Thus, the two groups PFI'}, and I'y 1, are isomorphic.

Let us also recall that if ¥’ is a subsurface of ¥ and i : ¥’ < ¥ is the inclusion
map, there is a canonical morphism i, from the mapping class group I'(X’) of ¥’ to
the mapping class group I'(X) of ¥, which consists in extending each diffeomorphism
h of ¥’ by identity on ¥ \ ¥’. When ¥ is a genus g surface with b boundary
components and ¥ \ ¥ is a collection of n disjoint discs (see Figure [l]), we shall
denote by A7, : T’y — 'y this morphism (Ay when b =0).

10D
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Figure 1: The embedding g pypn = g .

2.2.2 Braids groups as mapping class groups

Braid groups of surface are related to mapping class groups as follows (see [Bid, B1] ):

PROPOSITION 1 Let n > 1. Let 1, : F;"b — Lgp and o, : PF;b — Dyp be the
homomorphisms induced by the forgetting map Diff*(3,,,P) — Diff *(X,,) and
Difer(Eg’b,p) — Difer(Eg,b).

1) If (9,b) ¢ {(0,0),(1,0)}, Ker(¢,) and Ker(g,) are respectively isomorphic to
Bn(z%b) and Pn(z%b).

2) When b =0 and g € {0,1}, Ker(¢,,) and Ker(y,) are respectively isomorphic to
B, (%,)/Z(Bn(%y)) and P,,(X,)/Z(P.(%,)) (where Z(G) is the center of the group
G).

REMARKS 2
1) Let T? be a torus; one has Z(B,(T?)) = Z(P,(T?)) = Z?* (see [PRT])).



2) Let S? be a sphere; one has By(S?) = Py(S?) = 1, Po(S?) = 1, By(S?) = Z/2Z
and for n > 3, Z(B,(5?)) = Z(P,(5?%)) ~ Z/27Z (see [GV]).

We can provide a similar result for framed braids:

PROPOSITION 2 Let n > 1. Let ¥, : FI'l, —> I'gp and @, : PFIY, — T'y,
be the homomorphism induced by the maps which forget the tangent vectors and
the punctures. 1If (g,b) ¢ {(0,0),(1,0)}, Ker(¥,) and Ker(®,) are respectively
isomorphic to F B, () and FP,(3,4).

Proof. Following [Bi], we consider the evaluation map Fv : Diff (3, ) — F,.(X,5)
defined by Ev(h) = (h(p;),dph(v;)). It is a locally trivial fibering with fiber
Diff* (X, 4,v). The long exact sequence of homotopy groups of this fibration gives
the following exact sequence:

s m (DI (Sg)) 25 1 (Fu(Zs)) 25 o (Diff+ (S, 0))
25 o (DIF (2,4)) 225 700 (Fu(Sg))-
Now, ﬂo(Fn(Z%b)) is trivial, and if ¥,, is not the sphere S? or the torus T2,
Diff* (3, ) is contractible (see [87]). Thus, we get the required result for ®,,.
The proof for ¥,, is analogous and is left to the reader; it suffices to consider the
evaluation map E, : Diff *(3,,) — F,(3,,) defined by Ev(h) = (h(p;), dp,h(v;)).
O

The definition of framed braid groups in terms of mapping classes and tangent
vectors provided in Proposition ] was introduced in [DF] as the definition of framed
braid groups of surfaces with one boundary component.

We can provide an equivalent definition of pure framed braid groups as the kernel
of the mapping induced by the inclusion of a surface with boundary components into
another one.

COROLLARY 3 For all (g,b) distinct from (0,0) and (1,0), the kernel of the morph-
ism Ay y : Ugpin —> Dgp induced by capping n boundary components is isomorphic
to the pure framed braid group FP,(X,4).

Proof. Via the isomorphism PFI'}, ~ I'gpip, the homorphism @, coincides with
Al O
g,b

3 The (FSPB) sequence

In this section, we prove the existence of a framed version of the (SPB) sequence.
We also prove that it splits even in the case of closed surfaces of genus greater or
equal than 2.



THEOREM 4 For g > 2, b >0, n > 0 and m > 0, one has the following splitting
exact sequence :

(FSPB) 1 — FPy(Sgpin) — FPoim(Sgs) =58 FP(2,5) — 1
where o, consists in forgetting the first m strands.

Proof. Using Proposition || and Corollary [, one has the following commutative
diagram with exact rows and columns:

AT ptn)

btn/l
11— FPm(Zg,b-i-n) - FPn+m(ngbS e FPn(ZgJ?) —1

m
g,b+n
1——=FPn(Egp1n) — Lgptntm Lgpin 1
A Ag.b
Lop Lop
1 1

where (A%, )] is the restriction of A}, to F'P, 4, (¥gs). Since, via the isomorph-
ism FPym(Xgp) =~ Ker(AZIm), forgetting m strands corresponds to capping m
boundary components, the first row is the required exact sequence.

The splitting of the (FSBP) sequence is obtained considering an embedding ¢ of
Ygbtn 160 Xy pinim as in figure fJ. The induced morphism ¢, : I'gpin — Ty pintm
satisfies A\, ,, 0 t. = Idrp and its restriction ¢y : F'P,(3g5) — FPyim(Eg) is a
section for (A% ,,,)-

g,b+n

O
REMARK 3 Note that the splitting of (FSPB) sequence consists in cabling the first
framed strand while the splitting of (SPB) sequence in the case of surfaces with

boundary consists in adding m strands at the infinity. If ¥ has boundary, adding m
framed strands at the infinity gives another splitting of (FSPB) sequence.

4 Framed braids vs classical braids

The following Theorem shows that the group FP,(X,) is a non trivial central ex-
tension of P,(3,) by Z".



DO 2
Yo m+1

Figure 2: ¢ is a section of Aj},.

THEOREM 5 Let X4, a surface of genus g > 2 with b boundary components.

1) If 3,4 has boundary, the framed pure braid group FP,(X,;) is isomorphic to
L™ x P,(3gp).

2) If ¥, is a closed surface, there is a non-splitting central extension

1 —Z" — FP,(5,) 25 Py(3,) — 1 (2)

where [, is the morphism induced by the projection map F,(3,) — Cn(3,) (i-e.
Bn consists in forgetting the framing).
3) In the two cases, F,(X,) is an Eilenberg-Maclane space of type (FP,(X,5),1).

Proof. If ¥, has boundary, >, is parallelizable and the unit tangent bundle UX,
is homeomorphic to S* x 3, ,. Thus, F,,(3,;) is homeomorphic to (S1)" x C,,(2,4)
and FP,(3,,) is isomorphic to Z" X P,(X,4). Furthermore, since S and C,,(3,)
are Eilenberg-Maclane spaces (see [PRT]), F,,(X,) is also one.

Now, suppose that Y, is a closed surface of genus greater than 1 and consider
the exact sequence of homotopy groups of the locally trivial fibrations (with fiber

(SH") Fu(Eg) — Cu(Zy)
= T ((SH™) = T (Fu(Sgp) — T (Cr(Bgp)) — moa ((SH™) — -+
= M (Cr(Bgp)) — m ((SH") — 7T1( n (X)) L, T (Cn(Egp)) — 1
Since C,,(%,) is an Eilenberg-Maclane spaces (see [PRI]), this sequence leads to the

sequence (B) and to the third point of the Theorem.
Now, using Propositions [[] and B} one has the following commutative diagram with



exact rows and columns:

1 1
1 —=7" —FP,(3;) — P,(¥;) —1 @)
1 7 Lyn PTy 1 (3)
D, Pn
Ly Ly
1 1

where the exact sequence (3) is obtained by capping n boundary components of £,
by n punctured discs (see [PRJ]). In this sequence, Z" can be seen as a subgroup
of I'y, generated by Dehn twists along curves parallel to boundary components,
thus (3) is a central extension of PI";. Therefore, (B) is a central extension of
P,(%,).

To conclude, we shall prove that this sequence does not split. First we remark that
for n = 1 we obtain the canonical projection of the fundamental group of the unit
tangent space into the fundamental group of the surface which splits if and only if
the surface is not closed (we are considering the case g > 2). Thus, let n > 2 and
let us consider the following diagram:

Bn
1 —— 2" ——> F Py (8y) = Posa(Zg) — 1

H ()] N (Ad2) lp*

1 an FP(5,) —2~ Py(3,) ——1

where ¢, is the section of )\;’n described in figure P and p, the map wich consists
in forgetting one strand. One can easily verify that the diagram is commutative.
Suppose that there is a section s,, : P, (X,) — FP,(X,) for §,.

The composition f,41 0 tx 08, : Py(X,) — P11(2,) is therefore a section for
P« in fact pe o Bri1 0608, = By 0] 0108, = Idp,(s,). This is impossible, since
p. has no section when n > 2 and g > 1 [GG]. O

REMARK 4 The splitting of sequence (B) in the case of surfaces with boundary was
proven in Lemma 19 of [BGG] in a combinatorial way.



PROPOSITION 6 Let X, be a surface different from the sphere S? and the torus T?.
1) there is an exact sequence

1 — 2" — FBy(Sy0) 22 Bu(S,5) — 1, (4)

where Bn consists in forgetting the framing. This sequence splits if ¥gp, has non-
empty boundary.
2) F,(X,p) ts an Eilenberg-Maclane space of type (FB,(X44),1).

Proof. Using local trivialisations of the fibering F,(X,,) — C,(X,,) and the
covering spaces Cp, ( b) — Cn(Eyp) and F,(E,) — F,.(E,,), one can easily see

that F\n(Egb) — C, ( gb) 15 & locally trivial bundle with fibre (S')". The exact
sequence of homotopy groups of this fibration is

(SN — 1 (Fu(Zys)) — 70 (Ca(Zyp)) — Tt ((SH") —

—~

s (G (Ban) — 1 ((SY7) — 1 (B (Sa0)) 25 10 (Co(S)) — 1

Since @(Eg,b) is an Eilenberg-Maclane space (see [PRI]]), we get the required exact
sequence and the second point of the proposition. If 3, ; is parallelizable, any section

s:Cp(Xgp) — Fo(X,) induces a section § : 6’;(2971,) — E(Z%b) which gives the
splitting of (H). O

5 Presentations of pure framed braid groups

Now, let us look for a presentation of pure framed braid groups. By Theorem [, the
group F'P,(X,}) is isomorphic to the direct product Z" x P, (X,;) if b > 1. Thus,
with the following theorem (see [BZ]), we get a presentation of F'P,(X,).

THEOREM 7 Let ¥, be a compact, connected, orientable surface of genus g >
1 with b boundary components, b > 1. The group P,(X,,) admits the following
presentation:

Generators: {A;;|1<i<29g+b+n—229+b<j<2g+b+n—1,i<j}.

Relations:

(PR1) A, jA Aij=Ans if (i<j<r<s) or (r+1<i<j<s),

or(i=r+1<j<s foreven r<2g or r>2g));
(PR2) A;J A Aij = Ai A AL if (1<) <s);
(PR3) A 1AHA = A A AATTAT if (i< <s);



(PR4) A;ler,sAi,j = A%SA],SA;;A;;AT7SAJ7SAZ7SA;;A;Sl Zf (Z +1<r <] < 8)
or (i+1l=r<j<s forodd r<2g or r>2g);
(ER1) A} ArsAriy = ATGSAT"FLSAJ'_,;A;-{}LS if T oddand r<2g;

r+1,7
(ERQ) A_l Ar,sAr—l,j = Ar—l,sAj,sA_l Ar,sAj,sAr—l,sAj_,;A_l

r—1,5 r—1,s r—1,s

if reven and r <2g.

As a representative of the generator A; ;, we may take a geometric braid whose
only non-trivial (non-vertical) strand is the (j —2g — b+ 1)th one. In Figure B, we
illustrate the projection of such braids on the surface ¥ ;.

Al 21 Pog ogr2  12g+2,2g4n

Figure 3: Projection of representatives of the generators A; ;. We represent A, ; by
its only non-trivial strand.

Recall that pure (framed) braid groups can be seen as subgroups of mapping class
groups (see Proposition [] and B). The isomorphism P,(X,;) ~ Ker(p,) (where ¢,
forgets the punctures) is defined as follows: to an element h of PI'}, which is isotopic
to the identity in ¥, (i.e. h € Ker(yp,)), we associate the braid t — (Ht(pi))1<i<n
where H : ¥, x I — X, is an isotopy between Id and h. From this point of view,
one can easily see that the A4;;’s correspond to the following elements of PT'] ;:

TarT(;rls it i=2r1<r<g, 7=29+b+s—1,1<s<n,

7'5T7'5:1$ if i=29+r1<r<b-—1,j=29+b+s—1,1<s<mn,
b ifi=2+tbtr—1,j=20+b+s—1, 1<r<s<n,

where curves are those described by figure [.

Now, let us loot at the closed case. The group P, (%,) is the quotient of P, (X, 1)

by the following relations (see [BZ)):

10



-1 -1 —
(TR) [Agy g A2g—1294k] -+ [As g Ar2gn] =
= A29+1,2g+k e A2g+k71,29+k142g+k,29+k+1 e A2g+k,29+n

(1 < k < n, with the notation A2g+1729+1 = A2_q+n,2g+n = 1)

Figure 4: curves on X,

From this result, we can prove the following:

THEOREM 8 Let X, be a compact, connected, closed, orientable surface of genus
g > 2. The framed pure braid group FP,(3,) admits the following presentation:

Generators: {B;;, fir|1<i<2g+n—1,29+1<j<2g+n,i<j, 1<k<n}
Relations: relations (PR1-4) and (ER1-2) together with the following:

(C)  the fiy’s are central,

(FTR) [By,agsk Bog-12g4k] - [Baagis Bragie] =
2(g-1)

Bagi12g+k  *  Bagrk—1,2g+kBogk,29+k+1 - Bagik 2g+n [y
(1 <k <n, with the notation Bayi124+1 = Bagin2g+n = 1)

11



Proof. Consider the sequence ([):
1 — 7" — FP,(X,) — P, (X,) — 1.

In terms of mapping class groups, Z" is generated by 75,,...,75, where J; is a
curve parallel to the k™-boundary component. As shown in [JJ], a presentation of
FP,(X,,) can be established as follow. Take as generators

{50, 15, U{Bij, 1 <i<29g+n—129+1<j<29+n,i<j}

where B; ; is a representative of A; ;. Relations are of three types: the first corres-
ponds to relations between the 75, ’s, the second to lifting of each relations in P, (2,).
The last one comes from the action under conjugation of each B;; on the 75,’s. In
order to define the B;;’s, consider the curves in Figure {f where the boundary is
capped by a disk and the marked points are replaced by holes. Then, we put

TgTTﬁ_TlSTgS if i=2r—1,1<r<g, j=29+s, 1<s<n,
Bij =R 1o t7s, if i=2r,1<r<g j=2g9+s 1<s<nmn, (5)

s ' 0s

T, Ty 75, i i=2g471 j=2g9+s 1<r<s<n.

When capping each boundary components of ¥, ,,, the 75, ’s are sent to identity,
thus B;; is indeed a representative of A; ;.

Now, the 75,’s are central in I'y ,,, thus the first and third type of relations cor-
respond clearly to relations (C). Let us look at relations (PR1-4), (ER1-2) and (TR)
of P,(%,). Relations (PR1-4) — (ER1-2) have been verified in [BGE, Lemma 19] to
hold in I'y,, and therefore in F'P,(3,). Then it suffices to lift (TR) relation from
P,(%,) to FP,(X,).

Since 75, 75" (o) = ik and 75, 75" (k) = o Where 7, is the curve descibed in
figure [, one has (we omit the 75 s because they are central)f}

—1 _ -1 —1 -1 -1
[Bai gk Bric1,2g+k] = Ta, Tain 8.5, Tas Tays Ts: Bk

:Tai Oéi,lcT’Yi,kTOéi .

Considering the curves described in figure fl, one has the following lantern rela-

tions:

2 _
Toi Tie Ton = Tps Tov k Tk

and we get

55

-1
vi2g ik B2i1204k) = T Tuo o,

2Recall that we denote composition of applications from left to right. Thus, if v = h(a), one
has 7, = h™ 7, h.

12



Yik/ JHisk

NEmemmma
~

Figure 5: curves on X,

Then, using lantern relations

T T TN 16 T8 = T Tk Ty

it is easy to check by induction on i thatf]
—1 —1 1 2(g—i)+1
[Bygogiks Bag—1.20+k] * + + [Baiog ks Boiv120+k] = T3, Thi i Ts :

On the other hand, by definition of the B, ;’s, on has, for 1 < k < n:

B2g+1,29+k e BQg+k71,2g+kB2g+k,29+k+1 e BQg+k,2g+n -

—1 -1 -1 -
TélTél’k U T(SkflTék_l’kT&lelTék’k_’,l T TénTék

Now, with the curves described in figure [, one has the lantern relation

Tei1T6:TokTein = TeiToinTeim1,ks

1, n-1
,nT(Sk

from which one can check by induction on ¢ < k that (¢; = 07 and ey, = d14)

1 —1,_1—1

1
-.-Téi Ték

-1 -1 _ -1,_—
7-52,1@ T5i,k - TeiTEi,kTél

-1 _
T51,k 75,
Then, with the lantern relation (where s > k and ¢ = 1)

TesTosTokTos—1 — Teps i T0k,s Tes—17

3Note that Ay = pg and Mgk = g -
13



one obtains by induction on s

Mok Tt o T = T T, T e T LT
and finally
Bogi1,2g+k * ** Bogti—1,2g+kBogtk,2g+k+1 " - Bogik2g+n = T<pn7kT;LlT(;2;nngl
= Tonk 5217—516' (7)

To conclude, one has just to compare equation (f) with ¢ = 1 and equation (), and
to observe that €, = A\ and ¢, = A1 . O

REMARK 5 This presentation gives another proof of the fact that the central ex-
tension (B) does not split for all g > 2. Indeed, if it splits, the group FP,(3,) is the
direct product of Z™ and P, (3,): it contredicts the relation (FTR).

6 Framed pure braids as centralizers of Dehn twists

We give a third possible definition of framed pure braid groups in terms of central-
izers of Dehn twists: since in the case of surfaces with boundary the corresponding
framed pure braid groups are trivial central extension of pure braid groups, we will
focus on the case of closed surfaces of genus greater than one. This interpretation
of framed pure braid groups will allow us to introduce another possible definition of
framed braid groups (Section [d). All following Definitions and Propositions can be
easily extended to the case with boundary.

Let us consider a surface X ,, of genus g > 2 and n boundary components and
cap each boundary component with a disk with 2 marked points (see Figure ). We
will denote by x;, : I'y, — PI’E” the morphism induced by the inclusion of >, ,
into 23", a surface of genus g with 2n marked points.

One has the following commutative diagram at the level of mapping classes:

)\TL
l—— FPn<Eg) Fg,n ’ Fg 1
l/ an id
1 —— Pon(%y) pPrm 2. 1, 1

Since x, is injective (see Proposition 4.1 in [PR]]), we can consider F'P,(3,) as a
subgroup of P, (%,).
Moreover, we can provide a characterization of F'P,(X,) as subgroup of PI';".
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Figure 7: The arc [2i — 1, 21].

PROPOSITION 9 Let g > 2, xp : I'gn — PFE" be the map defined above and
vi be the boundary of the ith capping punctured disk (see Figure [§). The group

Xn(F'Po(X,)) coincides with ‘%1 Cpy,(z,)(Ty;), where Cp,, (s,)(7,,) is the centralizer
]:

of the Dehn twist T, in Pa,(3,).

Before proving Proposition f] we need to introduce some definitions and to recall
some results. Let ¥ be a surface with a finite set P of n marked points. An arc is
an embedding A : [0,1] — X such that A(0), A(1) are in P and A(z) is in ¥ \ P
for all x in (0,1). A (j, k)-arc is an arc such that A(0) = j and A(1) = k. Note
that two (7, k)-arcs are isotopic if and only if they can be connected by a continuous
family of (7, k)-arcs.

For any ¢+ = 1,...,n we fix an arc with end points 2¢ — 1 and 2¢ in the interior of
the ith capping disk. In a disk with 2 punctures all arcs are isotopic; let us choose
a representative as in Figure [] that we will denote by [2i — 1, 2i].

Consider a disk D, in Zg" which contains all 2n punctures. The embedding of
Dy, into X" induces an embedding of By, into By, (¥,) (see for instance [PRI]):
the usual generator o; of By, can be considered therefore as an element of By, (3,);
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in particular the generator o9;_; for j = 1,...,n corresponds to the braid twist
(see [LH] for a definition) associated to the arc [25 — 1,27].

The group Bs,(X,) acts on X, up to isotopy. In the following we adopt the
convention that, for any f in Bs,(X,), *8 : ¥, — X, corresponds to a mapping
Y, x {0} — X, x {1} and defines an action on the right, whereas fx : ¥, — X,
corresponds to a mapping ¥, x {1} — ¥, x {0} and defines an action on the left.

In particular By, (¥,) acts on the right and on the left on Aj,, the set of arcs up
to isotopy.

THEOREM 10 [B1] Let g > 1. For each B in By, (3,) the following properties are
equivalent:

(a) 0918 = Bosg-1,

(b) o3, 8= Boy,_, for any integerr,

(c) o3 = Boy,_, for some nonzero integer r,
(d) [25 —1,2] % B = [2k — 1, 2A].

REMARK 6 Theorem [[(is a weaker version of Theorem 2.2 in [BI]}, which statement
concerns all braid groups B, (¥,) and all braid generators oy, ..., 0,_1.

We recall that v; denotes the boundary of the ¢th capping disk. From the fact
that U%i—l,Zi = 7,, we can therefore deduce the following result:

7

COROLLARY 11 Let g > 1. For each [ in Pa,(¥,) the following properties are
equivalent:

(a) Ty, = BTy,
(b) 70.8=pB7l, for any integerr,
(¢c) 70.8=pB7l., for some nonzero integerr,

(d) [2i —1,2i] % 8 = [2i — 1, 2i].

REMARK 7 The equivalences between a) and d) are in the folkrore even for the case
g=1.

Proof of Proposition [J. We recall that a multitwist is a product of twists along
pairwise disjoint curves and that the map x, : I'gn — PFE" defined above is
injective and sends F'P,(¥,) into Ps,(X,). Any generator g of F'P,(¥X,) is a mul-
titwist (see (H)), as well as its image x,(g). Since two twists 7, and 75 commute
if and only if v and § are disjoint up to isotopy (see for instance [PR3]), we de-
duce that any element x,(g) commutes with 7, for j = 1,...,n and therefore
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Xn(FP,(X,)) is a subgroup of ‘(@11 Cpy,(5,)(Ty;)- On the other hand, if g is an ele-
o A

ment of }%1 Cp,,(s,)(Ty,), from Corollary [LT it follows that [2j —1,2j]*g = [2j —1, 27]
j:

for j = 1,...,n and then up to isotopy we can suppose that g = Id on each capping
disk. Therefore we can consider g as the image by x,, of an element g in I'y ,,. Since
Ay (9) = @an(xn(3)) = wan(g9) = 1 we deduce that g € FP,(%,) and hence that

FP,(X,) maps onto jg1 CPyn(5,)(T4;)-
O

Let A, be the generator of Py, (X,) depicted in Theorem [ for 1 < k < 2¢g+2n—1
and 29+ 1 <[ <29+ 2n. Now, set:

Cij = Aia(j-g—14i2(-9) A2(j—g)-1,2(j—g) for i=1,...,2g and
j=29+1,....29+n,

Cij = As(i—g)-1,2(j—g)-142(i—9) 2(j—9)~142(i—g9)—1,2(j—9) A2(i—9) 21— 9) A2(j—9)-1,2(j—9)
for 294+1<i<j<29+n

and finally Fj = Aggion—1,29+26 for k=1,...,n.

Roughly speaking, the element Fj corresponds to 03, ;. in Pa,(3,) and the
C; ;'s correspond to pure braids on P, (X,) where the only non trivial strands are
the (2(j —¢) — 1)th and the 2(j — g)th one, which are “parallel”, meaning that they
bound an annulus in g \ {p1, ..., D2(j—g-1), P2(j—g)41, - - - s D2n }-

We recall that it is possible to embed P, into P, (or B, into Bs,) “doubling”
any strand (see for instance [FR7]); one can remark that in the case of braid groups
on closed surfaces of genus g > 2 such embeddings are not well defined because of
Theorem §.

From Theorem f and Proposition ] one can therefore deduce the following group
presentation for F'P,(X,) as subgroup of F'P,(%,).

PROPOSITION 12 Let ¥, be a compact, connected, closed, orientable surface of
genus g > 1. The framed braid group FP,(X,) as subgroup of Pa,(X,) admits
the following presentation:

Generators: {C;; F,|1<i<29+n—129+1<j<2g9+n,
i<j, 1<k<n}.

Relations: relations (PR1-4) and (ER1-2) from Theorem [ replacing A;; with
C;,j together with the following:

(C)  the Fy’s are central;

(FTR) [02_9%2g+k7 029—172g+k] T [02_,219+k7 0172g+k] =
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2(g-1)
Cogi12g+k "+ Cogri—129+kCogrk2g+ k41 Cogir2gin Fy,

(1 <k <mn, with the notation Cag11,24+1 = Cogin2g1n = 1)

Proof. One has to check that yx, sends the generators B; ; and fj respectively into
Ci,j and Fj,. O

7 Framed braids as 2n-strands braids

The definition of framed pure braid groups in terms of centralizers of Dehn twists
given in Proposition P allows us to give another equivalent definition for the framed
braid group of a closed surface introduced in Definition [l

DEFINITION 2 Let 3 be a surface of genus g > 1 with a finite set P of 2n marked
points and let Z,, be the set of arcs {[1,2],[3,4],...,[2n — 1,2n]}. We say that an
element 5 of By, (X,) preserves with orientation I, if for any [2i — 1, 2i] there exists
J such that [2i — 1,2i] x B = [25 — 1,2j] with {2i — 1} x B = {2j — 1} (and therefore
{2i} x B = {25}). The set of braids preserving with orientation Z,, forms a subgroup
of Bon(X,) that we will denote by F/’\én(Zg).

Let us recall that the group Bs,(X,) is generated (see [BZ]) by the usual gener-
ators oy,. .., 09,1 of By, plus the braids a;,b,. .., a4, b, which are the pure braids
Ay 9511, A2 2941, - - . Aggogr1 depicted in Theorem [ Let us define

A = A2i71,2g+1A2i71,2g+2A29+1,2g+2 and B; = A2i,2g+1A2i,2g+2A2g+1,2g+2

for i = 1,...,9 and let 7; = 09;09j_109j1109; for 7 = 1,...,n — 1. The elements
Ay, By,..., Ay, By, T1,...,Tno1, F1, ..., F,, belong to FB,(3,). Moreover we have
the following result:

THEOREM 13 Let ¥, be a compact, connected, closed, orientable surface of genus
g > 1. The group FB,(¥,) admits the following presentation:
Generators: Ay, By,..., Ay, By, 11,...,To-1, F1,..., F,.

Relations:
7,.F; = Fir; for j #i,i+1 (8)
7l = Fiam (9)
TiFi1 = i (10)
T =TT if i — j| > 2 (11)
TiTig1Ti = Tix1TiTiz1 for all 1 < i <mn —2 (12)
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cTj =Tici forallj>2,¢;,=A; or B, andi=1,...,g
CiTICiTy = TiCTic for g =A; or B andi=1,...,¢
AiTlBi = TlBiTlAiTl fO?"’i = ]_, o3
cinlchl = Tflcjﬁci forc;=A; or B, c;j=A; or Bjand1 <j <1<y
g
_ 2(g—1
H[AZ I,BZ] :Tl"'Tn,QTELflTn,Q'"7'1F1(g ) (17)

=1

Proof. If 7 : F/’\én(Zg) — &,, is the map which associates to any 3 € ]?én(Zg) the
corresponding permutation on the set Z,,, we have the following exact sequence:

1 — FP,(%,) — FB,(3,) — &, — 1.

Then, the statement follows by Proposition [[J and, as already done in Theorem [,
by another application of the technique from [[J] that we leave to the reader; we
simply remark that m,...,7,_1 are coset representative of the usual generators of
S,, and the other generators of F'P,(X,) can be deleted since they are conjugated
by words in 7y, ..., T, 1.

O

Before proving that F/’\én(Zg) is isomorphic to the framed braid group F B, (%,)
defined in Definition [] let us recall few additional notations and results from [BI].

DEFINITION 3 We define a ribbon as an embedding
R:[0,1] x [0,1] — ¥ x [0,1],

such that R(s,t) is in 3 x {t}.
Let A be a (j,k)-arc in ¥ x {0}. Then the isotopy corresponding to B € B,(¥,)
moves A through a ribbon which is proper for [3, meaning that

e R(0,t) and R(1,t) trace out the strands j and k of the braid (3, while the rest
of the ribbon is disjoint from [3;

e R([0,1] x {0}) = A and R(]0,1] x {1}) = A % S.

DEFINITION 4 We say that the braid 5 in Ba, (%) has a (25— 1,2k —1)-band if there
exists a ribbon proper for B and connecting [2j — 1,27] x {0} to [2k — 1,2k] x {1}.

PROPOSITION 14 [B1, Proposition 2.2] Let g > 1 and 1 < j < k < n. For each 3
in Boy,(X,), the following properties are equivalent:

(a) B has a (2j — 1,2k — 1)-band,
(b) [2j —1,25] % B = [2k — 1,2k].
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ProproOSITION 15 The group Fén(Eg) is isomorphic to the framed braid group
FB,(X,) defined in Definition [1.

Proof. By its definition an element § € FB,(X,) can be seen as an element
B" € Byn(X,) such that for any ¢ = 1,...,n there exists a (2¢ — 1,2k — 1)-band

and {2¢ — 1} = ' = {2k — 1}. This defines a morphism from F'B,(%,) to ﬁ’\én(Zg)
wich is an isomorphism by Proposition [[4. O

8 Framed braids on the torus

In the case of the torus the proposed definitions are not equivalent and let arise
different notions of framings.

Let F,(X) and F,(X) be the spaces defined at the beginning of the Section .
We recall Definition [l] in the case of 3 = T?.

DEFINITION 5 The pure framed braid group FP,(T?) on n strands of T? is the
fundamental group of F,(T?). The framed braid group on n strands of T? is the

fundamental group of F,(T?).

DEFINITION 6 We denote by ﬁn(']lg) the kernel of the morphism A} : T'y,, — I'y
induced by capping n boundary components.

In what follows we prove that F P, (T2) is a quotient of FP,(T?) and we examine
exact sequences for F'P,(T?) and F P, (T?).

THEOREM 16 The group FP,(T?) is isomorphic to Z" x P,(T?) and F,(T?) is an
FEilenberg-Maclane space of type (FP,(T?),1).

Proof. Since T? is parallelizable, the proof of Theorem [[{ is the same as in the case
of surfaces with boundary given in Theorem [ O

THEOREM 17 Forn >0 and m > 0, one has the following splitting exact sequence:
(FSPB) 1 — FP,, (T?\ n discs ) — FPpyn(T?) ™3 FP,(T?) — 1
where o, consists in forgetting the first m strands.

Proof. Because of Theorem [[g the (FSPB) sequence reduces to the exact sequence
induced by Fadell-Neuwirth fibration

(SPB) 1— P, (T?\ npoints ) — Py (T?) — Po(T?) — 1

which is a splitting sequence ([GG)). O
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Let us denote P,(T2) the kernel of the morphism ¢, : PI —s T'; induced by
forgetting the n marked points. We recall that, according to Proposition ll, one has
that P,(T?) ~ P,(T?)/Z(P,(T?)).

THEOREM 18 The group ﬁn(']IQ) admits the following presentation:
Generators: {A;;|1<i<n+1,3<j<n+2i<j}
Relations:
(PR1) A;;AnsAi,j =Aif(i<j<r<s)or(r+l<i<j<s),
or(i=r+1<j<s or r>2);
(PR2) A, JA; Aij = AiAj AL if (i<j<s);
(PR3) A;’]»IALSAM = Al-7sAj7sAi,sAjfslA;sl if (i<j<s);
(PR4) A A Ay = Ai Ay AT AT TAL A A JATTATT if (i+1<r <j<s)
or (i+l=r<j<s forodd or r>2);
(ER1) Ay Ay Ay = Ay sAg AL AL
(ER2) Ai;AQ,SALj = ALSAj7SA1_éAQ,SA”ALSA;;Al_é
(TR) [A2_7§+ka Aipir) = Asoqk - Ak ok Aoir sk Asprorn (1 <k <n)
(1 <k <n, with the notation As3 = Asypotn =1)
(QRU A1,3 T 'A1,2+n =1
(QRQ) A2,3 T 'A2,2+n =1

Proof. 1t suffices to remark that the previous presentation is the presentation for
the group P,(T?) given in Theorem [f], quotiented by (QR1) and (QR2) relations,
where Ay 3+ Ajoyn, Aoz - Asoyn generate the center of P,(T?) (see for instance

[PRT]). 0

One has the following commutative diagram with exact rows and columns:
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1 —= 2" —= FP,(T?) — B,(T?) —= 1 (2)
1 7n | . PI ——1 (17)
o, ©n
I' I
1 1

One can repeat word by word the proof of Theorem f and verify that (QR1) and
(QR2) relations lift to F'P,(T?). Since g = 1 one deduces then also (TR) relation

lifts to FP,(T?) and therefore that the natural map from P,(T?) to FP,(T?) is
actually a section. Therefore the fact that the group Z" generated by Dehn twists
around boundary components is central implies the following result.

PROPOSITION 19 The group FP,(T?) is isomorphic to Z" ® P,(T?).

FP,(T?)

PROPOSITION 20 The group F/’\ISn(TQ) is isomorphic to T

Proof. Tt follows from Proposition [[§ and Theorem [[§. One can easily deduce
the result also considering the long exact sequence for 3,, = T? in the proof of
Proposition [ and remarking that m (Diff *(T?)) = m(T?) = Z ® Z (see [B]). O

Finally, let x, : I'1,, — PT'3" be the injective map defined in Section B.

PROPOSITION 21 The group Xn(F/’\f/)n(T2)) coincides with 361 Ch,.(r2)(7y,), where

Cs

2n(Tg)(Tw) is the centralizer of the Dehn twist 7., in ﬁ2n<T2).

Proof. The proof is the same as the proof of Proposition f) using Remark 7. O
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