
Experimental study of the cyclic visco-elasto-plastic behaviour of a
polyamide fibre strap

G. Blesa∗, W. K. Nowackib, A. Tourabic

17 January 2009

(a) – Laboratory LBMS - ENSTA Bretagne/Brest University/ENIB, Engineering School Ensta Bre-
tagne (MSN), 2 rue François Verny, F-29806 Brest cedex 9, France.

(b) – Institute of Fundamental Technological Research, ul. Świetokrzyska 21, 00-49 Warsaw, Poland.
(c) – Laboratory 3SR, Domaine Universitaire, B.P. no53, F-38041 Grenoble cedex 9, France.

Abstract

Experimental tensile tests were performed on polyamide-based (PA66) woven strap samples. A
strain measuring device was used to measure the strain in the middle and effective part of the
woven tensile sample. The tests were performed, on the one hand under monotonous tension at
different strain rates and on the other hand under sophisticated cyclic loading histories, including
relaxation and creep sequences. The analysis of experimental results was made through a visco-
elasto-hysteresis model, based on the superimposition of three stress components. The proposed
method allows for characterizing the steady state viscous stress as a function of strain and strain
rate, the time-independent irreversible behaviour and the instantaneous modulus increasing with the
strain. Based on the visco-elasto-hysteresis model, an analysis enabled us to understand and predict
the change in relaxation and creep orientations during complex loading histories.

Keywords: Polymers, Fibres, Ropes, Viscoelastic, Nonlinear elasticity, Relaxation, Creep.

1 Introduction

A polyamide 6-6 (PA66) fibre strap is used as a mechanical component for the parachute ejection of
heavy cargoes from the hold of a plane in flight. The parachute is first ejected from the hold, while
the cargo is still in the plane. The wind inflates the parachute, which then pulls the cargo out of the
hold. The straps studied are the mechanical link between the parachute and the cargo. A plane crash
may occur if a strap fails during the ejection phase. To address this risk and predict the mechanical
performance of the straps, the definition of an effective modeling of mechanical behaviour of straps is
required.
This mechanical structure is woven with polymer fibres. Many authors are working towards modeling
the mechanical phenomena which occur within the weave at a mesoscopic level. Models were proposed
for fabrics: fabric lattice model (Kato et al., 1999), mesostructurally based continuum model (King et
al., 2005), material model for weave fabric (Pargana et al., 2007). Other authors proposed to describe
the mesostructure of ropes (Leech, 2002), and proposed models for the mechanical behaviour of ropes
based on their mesostructure (Beltran and Williamson, 2005; Ghoreishi et al., 2007).
The results of this type of studies, on two-dimensional (fabrics) or one-dimensional structures (ropes),
are very interesting in order to understand the deformation mechanisms at the mesoscale level within
the weave and their influence on the macroscopic behaviour. But in general, they ignored a great part
of behaviour, which includes intricate time-dependent phenomena.
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Figure 1: Measurements of polyamide strap at-
tached to hydraulic testing machine.

Figure 2: Strain measuring device for the woven
strap in its effective area.

Phenomenological approaches and macroscopic continuum models are another way to model the me-
chanical behaviour of woven materials. In this framework, some authors proposed models based on
anisotropic formulation (Holzapfel et al., 2001; Xue et al., 2003; Baesu, 2007).
Experimental investigations were also conducted on one-dimensional structures like mooring lines for
offshore applications (Banfield and Casey, 1998; Fernandes and Rossi, 2005) or energy absorber ropes
for worker security (Spierings and Stämpfli, 2006).
But, little research deals with the visco-elasto-plastic behaviour of polymer fibres, in order to analyse
the reversible and irreversible phenomena that occur simultaneously during complex loadings. However,
we may refer to the experimental work reported in Averett et al. (2006), which studied the effect of
uniaxial cyclic loading on the mechanical behaviour of a nylon fibre.

The aim of the present study was to discern and to characterize the essential generic aspects of
the behaviour of PA66 straps, starting with the stress-strain-time experimental measurements. For this
purpose, monotonous tensile, cyclic tensile loadings with creep and relaxation periods were performed
at various constant strain and stress rates. The characterization work was based on a macroscopic
approach, through phenomenological description of the behaviour, using a visco-elasto-hysteresis con-
stitutive model (Bles et al., 2000a), in the one-dimensional case. An identification method of the
theoretical model parameters is proposed. All the aspects concerning the complete modeling of cyclic
behaviour of straps were excluded from the scope of this study, which was limited to the experimental
aspects. However, the results of identification method allow to describe partially the behaviour of the
straps, by pointing out essential features like steady state viscous stress, time-independent behaviour or
instantaneous modulus.

2 Experimental techniques

These structural components were manufactured by weaving polyamide 6-6 (PA66) strands, a semi-
crystalline polymer. Three sets of polyamide strap were tested, called here A, B and C. Each sample
is identified by a three-character code: ANM , BNM or CNM . Where A, B or C are for the strap
groups, and the last two characters NM correspond to two sequence numbers. The present paper deals
mainly with the set of A and B sample groups, but some results concerning the group C are presented
here.

The polyamide strap has end-connections made by two sewn loops (fig. 1). The length of the central
or effective part is about three times the width of the strap. The initial measurement of the samples
(sewing length, axis distance etc.) was taken for each strap. The mean values and standard deviations
of geometrical parameters described in figure 1, are indicated with the confidence interval c.i. of 95%:
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L = 491, 0± 0, 5 mm, H = 149, 5± 0, 7 mm, h = 171, 2± 0, 5 mm (95% c.i., n = 40) .
The stress applied to the woven sample was calculated from the load measure according to the

assumptions of continuum mechanics. The woven strap was assumed to be an homogeneous continuum.

The tensile stress was calculated as the Piola-Kirchhoff-1 stress σ = F/S and
�
σ =

�
F /S, where F is

the applied load and S = 152 ± 6 mm2 is the cross section of the sample.
An experimental device was developed in order to adapt a standard extensometer to get a strain

measure of the woven material (fig. 2). Two sets of pairs of metallic parts grip the strap on two sections,
by means of four clips (black parts in fig. 2). Two needles are placed through each pair of metallic parts
and go through the weaving. The needles ensure that the strap is well gripped by the device and avoid
any sliding during the test. The device is put on the sample with a gauge part, so the initial length is

reproductible. The strain and strain rate of the strap are defined as ε = ∆b/b0 and
�
ε =

�
∆b /b0, with

∆b = b− b0 denotes the variation of distance measured by the extensometer during the mechanical tests
and bo the initial length.

3 Theoretical pattern to analyse the experimental results

A modeling approach at the macroscopic level is adopted in order to predict the cyclic thermomechanical
behaviour of a wide range of solid materials (Tourabi et al., 1995, 1997; Bles et al., 2000a). According
to a phenomenological view, this modeling approach discerns the essential physical phenomena and
superimposes them so as to predict the global macroscopic behaviour (Bles et al., 2002).

In the present case of polyamide straps, our approach consisted of the superimposition of three
stress components corresponding to a nonlinear viscoelastic, a nonlinear elastic and a pure hysteresis
behaviour. Many authors developed visco-elasto-plastic models (Frank and Brockman, 2001; Lubarda et
al., 2003; Lin and Schomburg, 2003; Drozdov and Christiansen, 2006) and some of them have adopted
the stress superimposition principle, like Miehe and Keck (2000) and Mulliken and Boyce (2006) in
the case of rubbery and glassy polymers. Our approach will be described by section 3.1 in a one-
dimensional case. In section 3.2, the main properties of the visco-elasto-hysteresis model (stemming
from this phenomenological approach) are presented.

3.1 Fundamental superimposition assumption and visco-elasto-hysteresis model

The fundamental superimposition assumption was inspired by Duhem’s method (Duhem, 1980). Ac-
cording to this assumption, the stress applied to the material is the result of a superimposition of several
stress components. Each of these constitutive stresses is related to a physical phenomenon that occurs
during mechanical loading. As regards the strain, it is left whole, without splitting up. To model the
visco-elasto-plastic mechanical behaviour of the present PA66 straps, we considered the superimposition
of three stress components σh(ε, ξ), σr(ε) and σv(ε,

�
ε):

σ(ε,
�
ε, ξ) = σh(ε, ξ) + σr(ε) + σv(ε,

�
ε) (1)

where each stress component is defined by a specific constitutive equation, in a differential form.
As the three stresses are equal to zero at the initial mechanical state of material:

σ(ε = 0,
�
ε, ξ) = σh(ε = 0, ξ) = σr(ε = 0) = σv(ε = 0,

�
ε) = 0 (2)

The stress component σh(ε, ξ) is elastoplastic and always irreversible; it is a function of the current
strain ε and of its history denoted here by the parameter ξ. The stress component σr(ε) is nonlinear
elastic. The stress component σv(ε,

�
ε) is viscoelastic with a nonlinear viscosity as this stress has a

nonlinear relation with the strain rate
�
ε and is also a function of the strain ε. Figure 3 illustrates

this assumption, proposing a visco-elasto-hysteresis pattern of a phenomenological modeling. Each
stress component is presented by a symbolic model. Its mechanical behaviour is qualitatively illustrated
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Figure 3: Visco-elasto-hysteresis behaviour model
in the one-dimensional case.
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Figure 4: Cyclic behaviour of the three stress com-
ponents of the visco-elasto-hysteresis model.

Table 1: Definition of the reference states during the loading OADA on figure 4c.
branch ξ reference state ε̂ (ξ) σ̂h(ξ)

OA 0 origin O 0 0
AD 1 reversal point A εA σh(εA, 1)

DA 2 reversal point D εD σh(εD, 2)

in figure 4; with the proportion of each component σv(ε,
�
ε), σr(ε), σh(ε, ξ) and with the total stress

σ(ε,
�
ε, ξ). This figure shows that the result of the stress superimposition presents the typical bean shape

of the stress-strain cycles often observed with materials woven in polymer fibres.
The pure hysteresis component σh(ε, ξ) models the rate-independent irreversibilities of the mechan-

ical behaviour. That part of the behaviour is called equilibrium hysteresis by Lion (1997) about the
behaviour of rubbers. The related physical phenomena are of dry friction type and occur at the micro-
scopic level in the crystalline phase of the fibres and/or at the mesoscopic level due to the interactions
between yarns. Figure 4d illustrates the effect of the stress component σh(ε, ξ), which makes the C and
F points different at the end of BC and EF relaxation periods. In the case of viscoelastic behaviour,
these ends of relaxation periods are coincident (fig. 4a). The main parameters of the behaviour of the
stress component σh(ε, ξ) are an elastic modulus Eh and a plastic yield stress

∞
σh (fig.3 and 4c). The

whole behaviour curve is divided into different loading or unloading branches (like OA, AD or DA on
figure 4c), where the stress increases or decreases but always monotonously. Each branch of loading or
unloading starts from a reference state memorized by ε̂ (ξ) and σ̂h(ξ) at the origin of the graph (point
O) or at reversal points (points A and D fig. 4c). The parameter ξ is the result of a specific numbering
of the reference states and is used to define the stress difference ∆σh(ε, ξ) = σh(ε, ξ)− σ̂h(ξ) and strain
difference ∆ε(ε, ξ) = ε− ε̂ (ξ), where:

d

dt
ε̂ (ξ) ≡ d

dt
σ̂h(ξ) ≡ 0 ∀ξ (3)

Consequently, the rates of ∆σh(ε, ξ) and ∆ε(ε, ξ) are identical to the current rates
�
ε and

�
σh (ε, ξ)

respectively. Table 1 defines the parameter ξ, the successive reference states, ε̂ (ξ) and σ̂h(ξ) during the
loading OADA illustrated by figure 4c. Where, εA and εD denote the strains at the reversal points A
and D, respectively.
An integral and differential forms of the constitutive equation of stress component σh(ε, ξ), along the
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first or monotonous loading are, respectively:

σh(ε, ξ = 0) = g (ε) and
�
σh (ε, ξ = 0) =

dg

dε
(ε)

�
ε (4)

and during cyclic loadings:

∆σh(ε, ξ) = g {∆ε(ε, ξ)}
and

�
σh (ε, ξ) ≡ ∆

�
σh (ε, ξ) = dg

dε{∆ε(ε, ξ)} �
ε

(5)

where g(ε) is a generic function, chosen for the polyamide strap behaviour, as follows:

g(ε) =
∞
σh th{ [2− e−

1
2

(δ ε
ε∗ )

2
]
ε

ε∗
} with ε∗ =

∞
σh

Eh
(6)

This generic function is defined by its modulus Eh and yield stress
∞
σh. A parameter δ could be chosen

to change the shape of the function in the transition range (fig.5). With δ = 0 relation 6 leads the
function g(ε) to a classic hyperbolic tangent. With δ > 0, the radius of curvature in the transition range
decreases if the value of δ increases. In the case of the polyamide straps, we chose δ = 1, so the generic
function g(ε) is defined by two parameters, Eh and

∞
σh only.

The behaviour of σh(ε, ξ) defined as above is a special pure hysteresis model, because it does not take
into account the Masing effect, like in the case of metallic materials for instance.

The viscoelastic stress component σv(ε,
�
ε) is obviously an important part of the behaviour of woven

material. It is related to the amorphous phase of the polymer matter of the fibre, the widely viscoelastic
behaviour of which is sensitive to the strain rate. The parameters of the behaviour of the stress
component σv(ε,

�
ε) are an elastic modulus Ev(ε) that could be a function of the current strain, and a

steady state viscous stress
∞
σ v (ε,

�
ε) that depends on strain rate and could also depend on the strain

(fig. 3 and 4a), as follows:
∞
σ v (ε,

�
ε) = L(ε,

�
ε) − J(ε)

Ev(ε) = (kins − 1) d
dε J(ε)

(7)

where kins is a constant parameter and L(ε,
�
ε), J(ε) are two generic functions, which describe respectively

the steady state at constant strain rate and the time-independent behaviour, during monotonous loading,
such as:

L(ε,
�
ε) =

∞
b (ε). log(

�
ε +

�
ε0) +

∞
a (ε)

J(ε) = lim �
ε → 0

L(ε,
�
ε)

(8)

and
∞
a (ε),

∞
b (ε) are two analytical functions, such as:

∞
a (ε) = σ1. exp(

ε

ε1
) ,

∞
b (ε) = b0.

[(
ε

εb

)3

+ 1

]
, (9)

where σ1, ε1 and b0, εb are constant parameters and
�
ε0 = 10

−σ1
b0 .

The viscoelastic stress component σv(ε,
�
ε) is described by a Maxwell-like constitutive differential

equation:
�
σv (ε,

�
ε) = Ev(ε)

�
ε − Ev(ε)

η(ε,
�
ε)

σv(ε,
�
ε) (10)

involving a viscosity parameter η(ε,
�
ε) =

∞
σ v (ε,

�
ε) /

�
ε, defined from the steady state viscous stress.

The nonlinear elastic component σr(ε) of semi-crystalline polymers is related mainly to their amor-
phous phase. Indeed the mechanical behaviour of amorphous polymers is strongly nonlinear elastic at
the temperature and strain rate of their rubbery state (Tang et al., 2007). In the case of the woven
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Figure 6: Time-independent stress σti(ε, ξ), which
is the sum of σh(ε, ξ) and σr(ε) of figure 4.

materials made of stretched semi-crystalline polymer fibres, these effects are also caused by the high
directing of the molecules of the amorphous phase to the fibre axis. This leads to a typical nonlinear
reversible behaviour, with a very significant increase in the modulus at high values of strain. From the
macroscopic point of view, the nonlinear elastic behaviour component is negligible when the strains are
small, considering the physical origins of this behaviour. For this reason, at the strain equal to zero, we
assumed the elastic modulus of the stress component σr(ε) is also equal to zero (fig. 4b). The nonlinear
elastic behaviour component σr(ε) is described by a differential constitutive equation, such as:

�
σr (ε) = Er(ε)

�
ε and Er(0) = 0 (11)

and Er(ε) is defined as follows:

Er(ε) =
d

dε
J(ε) − d

dε
g(ε) (12)

from the generic functions g(ε) and J(ε).
The visco-elasto-hysteresis model is completely defined by equations 1 to 12, involving seven constant

parameters Eh,
∞
σh, kins, σ1, ε1, b0 and εb.

3.2 Main properties of the visco-elasto-hysteresis model

3.2.1 Time-independent behaviour

The time-independent behaviour of the visco-elasto-hysteresis model corresponds to the case of infinites-
imal strain (or stress) rate loadings. The viscoelastic stress component σv(ε,

�
ε) has a fluid behaviour

and is the unique stress component that presents a time-dependent behaviour. Consequently according
to the stress sum assumption 1, the time-independent behaviour is given by the superimposition of
two stress components σh(ε, ξ) and σr(ε). This behaviour will be denoted by a time-independent stress
component σti(ε, ξ) as:

σti(ε, ξ) = σh(ε, ξ) + σr(ε) (13)

The σti(ε, ξ) stress is reached by the total stress of the model at the ends of relaxation or creep periods.
Indeed, during these periods the viscoelastic stress σv(ε,

�
ε) decreases to zero. Figure 6 illustrates this

property on the example of loading of figure 4. The pure hysteresis stress component provides the time-
independent behaviour with an irreversible character. If σh(ε, ξ) is null, the time-independent behaviour
becomes reversible and the visco-elasto-hysteresis model (fig. 3) is transformed into the viscoelastic
Zener model. In the range of linear viscoelastic models, the time-independent behaviour is simply a
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Figure 8: Diagram of superimposition assump-
tion 1 in the case of a monotonous loading.

linear elastic behaviour σti(ε) = Er ε, with a constant modulus Er, called delayed elasticity. The
constitutive differential equation of the linear viscoelastic Zener model is:

�
σ +

σ

θ
= (Ev + Er).

�
ε +

Er

θ
.ε with θ =

η

Ev
. (14)

where η is the viscosity parameter. This model has a solid behaviour, because its delayed elasticity is
not null (Er ̸= 0). If the delayed elasticity of the Zener model is null (Er = 0), it is the linear viscoelastic
Maxwell model, the behaviour of which is of fluid type (Persoz, 1960).

Considering relations 11 and 13, elastic moduli of σh(ε, ξ) and σti(ε, ξ) are the same at the beginning
of the loading starting from the initial state of material (ξ = 0), (fig.4):

lim
ε → 0

dσti
dε

(ε, ξ = 0) = Eh (15)

Taking into account the definition of visco-elasto-hysteresis model (§3.1), the time-independent be-
haviour during monotonous loading is described by the generic function J(ε), such as:

σti(ε, ξ = 0) = J(ε) =
∞
a (ε)− σ1

b0
.
∞
b (ε) . (16)

So, from previous relations 15 and 16, the modulus of pure hysteresis stress component is a function of
parameters σ1 and ε1 :

Eh =
σ1
ε1

. (17)

3.2.2 Steady state during monotonous loading at a constant rate

After sufficient time, during a loading at constant strain (or stress) rate, the transient state of the
viscoelastic stress behaviour finishes and a steady state takes place. The steady state stress of the
model is the total stress during this steady state at a constant rate. Figure 7 shows the sequence of
the transient and steady states during a monotonous loading on the visco-elasto-hysteresis model. The
transient state appears at the beginning of the loading starting from the initial state or after a long
period of relaxation or creep. When the total stress σ(ε,

�
ε, ξ = 0) reaches the steady state stress

in monotonous loading
∞
σ (ε,

�
ε, ξ = 0), the steady state begins. Figure 8 gives the evolution of stress

components σh(ε, ξ = 0), σv(ε,
�
ε), σr(ε) and σti(ε, ξ = 0) during the monotonous loading of figure 7.

7



Considering relations 1 and 13, the steady state stress in monotonous loading
∞
σ (ε,

�
ε, ξ = 0) is given as

a function of the steady state viscous stress
∞
σ v (ε,

�
ε) according to the following relation:

∞
σ (ε,

�
ε, ξ = 0) =

∞
σ v (ε,

�
ε) + σti(ε, ξ = 0) (18)

The generic functions L(ε,
�
ε) describes the steady state at constant strain rate during monotonous

loading, by definition of visco-elasto-hysteresis model. Moreover, relations 7, 8, 16 and 18 indicate that
in the case of an infinitesimal strain rate the total stress and its steady state stress

∞
σ (ε,

�
ε, ξ = 0) are

the same as the time-independent stress σti(ε, ξ = 0):

∞
σ (ε,

�
ε, ξ = 0) = L(ε,

�
ε)

and lim �
ε → 0

∞
σ (ε,

�
ε, ξ = 0) = σti(ε, ξ = 0)

(19)

3.2.3 Instantaneous behaviour

The instantaneous behaviour of the visco-elasto-hysteresis model is a limit behaviour, which could be
revealed for very short periods of time: at the beginning of a relaxation or creep period, just after
a relaxation or creep period at the beginning of a constant rate reloading, just after a load reversal
of a constant rate cyclic loading, during a high frequency cyclic loading with a little cycle amplitude,
as a general rule just after a sudden changing of the mechanical loading condition. The parameter
of the instantaneous behaviour of the visco-elasto-hysteresis model is an elastic modulus denoted here
Eins(ε, ξ) as:

Eins(ε, ξ) = Ev(ε) + Er(ε) +
dσh
dε

(ε, ξ) (20)

This instantaneous modulus Eins could depend on the current strain ε and on the reference memorized
state ξ. In the case of linear viscoelasticity, the pure hysteresis component is null and their instantaneous
behaviour is simply a linear elasticity, the instantaneous modulus of which is constant.

Definition 20 of instantaneous modulus and relation 13 lead to the following relation:

Eins(ε, ξ) = Ev(ε) +
dσti
dε

(ε, ξ). (21)

In the case of monotonous loading (ξ = 0), relations 7, 16 and 21 enabled us to derive the expression of
instantaneous modulus:

Eins(ε, ξ = 0) = kins
d

dε
J(ε) (22)

4 Experimental methods and results

4.1 Cyclic tensile tests

During these tests, the strain rate was maintained constant. At the load reversal of the cycles, the sign
of the rate changed but its absolute value remained the same. The stress-strain loops were limited on
the right by a given value of strain, and on the left by a given positive value of stress close to zero,
so as to keep the tensile load and avoid any compression. Figure 9 gives a result of cyclic tensile test
oabcdefg, which includes at its end a relaxation period gh. This result shows the particular bean
shape of the stress-strain cycles often observed with woven materials.

4.2 Monotonous tensile tests at different strain rates

Monotonous tensile tests at constant strain rates were performed with straps of groups A and B. We
tested the straps with strain rates ranging from 10−5 s−1 to 0, 3 s−1. Some tests were ended by a stress
relaxation period at a constant strain. Figure 10 presents the stress-strain curves of monotonous tests
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Figure 9: Result of cyclic tensile test C35 (
�
ε=

10−5 s−1).
Figure 10: Results of monotonous tensile tests; the
strain rates are from 10−5 s−1 to 3.10−1 s−1, the
samples are from group A.

on straps from group A. These curves are composed of three zones; in the first zone the stress is less than
50MPa, the second zone is between about 50 and 100MPa and the third zone presents stresses above
100MPa. The transition between the first and the second zone is sharp and the transition between the
second and third zone is very gradual.

Each stress-strain curve of a monotonous tensile test at a strain rate, like those in figure 10, is
defined by at least 500 measurement points. This great number of points enabled us to present these
experimental results in a stress versus strain rate graph at different strains. (fig. 11). For a given strain
ε, the effect of strain rate on the stress is linear in a σ− log

�
ε diagram. This means that the viscous part

of the behaviour of these polyamide straps is not linear; in the linear viscoelastic case, such curves are
of an exponential type. Moreover, the strain rate sensitivity slope is not constant and depends on the
strain value; this was observed in the case of the two groups of the straps. In other words, the viscosity
parameter of this material is nonlinear and depends on current strain and strain rate.

We carried out linear regressions at different strains on σ − log
�
ε data; the dash-dotted lines on

figure 11 are the regression lines. The solid lines are the same lines moved up and down on a distance
equal to the regression standard deviation. At a given strain ε, the parameters of the regression line
are its slope b(ε) and its ordinate intercept point a(ε), as follows:

σ(ε,
�
ε, ξ = 0) = b(ε). log(

�
ε) + a(ε) (23)

The evolutions of parameters a(ε) and b(ε) versus the strain are given in figures 12 and 13 respectively.
Firstly, we noted that the behaviour of the two groups of straps can be distinguished in these figures.
Indeed, the difference in behaviour is appreciable: it is higher than the dispersion amplitudes. In
figure 13, at high strains, an increase in measures dispersion for the straps in group B is observed.
This is due basically to the low number of measure points in this range of curve. Relation 23 and
the evolutions of the parameters a(ε) and b(ε), given in figures 12 and 13, enabled us to get the whole
characteristic features of the behaviour in monotonous tensile at different strain rates, for the two
groups straps A and B. Mulliken and Boyce (2006) carried out uniaxial tension and compression tests
on polycarbonate and PMMA amorphous polymers and obtained a similar stress evolution with respect
to strain rate, close to a linear function of strain rate logarithm. Similarly, Bergström and Boyce (1998)
presented an evolution of the stress, that is proportional to the logarithm of the applied strain rate and
they remarked that the proportionality constant increases with strain, like the parameters a(ε) and b(ε)
(fig. 12, 13).
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Figure 11: Stress versus strain rate for the straps
from group A.

Figure 12: a(ε) parameter as result of the linear
regression, computed on the data of strap groups
A and B. Above and below each point a(ε) are
shown the values of standard deviation.

Figure 13: b(ε) parameter as result of the linear
regression, computed on the data of strap groups
A and B. Above and below each point b(ε) are
shown the values of standard deviation.

Figure 14: Results of two cyclic tensile tests with
relaxation periods (

�
ε= 10−3 s−1); A37 (bold line)

and A38 (thin line).
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Figure 15: Result of cyclic tensile test C36 with
relaxation periods (

�
ε= 10−4 s−1).

Figure 16: Stress versus time – test C36.

4.3 Cyclic tensile tests interrupted by relaxation periods

The strain rate of these tests was controlled and maintained constant during the loading and unloading
processes. The results of three tests are given in figures 14 and 15. Test A38 presents one loading-
unloading cycle (fig. 14), and three loading-unloading cycles were carried out during the test C36 (fig. 15).
Test A37 was controlled at the same strain rate as A38, but presents no cycle, it is a monotonous tensile
broken with relaxation periods. The same type of relaxation test is adopted by Lion (1997), Bergström
and Boyce (1998), Khan and Lopez-Pamies (2002), Miehe and Göktepe (2005) and Diani et al. (2006)
applied to rubbers.

During the relaxation stages, the stress may decrease or increase according to the location of the re-
laxation sequence in the stress-strain hysteresis loop. If the relaxation stage breaks a first or monotonous
loading, the stress always decreases regardless of relaxation location. During the relaxation stages of
test C36 (fig. 15), the stress decreases when the strain rate of the loading branch, which is broken due
to relaxation, is positive, similar to during the first monotonous loading. But when the strain rate is
negative, the stress increases during the relaxation stages, like during the ones of Bergström and Boyce
(1998). Moreover, the stress relaxation amplitude seems to be lowest near and after a loading reversal
point. The stress relaxation amplitude increases with the strain range between the last reversal point
and the relaxation stage. Test A38 (fig. 14) shows that the stress relaxation amplitude could be null,
if the relaxation stage breaks the loading branch at a special point. Indeed, the sign of variation of
stress at a relaxation stage changes according to the location after the reversal point. Therefore, we
may assume that a neutral point exists and corresponds to a relaxation stage, which is characterized by
a stress amplitude vanishing to zero. This phenomenon is brought to the fore by relaxations hi and op
in figure 14. Hence, the neutral points are located on the unloading branch between relaxations hi and
jk, and on the reloading branch between relaxations op and qr.

During a reloading just after a relaxation period, the slope in the stress-strain graph is one of the
highest. This slope increases with the value of deformation which characterizes the relaxation position
(see for example branches bc and fg in figure 14). At a given relaxation strain, this slope seems to be
constant whatever the mechanical history before: first loading, unloading or reloading (fig. 15).

Otherwise, the transient state just after a relaxation period presents a particular shape, like an
overshoot above the steady state stress; firstly the stress rises linearly with the strain and soon beyond
the steady state stress and then decreases in a second step and reaches this steady state stress.

Finally, figure 16 gives the time evolution of the stress during test C36. With this figure it is
possible to observe what type of time evolution the stress has during the relaxation stages.
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Figure 17: Result of cyclic tensile test A36 with
creep periods (

�
σ= 32, 9MPa/s).

ε

Figure 18: Strain versus time – test A36.

Figure 19: Result of cyclic tensile test A14 with
creep periods (

�
σ= 6, 6MPa/s).

Figure 20: Comparison of a relaxation stress evolu-
tion of test C36 to the linear viscoelastic Maxwell
model prediction and to a relaxation behaviour ac-
cording to relation 24.
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4.4 Cyclic tensile tests interrupted by creep periods

The stress rate of these tests was controlled and maintained constant. The loading, reloading and
unloading processes were broken by some creep periods, during which the stress is constant. Two typical
results are given in figures 17 and 19. One and two cycles were carried out during tests A36 and A14
respectively (fig. 17, 19). The evolution of strain during the creep stages is similar to the evolution of
the stress during the relaxation stages; the sign of the strain variation during the creep periods depends
on the location of the creep sequence stage in the hysteresis loop. Test A36 confirms the existence of
a neutral point, on the stress-strain curve, corresponding to creep strain amplitude vanishing to zero;
the material shows a no viscous behaviour at the neutral point (without creep). Indeed, figure 17 shows
a change in the strain evolution direction during creeps fg and hi, and also during creeps mn and op.

In the same way as after the relaxation sequences, a reloading just after a creep period presents a
special transient state with an overshoot, which is less pronounced than in the case of relaxation (see
for example paths bc and pq in figure 17).

Figure 18 gives the time evolution of the strain during test A36. This figure allows us to observe
the shape of the time evolution of strain during creep stages for strap material.

4.5 Relaxation and creep behaviour

Figure 20 gives a part of the time evolution of the stress during test C36. The relaxation stage
extracted from the curve is seen in figure 16 and illustrated by a dashed circle. This relaxation stress
evolution presents the typical shape of most relaxations whatever their location in the loading branch
and the strain rate just before they occurred (Miehe and Göktepe, 2005; Drozdov and Christiansen,
2006; Khan et al., 2006).

The stress evolution, during a relaxation stage predicted by the classic linear viscoelastic Maxwell
model, is also presented in figure 20; the Maxwell stress evolution is of an exponential type. The two
parameters of the Maxwell model were calculated in order to take into account the whole variation of
stress during the relaxation and the stress rate at the beginning of this relaxation period. The figure
underscores a fundamental difference of stress curve shapes between the linear viscoelastic Maxwell
model and test C36. The Maxwell stress evolution reaches its limit in a duration equal to three times
its characteristic time θ. Whereas the C36 stress evolution decreases more and more slowly and does
not show any threshold or asymptotic limit. This experimental stress evolution in a relaxation stage
shows a typical shape that could be defined by a theoretical equation as follows:

σ(t) = − A . log∆t + B , (24)

where A = 11, 18MPa/decade, B = 191, 2MPa. Figure 20 allows us to compare the experimental
results with the basic relaxation model defined by relation 24; there is a good accordance between them.

The relaxation stress evolutions at the end of nine monotonous tensile tests on groups A and B
(fig. 10), were studied. The strains at these relaxation stages are around 16%; the mean strain value
is ε = (15.8 ± 0.1)%. The strain rates before these relaxations are from 10−5s−1 to 10−1s−1, and the
duration of the relaxations are from 300s to 2h. The mean value of the measurement of parameter A of
relation 24, which defines the shape of the relaxation stress evolution, is:

A = 9, 0 ± 1, 5 MPa/decade (95% c.i., n = 9) . (25)

On these nine relaxation periods, the characteristic time θ was also measured. We observed that it is
strongly dependent on the strain rate just before the relaxation stage. Assuming a linear function, we
measured a slope in the log(θ)− log(

�
ε) diagram:

d log(θ)

d log(
�
ε)

= − 0, 743± 0, 025 (95% c.i., n = 9) , (26)

Figure 18 gives the time evolution of creep strain during test A36. This figure suggests qualitatively
that the type of time evolution of creep strain is similar to that of relaxation stress defined by relation 24.
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5 Identification of visco-elasto-hysteresis model parameters

5.1 Steady state stress during monotonous tensile

This section deals with the material properties observed during the steady state in monotonous tensile. In
order to leave out the transient state of a(ε) and b(ε) evolutions (fig. 12 and 13), we used the functions
∞
a (ε) and

∞
b (ε), which allow to define the steady state stress in monotonous tensile

∞
σ (ε,

�
ε, ξ = 0)

according to relations 8, 9 and 19. Figures 21 and 22 show the evolutions of
∞
a (ε) and

∞
b (ε) for the two

groups of straps A and B. The identified values of parameters σ1, ε1, b0 and εb, for the two groups of
straps are given in table 2.

The significance of constant parameter
�
ε0 for the two groups of the straps is shown in figure 23,

where
�
ε0 (A) and

�
ε0 (B) are denoted respectively. Figure 24 presents the stress in monotonous tensile

σ(ε,
�
ε, ξ = 0) and the related steady state stress

∞
σ (ε,

�
ε, ξ = 0) in the case of group A straps. In

this figure, the monotonous tensile stress is not the measured raw data; this stress was calculated from
relation 23 and the strain evolutions of coefficients a(ε) and b(ε) given in figures 12 and 13. The related
steady state stress was calculated with relations 8, 9 and 19 and material parameters in table 2.

5.2 Time-independent stress in monotonous tensile

The time-independent stress in monotonous tensile σti(ε, ξ = 0) was calculated from relation 16 and
material parameters in table 2. Figure 25 gives the obtained function σti(ε, ξ = 0) versus the strain,
for group B straps. In the case of group A straps, figure 26 proposes a comparison between stress
σti(ε, ξ = 0) as a result of relation 16 and the stress at the ends of relaxation and creep stages in
monotonous loading. In this figure, there are two tests controlled with constant stress rates, A14

(
�
σ= 6, 6MPa/s) and A36 (

�
σ= 32, 9MPa/s) broken by creep periods, and two other tests controlled

with constant strain rates, A37 and A38 (
�
ε= 10−3 s−1) broken by relaxation periods. As a conclusion

of this comparison, the time-independent stresses measured by the two different experimental methods
are in accordance.

5.3 Modulus of the instantaneous behaviour

The first situation that the instantaneous behaviour appears in is the initial elasticity at the beginning
of the first loading from the initial state of the material. Measurements of the initial elastic modulus
were carried out for thirty-two tests on straps of groups A, B and C. No appreciable difference of
values of initial modulus between these three types of straps was observed; therefore we grouped them
as different measurements on a unique modulus. The result of these measurements of the initial elastic
modulus, denoted E0, is:

E0 = 1, 3± 0, 1 GPa (95% c.i., n = 32) . (27)

These measurements present a relatively significant dispersion. This is mainly due to experimental
difficulties because a woven material does not have any rigidity in compression. The beginning of the
tension is not clear and then the initial elastic behaviour is difficult to obtain. We noted that modulus
E0 does not seem to depend on the strain (or stress) rate of the tests.

At the beginning of the reloading just after relaxation and creep periods, the moduli of the in-
stantaneous behaviour were measured. No difference in these measurements between the three types of
straps was noticeable. The strain evolution of the instantaneous behaviour modulus along a monotonous
loading Eins(ε, ξ = 0) is shown in figure 27. We noted that the measurements after relaxations and
creeps and those of the initial modulus are in agreement and provide us with a characteristic evolution
of Eins(ε, ξ = 0), which depends on the strain. In order to describe this evolution, we used relation 22,
where kins is the only characteristic parameter. Obtained parameters kins for the two groups of straps
A and B are given in table 2.
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Figure 21: Strain evolution of coefficient a(ε) and
function

∞
a (ε) computed with material parameters

of table 2.

Figure 22: Strain evolution of coefficient b(ε) and
function

∞
b (ε) computed with material parameters

of table 2.

0MPa

40MPa

A

B

Figure 23: Steady state stress at a strain equal to
zero and in monotonous tensile. Signification of
parameter

�
ε0 of relation 8.

ε

σ

Figure 24: Stress in monotonous tensile σ(ε,
�
ε, ξ =

0) (bold line) and related steady state stress
∞
σ (ε,

�
ε

, ξ = 0) (thin line) in the case of the group A straps.

ε

Figure 25: The steady state stress
∞
σ (ε,

�
ε, ξ =

0) (thin line) and the time-independent stress
σti(ε, ξ = 0) (bold line) for the group B straps.

A38A37

A14 A36

Figure 26: Comparison of the time-independent
stress σti(ε, ξ = 0) computed by relation 16 and
material parameters of table 2 (bold line) and the
stress at the ends of relaxation and creep stages
(thin line and bold points).
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modulus after 
creep

Figure 27: Instantaneous modulus in monotonous
loading for the three groups of straps compared to
curves A and B computed by relation 22 and ma-
terial parameters of table 2.

modulus after 
relaxation 

initial elastic modulus  

modulus after 
creep

A

B

high frequency modulus

ε

Figure 28: Instantaneous modulus in monotonous
and cyclic loading for the three groups of straps
compared to curves A and B computed by rela-
tion 22 and material parameters of table 2.

Figure 29: Estimated time-independent behaviour
(dashed line) based on the state at the ends of the
relaxation periods of test A38 (fig. 14).

Figure 30: Estimated time-independent behaviour
(dashed line) based on the state at the ends of the
creep periods of test A36 (fig. 17).

The evolutions of Eins(ε, ξ = 0) described by relation 22 are also plotted in figure 27 and pointed
out by the letters A and B, for the groups A and B of straps respectively. In figure 28, all other available
measurements of Eins(ε, ξ), during monotonous and cyclic loading for the three types of the straps, were
added to the data in figure 27. In figure 28, a measurement of a high frequency modulus was carried out
during a sinusoidal loading at 8Hz frequency and ∆ε = ±0.6% strain amplitude, with a group B strap.
This figure shows that parameter ξ results in an increase in the dispersion of this measure. On this
group of measures, it is not possible to distinguish the instantaneous behaviour in monotonous loading
from the one in cyclic loading.

5.4 Pure hysteresis stress component

The stress component of pure hysteresis σh(ε, ξ) is described by two parameters Eh and
∞
σh (cf. § 3.1).

Modulus Eh was obtained from relation 17 and the values of parameters σ1 and ε1, already identified
(tab. 2).

Parameter
∞
σh was obtained from the time-independent stress σti(ε, ξ) in cyclic loading, which could
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Figure 31: Time-independent stress σti(ε, ξ) mea-
sured by means of relaxation test A38 and creep
test A36.

*

Figure 32: Method of measurement of the yield
stress

∞
σh of the pure hysteresis component.

be established by cyclic tensile tests broken by relaxation and creep periods. The time-independent
behaviour may appear during these tests, if the duration of the relaxation or creep stages are long
enough and if the number of relaxation and creep sequences is high enough along the loading branches.
We performed the relaxation and creep periods with a mean duration of about one hour, and with a
number of them ranging from two to six per hysteresis loop (for instance EF loop in figure 15). This
choice was a compromise solution, between a realistic test duration, a most complete relaxation or creep
of viscous effects and a sufficient number of measurement points to characterize the time-independent
behaviour. Figures 29 and 30 give two typical results of σti(ε, ξ) obtained from test A38 (fig. 14) and
test A36 (fig. 17) respectively. In the first figure, the stress σti(ε, ξ) is given by the σ-ε points at the
ends of the relaxation periods. Such curves were performed by Lion (1997) applied to rubbers. In the
second, the stress σti(ε, ξ) is given by the points at the ends of the creep periods. Figure 31 presents
the σti(ε, ξ) established with these two tests. This figure allows us to compare the shape of the two
unloading-reloading loops. Although these two experimental curves lack measure points, the behaviour
during these two tests seems to be similar. As a general rule, we noted a good accordance between the
σti(ε, ξ) measured with relaxation and creep tests, whatever the strain or stress rate of the loading. This
result supports our assumption of stress superimposition (cf. relation 1).

The method of measurement of parameter
∞
σh is based on the ordinate width of the hysteresis loops

in σti(ε, ξ) versus ε diagram. This is illustrated in figure 32. Considering the lack of available measure
points, we estimated the ordinate width of the loop AB by that of the parallelogram AA′BB′. This
resulted in the following measure of

∞
σh:

∞
σh = Eh (εA − εB) − ∆σw. (28)

with εA − εB the strain amplitude of the loop AB and ∆σw the estimated stress width at the middle
of the loop. Relation 28 can also apply to the time-independent component σti(ε, ξ) taking into account
its definition given by relation 13. Consequently, relation 28 applied to the hysteresis loops of σti(ε, ξ)
provided us with a measure of

∞
σh. Among the obtained measurement of

∞
σh, we could not distinguish

one type of strap from another. The mean value for the three types of straps, is reported in table 2.

5.5 Viscoelastic stress component

The steady state viscous stress was determined by relations 7, 8 and material parameters in table 2.
The resulting steady state viscous stress

∞
σ v (ε,

�
ε) is presented as a function of the strain in figure 33
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Figure 33: Steady state viscous stress
∞
σ v (ε,

�
ε)

(thin line) and time-independent stress σti(ε, ξ = 0)
(bold line) for the group A straps.
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Figure 34: Steady state viscous stress
∞
σ v (ε,

�
ε) as

a function of the strain rate at different strains for
the group B straps.

for the group A straps. The resulting steady state viscous stress is also presented as a function of the
strain rate, for the group B straps in figure 34.

The steady state viscous stress
∞
σ v (ε,

�
ε) does not present any saturation of the stress at the very

high strain rates, as it did in the case of metallic materials (Bles et al., 2000b). The range of strain rate
studied here is too low to conclude on this stress saturation at very high speed.

The elastic modulus Ev(ε) of viscoelastic stress component was determined by relations 7, 8 and
material parameters in table 2. The resulting elastic modulus Ev(ε) is given in figure 35 for the two
groups of straps A and B.

According to equations 7 and 22, the ratio of Ev(ε) to Eins(ε, ξ = 0) depends only on parameter
kins. This ratio is equal to 0.69 and 0.74 for the groups A and B of straps, respectively (tab. 2).
Consequently, the greater part of the value of the instantaneous modulus, defined by relation 20, is
due to elastic modulus Ev(ε) of the viscous stress component. The sum of two other moduli represents
a share of about 30% of Eins(ε, ξ = 0).

5.6 Reversible stress component

In the case of monotonous loading, relations 4 and 13 enabled us to obtain the reversible stress component
σr(ε):

σr(ε) = σti(ε, ξ = 0) − g(ε). (29)

Figure 36 illustrates this relation for the group B of straps. From relations 12 and 16 we can also
determine modulus Er(ε):

Er(ε) =
dσti
dε

(ε, ξ = 0) − dg

dε
(ε). (30)

Figure 37 illustrates this relation in the case of the group B of straps.
Because of the definition of pure hysteresis component σh(ε, ξ) given in section 3.1, modulus dσh

dε (ε, ξ)
ranges from 0 to Eh whatever the value of ξ. This property is illustrated in the case of monotonous
loading in figure 37. Table 2 shows that the value of modulus Eh is low by comparison with the value
of instantaneous modulus Eins(ε, ξ) (fig. 28). Moreover, relation 20 points to the fact that the effect of
parameter ξ on the instantaneous modulus is due to the term dσh

dε (ε, ξ). This explains the experimental
difficulty to distinguish the influence of ξ in measurements of the instantaneous modulus during cyclic
loadings, as was mentioned in section 5.3 (fig. 27 and 28).

18



A

B

B

ε

Figure 35: Elastic modulus Ev(ε) of the viscoelastic component and instantaneous modulus in
monotonous loading Eins(ε, ξ = 0), for the two groups of straps A and B.

r

ε

Figure 36: Time-independent stress σti(ε, ξ = 0)
in monotonous loading and its splitting up into re-
versible stress σr(ε) and pure hysteresis stress g(ε)
in monotonous loading, for the group B of straps.

r

Figure 37: The splitting up of dσti
dε (ε, ξ = 0) into

the reversible and the pure hysteresis components,
for the group B of straps.
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Table 2: Identification of visco-elasto-hysteresis model parameters for the two groups of straps A and
B.

Parameters σ1 ε1 b0 εb kins Eh
∞
σh

Units MPa % MPa/decade % – MPa MPa

Group A 34,21 8,75 4,60 20 3.89 391 18Group B 36,51 8,20 5,39 18 3.22 445

σ

εO
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S.S.

D.E.B.I.E
.B

.

B

I

R1

R4
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C3
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A2
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Figure 38: Linear viscoelastic behaviour during a
loading and unloading at constant strain rate bro-
ken by relaxation (A1R1, A4R4) and creep (A2C2,
A3C3) periods.

Figure 39: Result of test A40b controlled at con-
stant stress rate (

�
σ= 1, 3MPa/s) and broken by a

lot of creep periods of very short duration (15s).

6 Analysis of change in relaxation and creep orientations during cyclic
loadings

The present section attempts to give an explanation for the phenomenon of direction change of relax-
ations and creeps in stress-strain hysteresis loops. This phenomenon is intricate, for this reason we will
deal first with the simplest case of linear viscoelastic behaviour.

In theory, after a relaxation or creep stage of an infinite duration, the behaviour of a linear viscoelastic
model reaches its delayed elastic behaviour (D.E.B.). The stress-strain point of this type of model reaches
a point on behaviour D.E.B., whatever its location at the beginning of the relaxation or creep stage.
We can consider a linear viscoelastic model in steady state (S.S.) at constant strain rate located at a
given point Ai in the stress-strain diagram (fig. 38). During a relaxation and a creep stage starting
from Ai, the stress-strain point moves to the points Ri and Ci respectively, on the dash-dotted line
representing the different states of the delayed behaviour. The starting point Ai, could also be on the
line representing the instantaneous elastic behaviour (I.E.B.) instead of the steady state. This case is
the classic stress relaxation loading or creep loading with an Heaviside step loading of strain or stress,
respectively (Persoz, 1960).

The direction of the relaxation or creep evolutions is given by the location of the starting point
with respect to line D.E.B.. Because, during a relaxation or a creep stage, the stress-strain point of the
linear viscoelastic model moves from the starting point directly to line D.E.B..

For instance, relaxation stages A1R1 and A4R4 show opposite stress evolutions (
�
σ6 0 and

�
σ> 0,

respectively) because starting point A1 of the first is above line D.E.B., while starting point A4 of the
latter is below this line. Similarly, creep stages A2C2 and A3C3 have opposite strain evolutions (

�
ε> 0

and
�
ε6 0, respectively).
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Point I in figure 38, called the neutral point, at the intersection of the behaviour curve and line
D.E.B. is particular; a relaxation or creep stage beginning at point I does not present any evolution of
stress or strain. Moreover, the relaxation and creep stages that start at points between reversal point B
and neutral point I have an evolution like those A1R1 and A2C2. Beyond neutral point I, the direction
of the relaxation and creep evolutions changes, as in the case of A3C3 and A4R4.

The behaviour of the polyamide straps presented similar properties, albeit a little more complex.
The delayed elastic behaviour of the linear viscoelastic models is in the case of the polyamide straps the
time-independent behaviour: σti(ε, ξ) (fig. 6). We wondered if a neutral point exists for the behaviour
of these straps. In this way, we carried out some cyclic tensile tests broken by a lot of creep periods of
a very short duration (15s). Amin et al. (2006) performed akin tests called multi-step relaxation tests.
Figure 39 gives a typical result; neutral point I is shown by a solid circle in unloading branch ef .

This neutral point is at the intersection of the total stress curve and the curve of time-independent
stress component σti(ε, ξ) (points I1 and I2, fig. 6). While the delayed elastic behaviour of the linear
viscoelastic model is linear and elastic, the delayed behaviour of the visco-elasto-hysteresis model is the
time-independent behaviour that is neither linear nor elastic and presents a nonlinear character with
hysteresis loops. Therefore, for the polyamide straps, the occurrence of the neutral point could be more
intricate than in the linear viscoelastic case, but this point does exist, as we have seen in figure 39.

7 Conclusion

Sophisticated tensile tests were performed on polyamide fibre (PA66) woven strap samples, using a mea-
surement of local deformation of woven material. Various monotonous and cyclic loadings, interrupted
or not by relaxation and creep sequences, were carried out on a range of strain rates from 10−5 s−1 to
0.3 s−1.

An analysis of experimental results was made through a visco-elasto-hysteresis model, based on the
superimposition of three stress components of nonlinear viscoelastic, nonlinear elastic and elastoplastic
types. Each of these constitutive stresses is related to a specific physical phenomenon that occurs during
mechanical loading at the mesoscopic scale at the level of woven cell and/or at the microscopic scale at
the level of fibre material. The complex visco-elasto-hysteresis behaviour of straps is characterized by its
three essential behaviour properties: the steady state viscous stress as a function of strain and strain rate,
the time-independent irreversible behaviour and the instantaneous modulus increasing with the strain.
Based on these properties it is possible to characterize the three stress components of material visco-
elasto-hysteresis behaviour: the pure hysteresis, the nonlinear viscoelastic and the nonlinear reversible
stress components.

A coherent analysis of experimental results was proposed to understand and predict the change in
relaxation and creep orientations during complex loading histories.
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