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Further Remarks on Stabilizing Chains of Integrators by Using
Network Delays

César Méndez-Barrios, Wim Michiels and Silviu-Iulian Niculescu

Abstract— This paper focuses on the closed-loop stability of
a chain of integrators in a networked-control setting. More
precisely, we are interested in using the network-induced delays
as control parameters. Similar to the continuous-time case, we
will see that a single delay is not sufficient to stabilize a chain
having n integrators, but that n delay blocks are able to stabilize
such a chain without being able to guarantee an arbitrary pole
placement for the corresponding closed-loop system. Several
illustrative examples complete the presentation.

I. INTRODUCTION

In continuous-time, it is well known that the presence of a
delay in the feedback loop is often accompanied with ”bad”
behaviors (oscillations and instability, bandwidth sensitivity,
to cite only a few), see, for instance, [7], [20]. However,
there exist some cases when the delay mayimprovesystems’
stability and the classical example [1] is represented by the
an oscillator controlled by one delay ”block”: (gain, delay),
with positive gains and extremely small delay values. Such
a property opened an interesting perspective in usingdelays
as control parameters[23], [14] (multiple delays), [19]
(bounded input, single delay). Hence, as discussed by [20],
the approach can be quiteconservativein some situations.
Independent, but however correlated to the idea above, the
implementation of derivative laws can be done by using
delays in order to approximate the derivative, as discussed
by [15] and different approaches for the output feedback
stabilization problem of a linear system by avoiding output
derivatives in the feedback loop have been reported in the
literature: [10], [26], [20], to cite only a few.

The aim of this paper is to explore such ideas in the NCS
framework, that is to stabilize a chain of integrators by taking
into account thenetwork-induced delaysand the correspond-
ing sampling period. Although it sounds extremely simple,
to the best of the authors’ knowledge, such a problem was
not fully considered in the literature. Zhanget al. [29] treated
the case of a single integrator with one delay block and they
derived the stability regions in the parameter-space defined
by the delay and the sampling and, for higher-order systems,
they suggested the use of simulations in order to approach
a solution for the corresponding stabilization problem. It
is well known that, the stability and the performances of
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Supélec, 3, rue Joliot Curie, 91192, Gif-sur-Yvette, France.
Silviu.Niculescu@lss.supelec.fr; Corresponding author.

NCS are affected by thenetwork delaysas pointed out
by [29], [27]. To overcome such a problem, several ap-
proaches have been proposed and, among them: a model-
based method [22] for stability analysis or some optimal
controllers when the network-induced delay is smaller [24]
or longer [9] than the sampling period, or finally, a queuing
mechanism [5] used to reshape random NCS delays to
deterministic leading to a time-invariant NCS.

In this context, we are interested in deriving closed-loop
stability conditions by using the network-induced delays as
control parametersfor the continuous processHyu(s) = 1/sn

(n≥ 1). The corresponding discrete control law is given by:

u
(

t+
)

=−
m

∑
µ=1

kµy
(

t − τµ
)

t ∈ {ih+ τm},

where i is a nonnegative integer and the network-induced
delaysτ1 < τ2 < .. . < τm are positive real numbers. First,
considering a small gain values in the control law we will
see that, similarly to the continuous-time case [23], [14]
one delay block (gain, delay) cannot stabilize a chain of
n integrators, withn ≥ 2. The approach is based on the
use of the complete regular splitting (CRS) property (see,
e.g. [16] and Section II for some prerequisites). Next, we
will explore the cases when multiple delay blocks are able to
stabilize the corresponding chain of integrators. We will see
(Section IV) that the closed-loop stability can be obtainedby
usingn delay blocks, but an arbitrary pole placement requires
(n+1) delay blocks. In both cases, the corresponding control
law is explicitly derived. In the first case (n delay blocks),
the proposed controller leads to some appropriate closed-
loop characteristiclacunary polynomials (see, e.g. [18])
with nice properties: (a) only one tuning parameter (for
improving eventually other performances in closed-loop),
(b) particular behaviors of the roots wrt the variations of
the corresponding parameter. Several illustrative examples
(Sections III-V) complete the presentation.

Throughout the paper the following notation will be
adopted:C is the set of complex numbers,j =

√
−1. For

z∈C, ∠z∈ [0,2π), ℜ(z) (ℑ(z)): argument, real (imaginary)
part of z. Bold case letter denotes a constant or function
vector (matrix). If A ∈ Cm×n, we write A =

[

aµν
]m,n

µ,ν=1. If

m= n, A =
[

aµν
]n

µ,ν=1 and its trace is denoted byTr(A).

For a vectorx ∈ Cn: x =
[

xµ
]n

µ=1. Let x,y ∈ Cn, the scalar
product will be denoted by〈x,y〉 = y∗x, where y∗ is the
complex conjugate transpose ofy. Finally, the binomial
coefficient is defined by

(n
r

)

, n!
r!(n−r)! .



II. PRELIMINARY RESULTS

Let λ = λ0 be an isolated eigenvalue of some analytic-
matrix-value functionL(λ ,α0) with partial multiplicities
m1 ≥ ·· · ≥ mN. Then [8], there exists a neighborhoodO
of λ = λ0 such that the spectrum ofL(λ ,α) in O for
all complex α sufficiently close to the origin consists of
exactlyM := m1+ · · ·+mN eigenvaluesλi(α), i = 1, . . . ,M.
Furthermore,λk(α) are algebraic functions ofα and can be
expressed by all the branches of several Puiseux series [4],
[8]:

µν(α) = cνα
1

qν +o(|α|
1

qν ), ν = 1, . . . ,N′, qν ∈ N, (1)

whereq1 ≥ ·· · ≥ qN′ and q1+ · · ·+qN′ = M. A completely
regular splitting (CRS) [16] property of the eigenvaluẽλ =
λ0 at α = 0 corresponds to:N = N′, qi = mi and ci 6= 0,
i = 1, . . . ,N. The following result characterizes the CRS
property:

Theorem 1 ([8]): With the notations above, letλ = 0
be an eigenvalue ofL(λ ,0) of geometric multiplicity N
and algebraic multiplicityM. Suppose also that for every
generating eigenvectorx of L(λ ,0) there exists a generating
eigenvector ˆx of (L(λ ,0))∗ such that

〈

∂L
∂α

(0,0)x, x̂

〉

6= 0 (2)

Then the eigenvalueλ = 0 possesses the CRS property.

III. PROBLEM FORMULATION AND SOME EXAMPLES

Consider the following chain of integrators system,

y(n) (t) = u
(

t+
)

t ∈ [ih+ τm,(i +1)h+ τm) (3)

whereτ =: τ1 < τ2 < .. . < τm andu(t+) is given by

u
(

t+
)

=−
m

∑
µ=1

kµy
(

t − τµ
)

, t ∈ {ih+ τm, i ∈ N} (4)

A. Discretized Delay Case and Scaling Properties

Let τ̃ be the induced network delay,h the sampling period,
and letτµ for µ = 1,m such that,τ1 < .. . < τm. Then, after
some algebraic manipulation the discretized system can write
as [2]:

y[i +1] = Φ(h)y[i]+∆0(k)u[i −d+1]+∆1(k)u[i −d] , (5)

whered ∈ N and

Φ(h) ,
[

φµν (h)
]n

µ,ν=1

with φµν (h),







hν−µ

(ν − µ)!
if ν ≥ µ

0 if ν < µ

∆0(k;m) ,
m

∑
µ=1

Γ
(

0,h− τµ
)

kµ

∆1(k;m) ,
m

∑
µ=1

Γ
(

h− τµ ,h
)

kµ

Γ
(

ti , t f
)

,
[

σµ
(

ti , t f
)]n

µ=1

with σµ
(

ti , t f
)

,

(

t f
)n−µ+1− (ti)

n−µ+1

(n− µ +1)!

Define now the augmented state vector asz[i] ,
[

yT [k] ,u[i −d] ,u[i −d+1] , . . . ,u[i −1]
]T

, leading to the
augmented closed-loop system:

z[i +1] = Φ̃(h,τ,k)z[i] (6)

Equation (5) describes a general situation, that is, when the
induced network delay is larger/smaller than the sampling
period. Under these observations, we have:

Remark 1 (Smaller delay):Let τ be the induced network
delay, such thatτ =: τ1 < · · · < τm < h. Then,d = 1 in (5)
and the transfer matrix of the augmented closed-loop system
rewrites as:

Φ̃(h,τ,k),
[

Φ(h)−∆0(k;m)eT
1 ∆1(k;m)

−eT
1 0

]

.

Remark 2 (Larger delay):Let τ̃ be the induced network
delay andh the sampling period, such thatτ̃ = (d−1)h+ τ
andh> τ. Then,τ =: τ1 < · · ·< τm < h, and the correspond-
ing transfer matrix becomes,

Φ̃(h,τ,k),















Φ(h) ∆1(k;m) ∆0(k;m) · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−eT

1 0 0 . . . 0















As in the continuous case, we have the following property.
Property 1: The control law

u(t+) =−
m

∑
µ=1

kµy(t − τµ), t ∈ [ih+ τm,(i +1)h+ τm) (7)

is asymptotically stabilizing if and only if the control law

u(t+) =−
m

∑
µ=1

kµ

ρny(t −ρτµ) t ∈ α [ih+ τm,(i +1)h+ τm) ,

(8)
with ρ > 0, is stabilizing.

Proof: This property can be show by takingzi , ρn−ixi ,
t̃ , ρt and ũ+ , 1

ρn ∑m
i=1z(t̃ −ρτi), showing the equivalence

of the systems.

B. Motivating Examples

In the scalar case, [29] derived the stability region in the
(h(k),τ) parameter space for the case of one integrator. The
corresponding NCS will be stableif and only if:

max

{

1
2

h− 1
k
,0

}

< τ < min

{

1
k
,h

}

(9)

Remark 3: It is easy to see from inequality (9) how the
scaling property works.

Proposition 1: If n> 2, then the closed-loop system con-
sisting of a chain ofn integrators

y(n) (t) = u(t) , t ∈ [ih+ τ,(i +1)h) , τ < h (10)

and a control law of the form

u
(

t+
)

=−ky(t − τ) , t ∈ { ih+ τ| i ∈ N} (11)

is unstable for small values of the controller gaink.



Proof: The assertion follows from the behavior of the
eigenvalueλ0 = 1 for k = 0 as |k| is increased from zero,
and is based on Theorem 1. To this end, consider

L
(

λ̃ ,k
)

=

[

Φ(h)− I − λ̃ I 0
−eT

1 −λ̃ −1

]

+

[

−∆0 (k;1)eT
1 ∆1(k;1)

0 0

]

whereλ̃ := λ −1. From the definition ofΦ(h) it follows that
the algebraic and geometric multiplicity of the eigenvalue
λ̃ = 0 for k = 0 is n and 1, respectively. Furthermore the
right and left eigenvectors are given byx = e1 and x̂ = en.
Next, we have

∂L
∂k

(λ ,k) =
[

−Γ(0,h− τ) Γ(h− τ,h)
0 0

]

.

It is easy to see that (2) holds if and only if the equation

L(0,0)y =
∂L
∂k

(0,0)e1

⇔
[

Φ(h)− I 0
−eT

1 −1

]

y = −











(h−τ)n
n!
...

h−τ
1!
0











(12)

has no solution fory. Since, by hypothesis,h > τ, this is
the case and the eigenvalueλ̃ = 0 has the CRS property. It
follows that for small|k| it can be expanded as

λ̃i(k) = cej 2π i
n k

1
m +o(k

1
m), i = 1, . . . ,n,

for somec∈C. Sinceλ = 1+ λ̃ it follows that the original
system always has one eigenvalue outside the unit circle for
small values of|k|.

Example 1:Consider first the double integrator. As men-
tioned above, it cannot be stabilized by using a single block-
delay (see Fig.1 (upper)). However, the use of a controller
involving two delays will be able to stabilize it. Indeed,
considerτ1 := τ < h

3, τ2 := τ + ε with 0 < ε < 2
3(h−3τ).

Then the control gains:

k1 (h,τ,ε) ,
6h2+4h(τ + ε)−6(τ + ε)2

hε(4h2+2τ(τ + ε)−3h(2τ+ ε)

k2 (h,τ,ε) ,
−6h2−4hτ +6τ2

hε(4h2+2τ(τ + ε)−3h(2τ+ ε)
will define a stabilizing control law (4).

Consider now the general case. The characteristic polyno-
mial of Φ̃(h,τ ,k)

Pcl (z) := zn+d +an+d−1(h,τ,k)zn+d−1+ · · ·+a0(h,τ,k)

describes the general case for the augmented closed-loop
system (6). However, in order to simplify our analysis we
will consider in the sequel the smaller delays case (i.e.,
d = 1).

Assertion 1:The coefficients ofPcl (z) satisfy the follow-
ing properties

1) aµ(h,τ,k) are affine functions ink (βµ ∈ R):

aµ(h,τ,k) =
m

∑
ν=1

kν αµ,ν(h,τν )+βµ , (13)

2) αµ,ν (h,τ) is a polynomial function in(h,τ) satisfying

αµ,νi (h,τ) = αµ,ν j (h,τ) for i 6= j.
This assertion follows by a straightforward application of

the Laplace expansion’s[11] to the last row of:

Φ̃cl(z,h,τ ,k) :=

[

zIn×n+∆0(k)eT
1 −Φ(h) −∆1(k)

eT
1 z

]

Remark 4: In order to calculateαµ,νi (h,τνi ), it is suffi-
cient to takem= n= 1 (seeAssertion1).

Remark 5:By applying the determinant properties [11],
it is easy to see thatαn,ν(h,τ), βn andα0,ν(h,τ), β0 satisfy

αn,ν (h,τ) =
(h− τ)n

n!
, βn =−n, α0,ν (h,τ) =

τn

n!
, β0 = 0.

Remark 6:Let z(0) := {z(0)1 , . . . ,z(0)n+1} be the set of roots
of Pcl. Then, the fact that the uncontrolled system hasn+1
roots onC (0,1) simply points out that ifm= n in the control
law (4) we will not have enough “degrees-of-freedom”for an
arbitrary pole placement.

Example 2:Consider now the triple integrator:

y(3)(t) = u(t+), t ∈ [ih+ τ,(i +1)h+ τ) , τ < h.

Taking m = 3 in (4), denoting the roots ofPcl by
{

ζµ
}

for µ = {1,4} and consideringζ4 (ζ1,ζ2,ζ3). Then, the

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

k = −1.47

k = 1.47

−1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

k = 1.68

k = 8.44

Fig. 1. Completely Regular Splittingproperty illustratingProposition 1
for λ = 1. (Upper) Double-integrator(n = 2) for k ∈ [− 2!

τ2 ,
2!
τ2 ]. (Lower)

Triple-integrator(n= 3) for k∈ [− 3!
τ3 ,

3!
τ3 ].



Fig. 2. Admissible pole-placement for the control law (4) with m= n= 3

only admissible roots
∣

∣ζµ
∣

∣ < 1 for µ = {1,3} such that
|ζ4 (ζ1,ζ2,ζ3)| < 1 are depicted in figure Fig.2 and such a
situation illustratesRemark6 above.

C. Problem Formulation

As briefly discussed in the previous section, we will
focus on finding conditions on them gain parametersk =
(k1, . . . ,km) such that (4) is a stabilizing control law. In
particular, we will consider two cases:m= n+1 (exact pole
placement) andm= n (called reduced controller).

IV. M AIN RESULTS

A. Control law based on exact pole placement

Denote the set of desired closed-loop roots byλ (0) :=
{λ1, . . . ,λn+1} and the corresponding characteristic polyno-
mial by:

Pd (z,s) := zn+1− c1zn+ c2zn−1+ · · ·+(−1)n+1cn+1 (14)

whereck is thekth symmetric functionof λ (0) defined as the
sum of the product of the eigenvalues takenk at the time:

ck := ∑
1≤i1≤···≤ik≤n+1

λi1 · · ·λik

Proposition 2 (Exact pole-placement):Assume thatτ =:
τ1 < τ2 < .. . < τn+1 < h. Under the notations above, define
the gain:

k= A−1c̃T (15)

with A,
[

α µ−1(h,τν )
]n+1

µ,ν=1,

c̃,
[

(−1)n+1cn+1 (−1)ncn− (−1)n
(n

0

)

· · · −c1+
( n

n−1

)

]

whereᾱi (h,τ) is defined recursively by takingB0 := I and,

ᾱµ (h,τ) , − 1
n−µ+1

∂
∂kν

Tr
(

Φ̃(h,τ,k)Bn−µ
)

Bµ , −Tr
(

Φ̃(h,τ,k)Bµ−1
)

µ
I + Φ̃(h,τ,k)Bµ−1.

Then the corresponding control law (4) guarantees the
closed-loop characteristic roots are located atλ (0)

Proof: See the appendix.

B. Reduced Controller. Case m= n

We focus now on finding the control lawk= (k1, . . . ,kn)
such that the closed-loop characteristic polynomial becomes:

P(z; p, ip) := zn+1+ p
(

zn−ip+1+ zn−ip + · · ·+ z+1
)

(16)

with 1 ≤ ip ≤ n+ 1 and n ≥ 1. It is important to mention
that the lacunary polynomials of the form (16) have received
some attention in the literature [12] in the context of delay-
difference equations. Its main interest lies in interesting
properties to be exploited in what follows:

Property 2: The following properties hold forP(z; p, ip):
(i) the moduli of the roots increase as| p | increases.
(ii) the roots are inside the unit circle if|p|< 1

n−ip+2.

Proof: First, P(z; p, ip) ≡ zn+1 + pzn−i p+2−1
z−1 . Next, for

(i), see [12]. (ii) Take now f (z) , zn+1 and g(z; ip) ,

p
(

∑n−ip+1
k=0 zk

)

. For all z ∈ C, we have that|g(z; ip)| =
|p||∑n−ip+1

k=0 zk| ≤ |p|∑n−ip+1
k=0 |zk|. Then, taking|p| < 1

n−ip+2
for |z|= 1 we have that| f (z)|> |g(z; ip)|. Then, by a straight-
forward application of Rouche’s lemma [18],P(z; p, ip) ≡
f (z)+g(z; ip) is a Schur-stable polynomial.

Remark 7:The proof above guarantees not only the exis-
tence of some ”stabilizing” parameterp, but it also gives a
”cheap” way to compute it.
Define nowX as the set of real zeros of the polynomial:

Tn+1(x)
n−ip

∑
j=0

U j (x)−Un(x)
n−ip+1

∑
j=0

Tj (x) , (17)

and introduce the following quantities:

p−= max
x∗∈X











−Un(x∗)
n−i p

∑
j=0

U j (x∗)
< 0











, p+ = min
x∗∈X











− Un(x∗)
n−i p

∑
j=0

U j (x∗)
> 0











.

(18)
Proposition 3: The polynomialP(z; p∗, ip) is Schur stable

if and only if

max
{

−1
n−ip+2, p

−
}

< p∗ < p+. (19)

Proof: The polynomialP(z;0, ip) is Schur. Now, since
the roots of a polynomial are continuous with respect to their
coefficients (see, e.g., [3], [25]), it follows the existence of
some realp close to 0 such thatP(z; p, ip) is still Schur
stable. Moreover, in the limit case, there exists ap∗ ∈ [−1,1]
such thatP(z(0); p∗, ip) = 0⇒ z(0) = ejθ , θ ∈ [0, 2π). Then,

ℜ
(

P(z(0); p∗, ip)
)

= 0 and
ℑ(P(z(0);p∗,ip))

sinθ = 0 lead to:

Tn+1(x)+ p∗
n−ip+1

∑
j=0

Tj (x) = 0, (20)

Un (x)+ p∗
n−ip

∑
j=0

U j (x) = 0, (21)



wherex= ℜ(z(0)) = cosθ . Equations (20)-(21) will give the
whole set of solutions, except the singular pointz(0) = 1. In
this last case,p∗ can be obtained by solvingP(1;p∗, ip) = 0.
Some simple algebraic manipulations lead to the conditions
(19).

Remark 8: It follows from the first assertion of Property 2
that the condition (19) defines the whose set of solutions.
Notice also that, (17) has at mostn solutions. Finally, [12]
proposed a different argument for proving a similar property.

Proposition 4: Let τ be the induced network delay,
τ2, . . . ,τn chosen likeτi = τ +(i−1)ε for i = {2, . . . ,n} and
p∗ be chosen satisfying (19) for some 1≤ ip ≤ n+1. Then,
the control law (4) with,

k(ε) = Ā−1p (22)

whereĀ,
[

αµ (h,τν )
]n

µ,ν=1,

p ,

[

p∗− (−1)n(n
0

)

· · · p∗− (−1)ip+1( n
n−ip−1

)

(−1)ip+1( n
n−ip

)

· · ·
( n

n−1

)

]

guarantees the closed-loop stability, wheneverε satisfies,

p−0 < α0 (h,τ1)k1 (ε)+ · · ·+α0 (h,τn)kn (ε)< p+0 (23)

for ε > 0, h> τ +(n−1)ε, and wherep±0 are given by:

p−0 , max

{

p0,

{

p∗−1 if n− ip ∈ 2N
−1 otherwise

∣

∣

∣

∣

p0 < p∗
}

(24a)

p+0 , min{p0 |p0 > p∗ } (24b)

wherep0 is the set given by,

p0 ,−
{

Tn+1(x
∗)+ p∗

n−ip+1

∑
l=1

Tl (x
∗)

}

(25)

andx∗ is a root of the following polynomial

Un (x)+ p∗
n−ip

∑
l=0

Ul (x) (26)

Proof: According toProposition3, for the invertibility
of A is sufficient to haveτ1 6= · · · 6= τn and h > τi for all
i = 1,n. Since this fact is fulfilled by hypothesis,k(ε) is
well defined. Then, letk(ε) be given by (22). It is clear from
Proposition 2that the closed-loop system will be rewritten
as follows:

Pcl(z; p∗, p̃∗, ip)= zn+1+p∗
(

zn−ip+1+ zn−ip + · · ·+ z
)

+ p̃∗(ε),

where p̃∗(ε) is given by:

p̃∗(ε), α0 (h,τ1)k1 (ε)+ · · ·+α0 (h,τn)kn (ε)

Since by assumption,p∗ satisfies (19), we have that, for
p̃∗(ε) = p∗, the closed-loop system is asymptotically sta-
ble. Then, similarly to the proof of Proposition 3, there
exists some interval

(

p−0 , p
+
0

)

including p∗ such that the
system remains asymptotically stable. In the limit case,
Pcl(ejθ ; p∗, p̃∗) = 0. Taking the corresponding real and imag-
inary parts (ℜ

[

Pcl(ejθ ; p∗, p̃∗)
]

= 0, ℑ
[

Pcl(ejθ ; p∗, p̃∗)
]

= 0)

and using the Chebyshev polynomials, we obtain (25)-(26),
respectively. Equation (25) gives the set of all possible
intervals includingp∗, excepting for the singular pointθ =
π . At this point, we must havep−0 = p ∗ −1 whenever
n− ip ∈ 2N. Then, in order to preserve the stability, we must
choose the smallest interval, i.e.,p0 must be contained in
the interval

(

p−0 , p
+
0

)

given by equation (24). This means
that, if p−0 < p̃∗(ε) < p+0 the closed-loop system will be
asymptotically stable. Since this is equivalent with equation
(23), the proof is completed.

V. I LLUSTRATIVE EXAMPLE

In order to illustrate how the present methodology works,
we consider a fourth-order chain of integrators as:

y(4) (t) = u
(

t+
)

, t ∈ [ih+ τ,(i +1)h) , τ < h (27)

where τ = 0.1 is the induced-network delay andh = 0.6
is the sampling period. Takingτi = τ + (i − 1)ε for i =
{2,4} in the control law (4), then applyingProposition 3-4
we obtainp∈ (−0.25,0.4450) and p0 ∈ (−0.7181,0.8158)
(where the later interval was obtained by choosingp∗ = 0.2),
respectively. Then, according withProposition 4, the system
(27) is asymptotically stable wheneverε ∈ (0,0.01202). In
order to illustrate this result graphically, we plot the roots’
trajectories forp0 ∈ (−0.7181,0.8158) in Fig.3.
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Fig. 3. Root trajectories forp0 ∈ (−0.7181,0.8158)

VI. CONCLUDING REMARKS

In this note, the problem of stabilizing a chain of integra-
tors by using network delays as controller parameters was
addressed. Several algorithms and properties have been out-
lined and various illustrative examples proving the theoretical
results have been also proposed. For the sake of brevity, only
the case of delays smaller than the sampling period has been
considered. However, the approach proposed in the paper
applies also to the case of larger delays.
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APPENDIX

A1. CHEBYSHEV POLYNOMIALS DEFINITIONS [17]

Definition 1: (i) The Chebyshev polynomialTn(x) of the
first kind is a polynomial inx of degreen, defined by

Tn(x) = cosnθ whenx= cosθ

(ii) The Chebyshev polynomialUn(x) of the second kind is
a polynomial inx of degreen, defined by

Un(x) =
sin(n+1)θ

sinθ
whenx= cosθ

A2. LEVERRIER-SAURIAU -FRAME ALGORITHM

Theorem 2 ([21]): Let the characteristic equation forA∈
Rn×n be given by,λ n+c1λ n−1+c2λ n−2+ · · ·+cn = 0, and
define a sequence by takingB0 = I and Bi = −Tr(ABi−1)

i I +
ABi−1 for i = 1,2, . . . ,n. Then, thei th coefficient isci =

−Tr(ABi−1)
i .

A3. PROOF OFPROPOSITION2

Proof: According toAssertion 1(1), the coefficients of
Pcl(z) satisfy:

aµ(h,τ,k) =
m

∑
ν=1

kν αµ,ν(h,τν )+βµ ,

that is,
∂aµ (h,τ,k)

∂kν
≡ αµ,ν (h,τν)

A straightforward application ofTheorem 2leads to:

αµ(h,τ) = αµ,ν (h,τµ),

Assertion 1(2)allows concluding that the above equality
is true for all ν. On the other hand, fromAssertion 1(1),
aµ(h,τ,0) = βµ . Then, a straightforward application of the
Induction Methodto:

Φ̃cl(z,h,τ ,0) =
[

zI−Φ(h) 0
eT

1 z

]

shows us thatβµ =
( n

µ−1

)

. With this fact in mind, we have
that aµ(h,τ,k) = (−1)n−µ+1sn−µ+1, taking µ = 0,n and
putting this in a matrix form we obtain (15). The proof
is finished if we show thatA is nonsingular. Singularity
of A simply means that there exist some dependent row
or column vectors. Then, a straightforward application of
Assertion 1(2)and Remark 5implies thatτ1 = · · · = τn+1.
Since, by assumption we have thatτ1 < · · ·< τn+1, the proof
is completed.


