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Further Remarks on Stabilizing Chains of Integrators by Using
Network Delays

César Méndez-Barrios, Wim Michiels and Silviu-luliancNiescu

Abstract— This paper focuses on the closed-loop stability of NCS are affected by the&etwork delaysas pointed out
a chain of integrators in a networked-control setting. More  py [29], [27]. To overcome such a problem, several ap-
precisely, we are |nteres_te(_j in using the n_etwork-lnducedelays proaches have been proposed and, among them: a model-
as control parameters. Similar to the continuous-time case, we based method [22] for stability analysis or some optimal
will see that a single delay is not sufficient to stabilize a cin . .
having n integrators, but that n delay blocks are able to stabilize ~controllers when the network-induced delay is smaller [24]
such a chain without being able to guarantee an arbitrary pot  or longer [9] than the sampling period, or finally, a queuing
placement for the corresponding closed-loop system. Sewr mechanism [5] used to reshape random NCS delays to
illustrative examples complete the presentation. deterministic leading to a time-invariant NCS.
In this context, we are interested in deriving closed-loop
. INTRODUCTION stability conditions by using the network-induced delags a
In continuous-time, it is well known that the presence of @ontrol parametergor the continuous process,y(s) = 1/s"
delay in the feedback loop is often accompanied with "bad{n > 1). The corresponding discrete control law is given by:
behaviors (oscillations and instability, bandwidth séwisy, m
to cite only a few), see, for instance, [7], [20]. However, u(tt) =— z kay (t—14)  te {ih+1m},
there exist some cases when the delay mgyovesystems’ p=1
stability and the classical example [1] is represented ley th . o .
an oscillator controlled by one delay "block”: (gain, délay wherei is a nonnegative mteger. gnd the network-mdyced
with positive gains and extremely small delay values. Suc elays h<Tp<..<Imare p05|_t|ve real numbers. F|rst_,
a property opened an interesting perspective in udielgys conS|der|ng.a.smaII gain value_s in the_control law we will
as control parameters[23], [14] (multiple delays), [19] see that, similarly to_ the continuous-time case [23], _[14]
(bounded input, single delay). Hence, as discussed by [Z(ﬂ?.e delay bIOCk. (gain, delay) cannot stquze a chain of
the approach can be quitenservativein some situations. integrators, withn > 2. The app_roach is based on the
Independent, but however correlated to the idea above, tHa® of the ((:jomple.te reg;JIar splitting (CRS.). property (see,
implementation of derivative laws can be done by usin 9: [16] and Section Il for some prerequisites). Next, we
delays in order to approximate the derivative, as discuss g” g)_(plore the cases when mul_tlple (_jelay blocks are qble to
by [15] and different approaches for the output feedbac ab||!ze the corresponding chain of |_n_tegrators. we \.’Ebs
stabilization problem of a linear system by avoiding outpu (_actlon V) that the closed—loo_p stability can be obtalbgd_
singn delay blocks, but an arbitrary pole placement requires

I?tee T;?Jlr\ﬁs[llg] tkEgG]ieng]aig Lci)tc; por:]?;lz lf):vin reported in t %+1) delay blocks. In both cases, the corresponding control

The aim of this paper is to explore such ideas in the NC \g 'Sroexgggglycgﬁtrr'gﬁgr' :gatgse Igséocrizm;delriy rti);(t)gkcsl)o,se 4-
framework, that is to stabilize a chain of integrators byirigk brop pprop

into account thenetwork-induced delaysnd the correspond- loop: characteristidacunary polynomials (see, e.g. [18])

ing sampling period Although it sounds extremely simple With ni.ce properties: () only one tuning .parameter (for

0 the best of the authors’ knowledae. such a problem V\’I|mprovmg eventually other performances in closed-loop),
; . . g9e, b ?B) particular behaviors of the roots wrt the variations of

not fully considered in the literature. Zhargal.[29] treated the corresponding parameter. Several illustrative exampl

the case of a single integrator with one delay block and the%ections l11-V) complete the bresentation

derived the stability regions in the parameter-space defin Th hout th the followi ' tat il b

by the delay and the sampling and, for higher-order systems roughout the paper the foflowing notation wil be

they suggested the use of simulations in order to approa@go(gtej:(c '3 t2he sDet of éomplex numbterqs,zl 4 —1 _For
a solution for the corresponding stabilization problem. | €C, £z€ [0.2m), D(z) (U(2)): argument, real (imaginary)

is well known that, the stability and the performances opart of 2. Bqld case let;‘irn denoteg a constantm%r function
vector (matrix). IfA € C™", we write A = [aw}“;v:l. If

n . .
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Il. PRELIMINARY RESULTS

Define now the augmented state vector a§] £

Let A — Ao be an isolated eigenvalue of some analyticly” (K, uli —d],ufi—d+1],...,u[i—1]]", leading to the

matrix-value functionL(A,ap) with partial multiplicities
my > --- > my. Then [8], there exists a neighborhoad
of A = Ap such that the spectrum df(A,a) in & for

augmented closed-loop system:

z[i + 1] = ®(h, 1,k)z]i] (6)

all complex a sufficiently close to the origin consists of Equation (5) describes a general situation, that is, when th

exactlyM :=m +---+ my eigenvaluesii(a), i=1,...,M.

induced network delay is larger/smaller than the sampling

FurthermoreAy(a) are algebraic functions af and can be period. Under these observations, we have:
expressed by all the branches of several Puiseux series [4]Remark 1 (Smaller delay).et T be the induced network

[8]:
uv(a):cvaqiv+o(|a|qiv), v=1..N, g eN, (1)

whereq; > --- > gy and gy +--- + oy = M. A completely

regular splitting (CRS) [16] property of the eigenvalue=
Ao at a = 0 corresponds toN = N’, g =m and ¢ # 0,

delay, such that =: 1y < --- < Ty < h. Then,d =1 in (5)
and the transfer matrix of the augmented closed-loop system
rewrites as:

®(h) —Ag(k;m)e]  Ag(k;m)

&)(ha T7k) 2 731' 0

i — 1,...,N. The following result characterizes the CRS Remark 2 (Larger delay)Let T be the induced network

property:
Theorem 1 ([8]): With the notations above, leA =0
be an eigenvalue of(A,0) of geometric multiplicity N

and algebraic multiplicityM. Suppose also that for every
generating eigenvectorof L(A,0) there exists a generating

eigenvectox of (L(A,0))* such that

(56 0.0x%) #0 @)
Then the eigenvalug = 0 possesses the CRS property.

1. PROBLEM FORMULATION AND SOME EXAMPLES
Consider the following chain of integrators system,

yVM) =u(tt) tefih+tm(i+1)h+tm) (3)
wheret =:T; < T < ... < Ty and u(t™) is given by

uth) =- E kpy(t—14), tefih+tm ieN} (4)
u=1

A. Discretized Delay Case and Scaling Properties

Let T be the induced network delaythe sampling period,

delay andh the sampling period, such that=(d—1)h+1
andh > 1. Then,T1=:1; < --- < T,y < h, and the correspond-
ing transfer matrix becomes,

®(h) A(km) Ag(kkm) --- 0

0 0 1 - 0

®(h,1,k) £ : : : S
0 0 0 e 1

—ef 0 0 0

As in the continuous case, we have the foII6Wing property.
Property 1: The control law

utt) =— g Kpy(t— 1), t€fih+Tm (i+1)h+1m) (7)
H=1

is asymptotically stabilizing if and only if the control law

m

k . .
S p—‘r‘]y(t—pr,l) tealih+Tm (i+1)h+T1m),
u=1
(8)

utt)=—

with p > 0, is stabilizing. .
Proof: This property can be show by takiag= p"~'x;,

and lett, for u =1, msuch thatt; < ... < tm. Then, after £ pt andut £ p—ln s, z({f— p1), showing the equivalence
some algebraic manipulation the discretized system cae wriof the systems. []

as [2]:
yli+1] = o(h)yli] + Ao(K)ufi — d+ 1]+ Ay (K)u[i — ], (5)
whered € N and

O = [ (]
hv—H .
with %V(h)é{ (v—p)! 1 VZH
0 it v<p
Do(km) = gr(o,h—ru)k“
=1
Ar(km) = gr(h—ru,h)k“
=1
Ft) = [ou(t)]y

n—u+l (ti)n—u+l

with o, (8, t¢) 2 (tr)

(Nn—pu+1)

B. Motivating Examples

In the scalar case, [29] derived the stability region in the
(h(k), ) parameter space for the case of one integrator. The
corresponding NCS will be stabléand only if:

1 1 (1
max{EhE,0}<r<m|n{E,h} (9)

Remark 3:1t is easy to see from inequality (9) how the
scaling property works.

Proposition 1: If n> 2, then the closed-loop system con-
sisting of a chain of integrators

yW(t)=u(t), telih+t,(i+1)h), T<h (10
and a control law of the form
u(tt)=—ky(t—1), te{ih+1/ieN} (11)

is unstable for small values of the controller g&in



Proof: The assertion follows from the behavior of the 2) a,,v(h, 1) is a polynomial function inh, T) satisfying
eigenvaluedp = 1 for k=0 as k| is increased from zero,

and is based on Theorem 1. To this end, consider Ay (h, 1) = ayy (h,T) for i#j.
5 o _1 3] 0 1) e " This assertion follows by a straightforward application of
L (/\,k) = { ( )_eT_ 5 1} + { —fo (O’ De M (0’1) the Laplace expansion'g11] to the last row of:
—e _A—
. ~ _ Zlhsn+Do(K)el —d(h)  —Aq(K
where := A — 1. From the definition ofb(h) it follows that ~ Pa(zh, T,k == | =™ OéI) 1o ;( )

the algebraic and geometric multiplicity of the eigenvalue o )
A =0fork=0isn and 1, respectively. Furthermore the Remark 4:In order to calculateay v (h,1y), it is suffi-

right and left eigenvectors are given ly= e; andX=g, Cientto takem=n=1 (seeAssertionl). _
Next, we have Remark 5:By applying the determinant properties [11],

it is easy to see thatny(h,T), By andao, (h, T), Bo satisfy

L _ _ _
a_k(/\’k)[ r(o,oh T) r(hor,h) _ (h1)" o
J any (h, 1) = o Bn=-n, aoy(h1)= ~E Bo=0.
It is easy to see that (2) holds if and only if the equation  Remark 6:Let 29 — (29,...,29,} be the set of roots
oL of Py. Then, the fact that the uncontrolled system hasl
L(0,0)y = K (0,0)&r roots on%’(0,1) simply points out that ifn=n in the control
(h—1)" law (4) we will not have enoughdegrees-of-freedotfor an
h rf! arbitrary pole placement.
- [(D( )e;l Ol] y = — : (12) Example 2:Consider now the triple integrator:
< - h-t
g yOt) =ut?), telih+r1,(i+1)h+1), T<h

Taking m= 3 in (4), denoting the roots oP by {{u}

h lution fory. Si h hesi his i _°
as no solution fory. Since, by hypothesid) > 1, this is for 1 — (T4} and consideringls (¢1.4».2s). Then, the

the case and the eigenvalde= 0 has the CRS property. It
follows that for smalllk| it can be expanded as

Ai(K) = cé Tk +o(km), i =1,...,n,

for somec € C. SinceA =1+ A it follows that the original
system always has one eigenvalue outside the unit circle for
small values oflk|. |

Example 1:Consider first the double integrator. As men-
tioned above, it cannot be stabilized by using a single block
delay (see Fig.1 (upper)). However, the use of a controller
involving two delays will be able to stabilize it. Indeed,
considert; :=1 < , 1, := 1+ ¢ with 0 < £ < 3(h—31).
Then the control gains:
k(hte) © 6h? +4h(T+€) — 6(T +¢€)?

he(4h2 +21(1+¢€) —3n(21+¢)
—6h? — 4ht + 672

he(4h2 +21(1+¢€) —3n(21+¢€)
will define a stabilizing control law (4).

Consider now the general case. The characteristic polyno-
mial of ®(h, 1,k)

Py (2) = 2"+ ang 1(h 1,k 29 ... 4 g (h,T,K)

describes the general case for the augmented closed-loop
system (6). However, in order to simplify our analysis we
will consider in the sequel the smaller delays case (i.e.,
d=1).

Assertion 1:The coefficients of (z) satisfy the follow-
ing properties

1) ay(h,1,k) are affine functions ik (8, € R):

>

kZ (ha T,S) =

-1 -0.5 0 0.5 1 1.5 2

m Fig. 1. Completely Regular Splittingrroperty iIIustratir;ngrloposition 1
au(h,r,k) _ z kvay,v(h, Tv) JrBu’ (13) for A = 1. (Upper) Double—lntegrgto(s?: 2) for ke [~ 5, 5]. (Lower)
=1 Triple-integrator(n = 3) for k€ [— 3, ]



Then the corresponding control law (4) guarantees the
closed-loop characteristic roots are located &

Proof: See the appendix. ]

B. Reduced Controller. Case #n

We focus now on finding the control lalv= (ki, ..., kn)
such that the closed-loop characteristic polynomial bexom

Pz p,ip) i=2"+p(Z P42 42+ 1)  (16)

with 1 <ip <n+1 andn> 1. It is important to mention
that the lacunary polynomials of the form (16) have received
some attention in the literature [12] in the context of delay
difference equations. Its main interest lies in interestin
properties to be exploited in what follows:

Property 2: The following properties hold foP(z p,ip):

(i)  the moduli of the roots increase &g | increases.

(i) the roots are inside the unit circle jp| < —1-—

Fig. 2. Admissible pole-placement for the control law (4Yfwin=n=3

N—ip+2°

o X . X . o 1 zl"lfip+27l
only admissible root§,| < 1 for u = {1,3} such that Proof. First, Pz p,ip) =2 Jgp FL Next, fzr
124(Z1,22,23)| < 1 are depicted in figure Fig.2 and such &1), see [12]. (i) Take nowf(z) = 2"+ and g(zip) =

situation illustratesRemark6 above. p ZE;B"HZ“)- For all ze C, we have that|g(zip)| =
N—ip+1 n—ip+1 : 1
C. Problem Formulation Pl 3=g 2 <Ipl3_g  |Z|- Then, taking|p| < A g2

. . . . . _for |z =1 we have thalf(z)| > [g(zip)|. Then, by a straight-
As briefly discussed in the previous section, we W'"forward application of Rouche's lemma [189(z p,ip) =
focus on finding conditions on the gain parameter& = t(2) +0(zip) is a Schur-stable polynomial. P -

(kl"."’lkm) such”that (3) IS a Stablllz_lng clontrol Iaw.l I Remark 7: The proof above guarantees not only the exis-
plartlcu ar, we \zrl1 consi Itlarswodcaszm_ n+” (exact pole yonce of some "stabilizing” parameter but it also gives a
placement) anan= n (calledreduced controlle). "cheap” way to compute it.

IV. MAIN RESULTS Define nowZ" as the set of real zeros of the polynomial:

n—ip n—ip+1

Thra(¥) 3 Uj(X) —Un(x) T (%), 17
+1 J; j jZO j

A. Control law based on exact pole placement

Denote the set of desired closed-loop roots)o()9) =

{A1,...,Ans1} and the corresponding characteristic polynoénd introduce the following quantities:

mial by:
Pi(z9) =" - + et 4+ (1) engn (14) p™ = max i) ob pt o min S g

t e g " X*c.Z ok
wherec is thek" symmetric functiomf A% defined as the e 2,0 © Vi)
sum of the product of the eigenvalues talkeat the time: (18)

_ Proposition 3: The polynomiaP(z p*,ip) is Schur stable
C= 2 Aiy - i if and only if
1<ip<-<ig<n+1
-1 — *

Proposition 2 (Exact pole-placementissume thatr =: max{ nipr2oP } <P < pr. (%9)
T1 < Tp < ... < Tpy1 < h. Under the notations above, define Proof: The polynomialP(z0,ip) is Schur. Now, since
the gain: the roots of a polynomial are continuous with respect torthei

k=A"1&T (15) coefficients (see, e.g., [3], [25]), it follows the existenaf
i some realp close to 0 such thaP(z p,ip) is still Schur
with A= [a@ya(h )], stable. Moreover, in the limit case, there exists‘a [—1, 1]
. such thatP(Z?; p*,ip) =0=2% =el® 6 < [0, 2m). Then,
PN n+ n n/n n 0). % i
€= {(—1) 1 (=)= (=1)"(g) - —Cat (nfl)} D(P(z@; p*,ip)) -0 andw =0 lead to:
wherea; (h, 1) is defined recursively by takinBo := | and, niptl
_ a . Toi1(X) +p° Ti(x) =0 (20)
ay(h,1) £ —ﬁWTr (@ (h,7,k)Bn_y) jZO
v n—ip

B, - _Tr(®(h,1,k)By-1) 0, (21)

| +®(h,1,K)B, ;. Un (X) +p* J;UJ (X)



wherex = D(z(o)) = cosh. Equations (20)-(21) will give the and using the Chebyshev polynomials, we obtain (25)-(26),
whole set of solutions, except the singular paitit = 1. In  respectively. Equation (25) gives the set of all possible
this last casep” can be obtained by solving(1;p*,ip) =0. intervals includingp*, excepting for the singular poirt =
Some simple algebraic manipulations lead to the conditions At this point, we must havep, = p* —1 whenever
(29). B n-—ipe2N. Then, in order to preserve the stability, we must

Remark 8:It follows from the first assertion of Property 2 choose the smallest interval, i.g09 must be contained in
that the condition (19) defines the whose set of solutionthe interval (pa, pg) given by equation (24). This means
Notice also that, (17) has at mastsolutions. Finally, [12] that, if p; < p*(¢) < pj the closed-loop system will be
proposed a different argument for proving a similar propert asymptotically stable. Since this is equivalent with e@qrat

Proposition 4: Let 7 be the induced network delay, (23), the proof is completed. ]
T2,...,Tn chosen liketi =1+ (i—1)e fori={2,...,n} and
p* be chosen satisfying (19) for some<lip <n+1. Then,
the control law (4) with,

V. ILLUSTRATIVE EXAMPLE

1 In order to illustrate how the present methodology works,

B k(e)=A"p (22) we consider a fourth-order chain of integrators as:
whereA2 [, (h,1,)]" .,
(0 70)] s | YO =u(tt), tefh+r,(i+1h), T<h (27)
p e [P - P DTN

, where T = 0.1 is the induced-network delay artd= 0.6
(-1t (n_nip) o (0) } is the sampling period. Takingi = 7+ (i — 1)¢ for i =
- L {2,4} in the control law (4), then applyinBroposition 3-4
guarantees the closed-loop stability, whenewsatisfies, we obtainp € (—0.25,0.4450 and po  (—0.71810.8158
Po < To(n,T1)ki(€)+--+To(h,T)ka(€) < p§  (23) (where _the later interval was obt_ained b_y_choosp'ﬁg 0.2),
respectively. Then, according witProposition 4 the system
for £ >0, h> 7+ (n—1)¢, and wherep; are given by: (27) is asymptotically stable whenevere (0,0.01202. In

R p*—1if n—ipe 2N order to illustrate this result graphically, we plot the 10
Po = max{ po,{ 1 othervxrl)ise ‘ Po < p*} trajectories forpy € (—0.71810.8158 in Fig.3.
(24a)
Po = min{po|po>p"} (24b) u £
where pg is the set given by, z':
n—ip+1 0.47
Po 2 — {Tn+1<x*>+ Py T (x*)} (25) |
=1 0.2
andx* is a root of the following polynomial o
nip -0.2
Un(¥)+p" > Ui (x) (26) ~o4r
1= _
Proof: According toProposition3, for the invertibility 06
of A is sufficient to havery # --- # T, andh > ; for all 08
i = 1,n. Since this fact is fulfilled by hypothesig(¢) is -1 ‘ ‘ Po ‘
well defined. Then, lek(€) be given by (22). It is clear from -1 -0.5 0 0.5 1
Proposition 2that the closed-loop system will be rewritten ) ) ]
as follows: Fig. 3. Root trajectories fopg € (—0.7181,0.8158

Pa(z p*, ptip) =2 4 p* (2P 4 2 o 2) PR (o),

where p*(¢) is given by:

Sk L = In?

pr(e) =To(h 1)k (&) 4+ To () kn(€) In this note, the problem of stabilizing a chain of integra-
Since by assumptionp* satisfies (19), we have that, for tors by using network delays as controller parameters was
ﬁ*(e) = p*, the closed-loop system is asymptotically staaddressed. Several algorithms and properties have been out
ble. Then, similarly to the proof of Proposition 3, therelined and various illustrative examples proving the théoa¢
exists some interva(pg,pg) including p* such that the results have been also proposed. For the sake of brevity, onl
system remains asymptotically stable. In the limit casdhe case of delays smaller than the sampling period has been
Pq(el?; p*, pr) = 0. Taking the corresponding real and imag-considered. However, the approach proposed in the paper
inary parts (I [Pq(e/%; p*, p*)] =0, O[Pu(e!®; p*,p*)] =0)  applies also to the case of larger delays.

VI. CONCLUDING REMARKS
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APPENDIX
Al. CHEBYSHEV POLYNOMIALS DEFINITIONS [17]

Definition 1: (i) The Chebyshev polynomidh(x) of the
first kind is a polynomial inx of degreen, defined by

Ta(X) =cosnB whenx = cosf

(i) The Chebyshev polynomidl,(x) of the second kind is
a polynomial inx of degreen, defined by

_sin(n+1)0

- whenx = cosf
sin@

Un(X)

A2. LEVERRIER-SAURIAU-FRAME ALGORITHM

Theorem 2 ([21]): Let the characteristic equation fére
R™" pe given byA"+ciA™ 14 oA 2+ ... 4 ¢, =0, and
define a sequence by takiBy =1 andB; = fwl +

AB_;1 fori=1,2,...,n. Then, theith coefficient isc;
_Tr(AB_1)
—=L

A3. PROOF OFPROPOSITION2
Proof: According toAssertion 1(1)the coefficients of
P (2) satisfy:
m
a“(h, T, k) == Z k\/al‘hv(h7 Tv) + B“,
v=1

that is,
day (h,1,k)
aky

A straightforward application oTheorem 2eads to:

0“7\/ (h, Tv)

Hﬂ(hv T) = aIJ,V(h7 Tll)v

Assertion 1(2)allows concluding that the above equality
is true for all v. On the other hand, fromi\ssertion 1(1)
ay(h,1,0) = By. Then, a straightforward application of the
Induction Methodto:

®q(zh,1,0) = [ zl-o(h) 0 ]

el z

shows us thap, = (,,",). With this fact in mind, we have
that a,(h,7,k) = (—1)"H*+1s,_,.q, taking u = 0,n and
putting this in a matrix form we obtain (15). The proof
is finished if we show thatA is nonsingular. Singularity
of A simply means that there exist some dependent row
or column vectors. Then, a straightforward application of
Assertion 1(2)and Remark 5implies thatt; = -+ = Tpy1.
Since, by assumption we have that< --- < 1,1, the proof

is completed. ]



