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Several singular limits are investigated in the context of a 2×2 system arising for instance

in the modeling of chromatographic processes. In particular, we focus on the case where

the relaxation term and a L
2 projection operator are concentrated on a discrete lattice

by means of Dirac measures. This formulation allows to study more easily some time-

splitting numerical schemes.
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1. Introduction

Relaxation is a phenomenon which appears in a wide variety of physical situa-

tions. In gas dynamics, it occurs when the gas isn’t in thermodynamic equilibrium.

In elasticity, it is usually referred to as a fading memory mechanism. Hyperbolic con-

servation laws with relaxation are also served as discrete kinetic models. Relaxation

approximations to scalar conservation laws can be considered for purely numerical

purposes too; general references are e.g. 9,11,13,14,15,10,17,16,22,23,26,32.

In 23, T.P. Liu studied the following 2×2 simple model which captures the basic

features of this physical process:

{

∂tu+ ∂xf(u, v) = 0,

∂tv + ∂xg(u, v) =
1

ε
(V (u)− v),

x ∈ R, t > 0 with ∂vf(u, v) < 0. (1.1)

The numerical issue in such a system is to handle properly the relaxing process

in its infinite strength limit ε → 0 on coarse computational grids, see 27,12. This

requirement is twofold as it includes some numerical stability properties and a con-

sistency with the expected asymptotic behavior in the context of weak solutions. In

order to derive numerical schemes meeting these criteria, attention has been driven

onto several kinds of efficient treatments for the relaxation term: see 1,8,9,15,25. In-

deed, robust and efficient approximations can be derived based on “time-splitting”

algorithms where one alternates at every time-step the resolution of the purely

convective part and the handling of the reaction process by any O.D.E. solver.
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It can be sometimes shown rigorously that these numerical schemes converge

using e.g. the BV compactness framework together with appropriate entropy con-

sistency properties. Our main goal here is to complete such a study using slightly

different arguments. Roughly speaking, we are about to consider both the projec-

tion and the reaction term as being “localized” on a lattice; formally, this amounts

to going from (1.1) to















∂tu+ ∂xf(u, v) =
∑

n∈N∗

(Ph(u)− u)δ(t− n∆t),

∂tv + ∂xg(u, v) =
∑

n∈N∗

(∆t

ε
(V (u)− v) + (Ph(v)− v)

)

δ(t− n∆t),
(1.2)

where δ stands for the Dirac measure in t = 0, ∆t > 0 is a given time-step and

Ph denotes the standard L2 projection operator on piecewise constant functions

related to a mesh-size h > 0. Indeed, this new way to handle singular source terms

in hyperbolic equations can be found in 2,7,8,33 in the context of kinetic equations

or semilinear relaxation to the one-dimensional conservation law. Such an approach

based on “measure source terms” allows in particular to recover a fix proposed in
10 to suppress spurious behavior in the stiff regime. Indeed, the idea proposed in
10 for reactive chemical flows consists in switching the order in which the reaction

and projection steps appear inside the Dirac masses, as we shall see in §3.2, §3.3.

In this paper, we plan to work out only the simpler case of a quasilinear 2 × 2

system with relaxation previously considered in 27,32,19, see (2.3). We shall mainly

rely on an extensive use of some nonconservative products, 5,21,29, in order to give

a rigorous definition of the right-hand side, see Propositions 1 and 2. In return,

our formulation entails direct stability and convergence proofs exploiting mainly

estimates easily proved at the level of the original differential problem; this allows

to bypass some lengthy computations.

Hence, this work is organized as follows: in §2, we establish some compactness

properties and study the nonconservative singular system obtained as the relaxation

and projection terms are concentrated inside Dirac masses, see (2.23). We introduce

a notion of entropy solution well suited for this kind of problems, see Definition 2.

Then, in §3, we present some applications to two types of time-splitting numerical

schemes for which we prove convergence towards the “equilibrium equation” as the

relaxation parameter diverges, see Theorems 4 and 5.

2. Study of a singular relaxing system

2.1. A quasilinear 2× 2 model

We are interested in the Cauchy problem for the following balance laws:







∂t(u+ v) + ∂xf(u) = 0,
∂tv = µ (A(u)− v) ,

u(., 0) = u0, v(., 0) = v0.
x ∈ R, t > 0 (2.3)
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This system arises e.g. in chromatography, 11,26,30. In this context, u, v ∈ [0, 1]

stand for some species densities, one contained in a fluid flowing through a fixed bed

and the other being absorbed by the material on the bed. This adsorption process

is modeled by the right-hand side µR(u, v) = µ(A(u) − v), µ ≫ 1 where 1/µ is the

relaxation time. This model has been extensively studied within the theory of BV

functions, 6,34, by the authors of 31,32 (see also 24,19,26,27) under the following

hypotheses:
{

f(0) = 0, f ′(u) ≥ 0;
A(0) = 0, A(1) = 1, A′(u) ≥ 0.

(2.4)

We recall here some of their main results.

Definition 1 We say that the pair (u, v) is an entropy solution of (2.3) if:

(i) u(., t) and v(., t) lie in L1 ∩ BV (R) for any t ∈ R
+ and satisfy (2.3) in the

sense of distributions;

(ii) there exists M ∈ R
+ such that for any t ≥ 0, s ≥ 0:

‖u(., t)− u(., s)‖L1(R) + ‖v(., t)− v(., s)‖L1(R) ≤M |t− s|;

(iii) there holds for any k, l ∈ R and any nonnegative test-function in D(R×R
+
∗ ):

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣

≤ µR(u, v)
[

sgn(v − l)− sgn(u− k)
]

.
(2.5)

The relevance of this notion comes from the forthcoming theorems whose de-

tailed proofs are to be found in 32. We stress however that a more general definition

of entropy solution to (2.3) has been proposed within the class of L∞ functions, 26.

Theorem 1 Let u0, v0 ∈ L1 ∩ BV (R); under the hypotheses (2.4), there exists a

unique entropy solution to (2.3) which satisfies furthermore for any t ∈ R
+:

(i) µ‖R(u, v)(., t)‖L1(R) ≤M for some M ∈ R
+;

(ii) Given another set of initial data ũ0, ṽ0 in L1 ∩BV (R), there holds:

‖u(., t)− ũ(., t)‖L1(R)+‖v(., t)− ṽ(., t)‖L1(R) ≤ ‖u0− ũ0‖L1(R)+‖v0− ṽ0‖L1(R).

The theory of Kružkov, 18, ensures that there exists a unique entropy solution

w to the following “equilibrium” equation since A′ ≥ 0:
{

∂t(w +A(w)) + ∂xf(w) = 0, x ∈ R, t > 0
w(., 0) = w0 ∈ L1 ∩BV (R).

(2.6)

Theorem 2 Under the assumptions of Theorem 1 and if w0 = u0, there exists a

constant M ′ ∈ R
+ such that:

‖u(., t)− w(., t)‖L1(R) ≤
M ′

µ
1
3

, t ∈ R
+.
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2.2. Introduction of a “localized” singular system

In all the sequel, ∆t and h will stand for fixed positive parameters related to

some cartesian computational discretization.

• We first introduce a projector onto piecewise constant functions; for any j ∈ Z,

we denote Cj
def
= [(j − 1

2 )h, (j +
1
2 )h[. Then, we define:

Ph : L1 ∩BV (R) → L1 ∩BV (R)

ϕ 7→

(

1

h

∫

Cj

ϕ(x).dx

)

j∈Z

(2.7)

• Let In
def
= [n∆t, (n+ 1)∆t[; we define two functions which are Lipschitz con-

tinuous with respect to time for ǫ > 0 small enough:

R
+ ∋ t 7→ aǫ(t) =







(n− 1)∆t, t ∈ [(n− 1)∆t, n∆t− ǫ[

n∆t+

(

t− n∆t

ǫ

)

∆t, t ∈ [n∆t− ǫ, n∆t[

(2.8)

and:

R
+ ∋ t 7→ bǫ(t) =







n∆t+

(

t− n∆t

ǫ

)

∆t, t ∈ [n∆t, n∆t+ ǫ[

(n+ 1)∆t, t ∈ [n∆t+ ǫ, (n+ 1)∆t[
(2.9)

We can therefore consider the following system for any ǫ > 0, µ, ν in R
+ within

the theory proposed in 32:







∂tu
ǫ + ∂xf(u

ǫ) = ν(Ph(uǫ)− uǫ)∂ta
ǫ − µR(uǫ, vǫ)∂tb

ǫ,
∂tv

ǫ = ν(Ph(vǫ)− vǫ)∂ta
ǫ + µR(uǫ, vǫ)∂tb

ǫ,
uǫ(., 0) = u0, v

ǫ(., 0) = v0.
x ∈ R, t > 0 (2.10)

In the limit ǫ → 0, both aǫ and bǫ converge almost everywhere towards the

piecewise constant function t 7→ ∆t
∑

n∈N∗

Y (t − n∆t), where Y stands for the

classical Heaviside distribution.

We give at once a relaxation estimate for (2.10) which is uniform in ǫ.

Lemma 1 Under the assumptions of Theorem 1, the entropy solution of (2.10)

satisfies the relaxation estimate µ‖R(uǫ, vǫ)∂tbǫ‖Mloc(R×R
+
∗
) ≤ C̄ for some C̄ ∈ R

+.

Proof. We follow the classical ideas from 17,26,32 introducing a special

entropy/entropy-flux pair for (2.10):

η(uǫ, vǫ) =
(uǫ)2

2
+H(vǫ), H(vǫ) =

∫ vǫ

0

A−1(ξ).dξ, q(uǫ) =

∫ uǫ

ξ.f ′(ξ).dξ.
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We observe that under the hypotheses (2.4), the function H is strictly convex.

Therefore, for any positive test-function, the following inequality holds:

∂tη(u
ǫ, vǫ) + ∂xq(u

ǫ) ≤ −µ
(

A(uǫ)− vǫ
)(

uǫ −A−1(vǫ)
)

∂tb
ǫ

+ν
(

(Ph(uǫ)− uǫ)uǫ + (Ph(vǫ)− vǫ)A−1(vǫ)
)

∂ta
ǫ.

(2.11)

We integrate (2.11) on R× [0, T ] for any T ∈ R
+. Using Jensen’s inequality, we can

get rid of the terms involving the projection operator since ∂ta
ǫ ≥ 0:

∫

R×[0,T ]

(Ph(uǫ)− uǫ)uǫ∂ta
ǫ.dx.dt = h

∫

[0,T ]

(

Ph(uǫ)2 − Ph
(

(uǫ)2
)

)

∂ta
ǫ.dt ≤ 0.

We observe now that since A ∈ C1(0, 1) is increasing according to (2.4), the deriva-

tive of its inverse mapping satisfies the following bound:

‖(A−1)′‖C0 ≥
1

‖A′‖C0

def
= C.

And we have for any w, v in [0, 1]:

(

A−1(w) −A−1(v)
)

(w − v) ≥ C(w − v)2.

Hence the integral involving Ph(vǫ) is treated the following way:

∫

R×[0,T ]

(

Ph(vǫ)− vǫ
)

A−1(vǫ)∂ta
ǫ.dx.dt =

−

∫

R×[0,T ]

(

Ph(vǫ)− vǫ
)(

A−1(Ph(vǫ))−A−1(vǫ)
)

∂ta
ǫ.dx.dt ≤

−C

∫

R×[0,T ]

(

Ph(vǫ)− vǫ
)2
∂ta

ǫ.dx.dt ≤ 0.

Finally, choosing w = A(u), we have for C > 0, the lower bound of (A−1)′:

(A(uǫ)− vǫ)(uǫ −A−1(vǫ)) ≥ C(A(uǫ)− vǫ)2.

Thus we get the expected relaxation estimate (see also 17):

Cµ

∫

R×[0,T ]

(

A(uǫ)− vǫ
)2
∂tb

ǫ.dx.dt ≤

∫

R

(

η(uǫ, vǫ)(x, 0) − η(uǫ, vǫ)
)

(x, T ).dx.

Since BV (R) ⊂ L∞(R), we are done. 2

Another important feature of (2.10) lies in the following compactness result

which will be of constant use in the sequel of the paper.

Lemma 2 Under the assumptions of Theorem 1, let (uǫ, vǫ) be a sequence of en-

tropy solutions to (2.10). Then (uǫ, vǫ) is relatively compact in L1
loc(R × R

+
∗ ) as

ǫ→ 0.

Proof. It follows the classical BV stability canvas and makes use of the

so-called “quasi-monotonicity” property of the relaxation term, 1,26,31.
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• L1(R) bound: we multiply (2.10) by (sgn(uǫ), sgn(vǫ))T and integrate on x ∈

R. The point to be checked is the behavior of the source terms, but we see

that:
∫

R

sgn(uǫ)(Ph(uǫ)− uǫ)(x, t).dx ≤
∑

j∈Z

∫

Cj

|uǫ(x, t)|.dx − ‖uǫ(., t)‖L1(R) ≤ 0.

Also, we notice that R(0, 0) = 0 and we can use the mean-value theorem.

Thanks to the sign assumption on A′ in (2.4), we get:

∫

R

(sgn(vǫ)− sgn(uǫ))(A′(ξ)uǫ − vǫ).dx ≤ 0.

Since ∂ta
ǫ and ∂tb

ǫ are nonnegative, we derive finally:

‖uǫ(., t)‖L1(R) + ‖vǫ(., t)‖L1(R) ≤ ‖u0‖L1(R) + ‖v0‖L1(R). (2.12)

• BV(R) bound: Relying on 18, we can differentiate the system (2.10) with

respect to x, we multiply by (sgn(∂xu
ǫ), sgn(∂xv

ǫ))T and integrate on x ∈ R.

Using exactly the same arguments, we derive:

TV (uǫ)(., t) + TV (vǫ)(., t) ≤ TV (u0) + TV (v0). (2.13)

• Let t0 ≥ 0 and t = t0 + ξ, ξ > 0; we compute







































∫

R

|uǫ(x, t)− uǫ(x, t0)|.dx ≤
∫

R

∫ t

t0
|∂xf(uǫ)|.dt.dx

+
∫

R

∫ t

t0
µ|R(uǫ, vǫ)|∂tbǫ.dt.dx

+
∫

R

∫ t

t0
ν|Ph(uǫ)− uǫ|∂taǫ.dt.dx,

∫

R

|vǫ(x, t)− vǫ(x, t0)|.dx ≤
∫

R

∫ t

t0
µ|R(uǫ, vǫ)|∂tbǫ.dt.dx

+
∫

R

∫ t

t0
ν|Ph(vǫ)− vǫ|∂taǫ.dt.dx,

in conjunction with the bounds:















µ

∫

R×[0,T ]

|R(uǫ, vǫ)|∂tb
ǫ.dx.dt ≤ O(1),

∫

R

(

|Ph(uǫ)− uǫ|+ |Ph(vǫ)− vǫ|
)

(x, t).dx ≤ h
(

TV (u0) + TV (v0)
)

.

And we derive:

sup
ξ 6=0

∫

R×[0,T ]

|uǫ(x, t+ ξ)− uǫ(x, t)|

ξ
+

|vǫ(x, t+ ξ)− vǫ(x, t)|

ξ
.dx.dt ≤

(T +∆t).
{

(νh+ Lip(f))(TV (u0) + TV (v0)) +O(1)
}

(2.14)



Measure source terms for a relaxing system 7

Therefore, we see that the sequence (uǫ, vǫ) lies in BVloc(R × R
+
∗ ) and it remains

to invoke Helly’s compactness principle to conclude the proof. 2

We notice that because of the Dirac masses in time arising at the right-hand

side of the equations, layers are likely to appear every time n∆t, n ∈ N∗ and

uǫ, vǫ 6∈ C0(R+;L1(R)), ǫ→ 0,

as in (for instance) 28 in the case of initial data being not “well-prepared”; or it

can be evidenced just by taking u0 ≡ 0, v0(x) = sin(πx/h) inside (2.23).

2.3. A meaning for the ambiguous products

The preceding bounds for uǫ imply some compactness for the terms lying in the

right-hand side in the weak-⋆ topology of measures on R× R
+
∗ . More precisely, we

plan to shed some light on the products emanating in (2.10) in the limit ǫ → 0.

First, we state a stabilization result.

Lemma 3 Under the assumptions of Theorem 1, the sequences of entropy solutions

(uζ , vζ) to the Cauchy problem with initial data (uζ0, v
ζ
0) ∈ L1 ∩BV (R) for:

∂tu
ζ + ζ.∂xf(u

ζ) = ν∆t(Ph(uζ)− uζ),
∂tv

ζ = ν∆t(Ph(vζ)− vζ),
or

∂tu
ζ + ζ.∂xf(u

ζ) = −µ∆tR(uζ , vζ),
∂tv

ζ = µ∆tR(uζ , vζ),

are relatively compact in L1
loc(R× R

+
∗ ) and belong to C0(R+;L1(R)) as ζ → 0.

Proof. It follows from the same arguments than the proof of Lemma 2. 2

Proposition 1 Under the hypotheses of Lemma 2, (uǫ, vǫ) → (u, v) in L1
loc(R×R

+
∗ )

as ǫ→ 0 up to a subsequence. Moreover, there holds:
(

Ph(uǫ)− uǫ

Ph(vǫ)− vǫ

)

∂ta
ǫ weak−⋆ M

⇀

∑

n∈N∗

∆t

(
∫ 1

0

(

Ph(ū)− ū
Ph(v̄)− v̄

)

(x, τ)dτ

)

δ(t− n∆t)
(2.15)

where ū, v̄ satisfy the following differential equations for τ ∈ [0, 1]:

∂τ

(

ū
v̄

)

= ν∆t

(

Ph(ū)− ū
Ph(v̄)− v̄

)

, (2.16)

together with the initial data, x ∈ R, t = n∆t for n ∈ N∗:

ū(x, τ = 0) = u(x, t− 0), v̄(x, τ = 0) = u(x, t− 0). (2.17)

Proof. We want to compute the value of the following expression for every

φ ∈ C0
c (R×R

+
∗ ), the space of continuous functions with compact support in R×R

+
∗ :

∫

R×R
+
∗

(Ph(uǫ)− uǫ)∂ta
ǫφ(x, t).dx.dt =

∑

n∈N∗

∫

R

∫ n∆t

n∆t−ǫ

(Ph(uǫ)− uǫ)
∆t

ǫ
φ(x, t).dx.dt.

(2.18)
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We pick a n ∈ N∗ and define τ = 1+ t−n∆t
ǫ . Thus, according to this “inner variable”,

the system (2.10) rewrites for τ ∈ [0, 1]:
{

∂τ ū
ǫ + ǫ∂xf(ū

ǫ) = ν∆t(Ph(ūǫ)− ūǫ),
∂τ v̄

ǫ = ν∆t(Ph(v̄ǫ)− v̄ǫ),

together with the initial data:

ūǫ(x, τ = 0) = uǫ(x, n∆t− ǫ), v̄ǫ(x, τ = 0) = vǫ(x, n∆t− ǫ).

We perform the change of variables t 7→ τ in (2.18) to get:

∑

n∈N∗

∫

R

∫ n∆t

n∆t−ǫ

(Ph(uǫ)− uǫ)
∆t

ǫ
φ(x, t).dx.dt =

∑

n∈N∗

∫

R

∫ 1

0

(Ph(ūǫ)− ūǫ)(x, τ)
∆t

ǫ
φ(x, n∆t+ ǫτ − ǫ).dx.ǫdτ.

Lemma 3 implies that ūǫ satisfies (2.15), (2.16) in the limit ǫ→ 0 and we are done.

2

Remark 1 Thanks to the linear form of the projection term, it is possible to define

directly the limit of (Ph(uǫ)− uǫ)∂ta
ǫ as ǫ→ 0 as a distribution of order zero (i.e.

a bounded measure) provided ∆t = O(h). Let φ ∈ D(R× R
+
∗ ), we can compute:

∑

n∈N∗

∫

R

(Ph(u)− u)φ(x, n∆t).dx =
∑

j,n∈Z×N∗

h
(

Ph(u)Ph(φ)− Ph(uφ)
)

(jh, n∆t).

And we have
∑

j∈Z
|Ph(u)Ph(φ)− Ph(uφ)|(jh, t) ≤ ‖φ‖C0TV (u)(., t).

Concerning the relaxation term, the situation could be different because of its

nonlinear structure. Nevertheless, we have the following result.

Proposition 2 Under the hypotheses of Lemma 2, (uǫ, vǫ) → (u, v) in L1
loc(R×R

+
∗ )

as ǫ→ 0 up to a subsequence. Moreover, there holds:

(

A(uǫ)− vǫ
)

∂tb
ǫ weak−⋆ M

⇀
∑

n∈N∗

∆t

(
∫ 1

0

(

A(ū)− v̄
)

(x, τ)dτ

)

δ(t− n∆t) (2.19)

where ū, v̄ satisfy the following differential equations for τ ∈ [0, 1]:

∂τ

(

ū
v̄

)

= µ∆t

(

−
(

A(ū)− v̄
)

(

A(ū)− v̄
)

)

, (2.20)

together with the initial data, x ∈ R, t = n∆t for n ∈ N∗:

ū(x, τ = 0) = u(x, t− 0), v̄(x, τ = 0) = v(x, t− 0). (2.21)

Proof. Let φ ∈ C0
c (R× R

+
∗ ), we intend now to pass to the limit ǫ → 0 in the

following expression:
∫

R×R
+
∗

(

A(uǫ)− vǫ
)

∂tb
ǫφ(x, t).dx.dt =

∑

n∈N∗

∫

R

∫ n∆t+ǫ

n∆t

(

A(uǫ)− vǫ
)∆t

ǫ
φ(x, t).dx.dt.

(2.22)
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We pick a n ∈ N∗ and define τ = t−n∆t
ǫ as an “inner variable” inside the system

(2.10) which reads for τ ∈ [0, 1]:

{

∂τ ū
ǫ + ǫ∂xf(ū

ǫ) = −µ∆t
(

A(ūǫ)− v̄ǫ
)

,
∂τ v̄

ǫ = µ∆t
(

A(ūǫ)− v̄ǫ
)

,

together with the initial data:

ūǫ(x, τ = 0) = uǫ(x, n∆t), v̄ǫ(x, τ = 0) = vǫ(x, n∆t).

In order to conclude the proof, we perform the change of variables t 7→ τ in (2.22)

and invoke Lemma 3 to derive (2.19), (2.20) in the limit ǫ→ 0. 2

2.4. A contraction result “à la Kružkov”

We can now consider weak solutions of the following singular relaxing system

for µ, ν in R
+, x ∈ R, t > 0:















∂tu+ ∂xf(u) =
∑

n∈N∗

∆t
[

ν(Ph(u)− u)− µR(u, v)
]

δ(t− n∆t),

∂tv =
∑

n∈N∗

∆t
[

ν(Ph(v)− v) + µR(u, v)
]

δ(t− n∆t),

u(., 0) = u0 ∈ L1 ∩BV (R), v(., 0) = v0 ∈ L1 ∩BV (R),

(2.23)

where all the measure-valued source terms are always to be understood in the sense

of distributions according to the results stated in Propositions 1 and 2. We first

extend the notion of “entropy solution” to (2.23).

Definition 2 We say that the pair (u, v) is an entropy solution of (2.23) if:

(i) u and v lie in L1 ∩ BV (R× [0, T ]) for any T ∈ R
+ and satisfy (2.23) in the

sense of distributions;

(ii) there holds for any k, l ∈ R and any nonnegative test-function in D(R×R
+
∗ ):

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣
≤

∑

n∈N∗

∆t
[

ν(Ph(u)− u)sgn(u− k) + ν(Ph(v)− v)sgn(v − l)+

µR(u, v)
(

sgn(v − l)− sgn(u− k)
)

]

δ(t− n∆t).

(2.24)

The main result of this section states that system (2.23), (2.24) is L1(R)-contractive.

Theorem 3 Let (u0, v0) ∈ L1 ∩BV (R); under the hypotheses (2.4), there exists a

unique entropy solution (u, v) to (2.23). Moreover, if (ũ0, ṽ0) stands for another set

of initial data in L1 ∩ BV (R) and (ũ, ṽ) for its associated entropy solution, there

holds for any t ∈ R
+:

‖u(., t)− ũ(., t)‖L1(R) + ‖v(., t)− ṽ(., t)‖L1(R) ≤ ‖u0 − ũ0‖L1(R) + ‖v0 − ṽ0‖L1(R).
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Despite the fact that the solution of (2.23), (2.24) suffer discontinuities on the

lines t = n∆t, n ∈ N∗, its BV regularity allows one to define a set N ⊂ [0, T ] of

measure zero containing 0 and T such that each point in the strip (x, t) ∈ R× [0, T ],

t 6∈ N is either an approximate jump or an approximate continuity location, 6.

Proof. We need first to check the regularity criterion (i) in Definition 2. This

is indeed a direct consequence of the uniform bounds (2.12), (2.13), (2.14) in the

proof of Lemma 2. We start from the entropy inequality (2.5) satisfied by uǫ, vǫ for

ǫ > 0:

∂t

[

|uǫ − k|+ |vǫ − l|
]

+ ∂x

∣

∣

∣
f(uǫ)− f(k)

∣

∣

∣
≤

ν
[

(Ph(uǫ)− uǫ)sgn(uǫ − k) + (Ph(vǫ)− vǫ)sgn(vǫ − l)
]

∂ta
ǫ+

µR(uǫ, vǫ)
(

sgn(vǫ − l)− sgn(uǫ − k)
)

∂tb
ǫ.

(2.25)

Therefore, the inequality (2.24) comes in the limit of (2.25) by passing to the limit

ǫ→ 0 as in the proofs of Propositions 1 and 2.

Concerning the contraction property which implies uniqueness, we follow the

ideas of 18,20,32. Let us now introduce a nonnegative test function Ψ(x, t, y, s) =

ψ(x, t).ζ(x−y).ζ(t−s) belonging toD((R×R
+
∗ )

2) with ζ the standard approximation

of the Dirac mass. We test the preceding entropy inequalities (2.25) for both uǫ, vǫ

and ũǫ, ṽǫ with this particular function, we add and integrate on (R × R
+
∗ )

2. For

ǫ > 0, the standard theory of Kružkov allows to let ζ concentrate to the Dirac

measure since aǫ, bǫ are Lipschitz functions. We obtain:

∂t

[

|uǫ − ũǫ|+ |vǫ − ṽǫ|
]

+ ∂x

∣

∣

∣
f(uǫ)− f(ũǫ)

∣

∣

∣
≤

ν
[

((Ph(uǫ)− uǫ)− (Ph(ũǫ)− ũǫ))sgn(uǫ − ũǫ)+
((Ph(vǫ)− vǫ)− (Ph(ṽǫ)− ṽǫ))sgn(vǫ − ṽǫ)

]

∂ta
ǫ+

µ(R(uǫ, vǫ)−R(ũǫ, ṽǫ))
(

sgn(vǫ − ṽǫ)− sgn(uǫ − ũǫ)
)

∂tb
ǫ.

(2.26)

We study mainly the zero-order terms. Using the mean-value theorem for the

relaxation term leads to
∫

R×R
+
∗

(

sgn(vǫ − ṽǫ)− sgn(uǫ − ũǫ)
)(

A(uǫ)−A(ũǫ)− vǫ + ṽǫ
)

∂tb
ǫψ(x, t).dx.dt

=

∫

R×R
+
∗

A′(ξ)
(

sgn(vǫ − ṽǫ)(uǫ − ũǫ)− |uǫ − ũǫ|
)

∂tb
ǫψ(x, t).dx.dt

+

∫

R×R
+
∗

(

sgn(uǫ − ũǫ)(vǫ − ṽǫ)− |vǫ − ṽǫ|
)

∂tb
ǫψ(x, t).dx.dt,

for a ξ ∈ [min(uǫ, ũǫ),max(uǫ, ũǫ)]. Since ∂tb
ǫ ≥ 0 and A′ ≥ 0, this term gives

a nonpositive contribution on the right-hand side of the entropy inequality (2.26).

Concerning the projection operator, we see that
∫

R×R
+
∗

sgn(uǫ − ũǫ)
(

Ph(uǫ − ũǫ)− (uǫ − ũǫ)
)

∂ta
ǫψ(x, t).dx.dt =

∫

R×R
+
∗

(

sgn(uǫ − ũǫ)− sgn(Ph(uǫ − ũǫ))
)(

Ph(uǫ − ũǫ)− (uǫ − ũǫ)
)

∂ta
ǫψ.dx.dt

+

∫

R×R
+
∗

sgn
(

Ph(uǫ − ũǫ)
)

(

Ph(uǫ − ũǫ)− (uǫ − ũǫ)
)

∂ta
ǫψ(x, t).dx.dt.
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Since Ph(uǫ− ũǫ) is constant on each cell Cj , the last integral vanishes. Once again,

since ∂ta
ǫ ≥ 0, this term gives a nonpositive contribution in (2.26). We end up with:

∂t

[

|uǫ − ũǫ|+ |vǫ − ṽǫ|
]

+ ∂x

∣

∣

∣
f(uǫ)− f(ũǫ)

∣

∣

∣
≤ 0.

It remains now to select ψ as in 18,20,3 to complete the proof of Theorem 3. 2

Remark 2 We can notice that this contraction property gives back the BV (R) reg-

ularity for u(., t), v(., t) as soon as u0, v0 belong to BV (R) since the problem (2.23)

is translation invariant.

We notice finally that since Ph is linear, any weak solution of (2.23) also satisfies:






∂t(u+ v) + ∂xf(u) =
∑

n∈N∗

ν∆t
[

Ph(u+ v)− (u+ v)
]

δ(t− n∆t),

∂tv =
∑

n∈N∗

∆t
[

ν(Ph(v)− v) + µR(u, v)
]

δ(t− n∆t).

3. Study of the resulting “time–splitting” numerical schemes

3.1. A technical lemma

We point out quickly that the special structure of the “singular projection term”

allows us to refine a bit the entropy inequality (2.24).

Lemma 4 In the sense of Proposition 1, the following holds for any k ∈ R and any

nonnegative continuous compactly supported test-function:
∑

n∈N∗

ν∆t
(

Ph(u)− u
)

sgn(u− k).δ(t− n∆t) ≤

∑

n∈N∗

(

|Ph(u)− k| − |u− k|
)

(

1− exp(−ν∆t)
)

.δ(t− n∆t).

Proof. Let 0 ≤ φ ∈ C0
c (R× R

+
∗ ); we perform the following splitting:

{

sgn(ū − k) = sgn(Ph(ū)− k) +
(

sgn(ū − k)− sgn(Ph(ū)− k)
)

,
Ph(ū)− ū = (Ph(ū)− k)− (ū − k).

Since we have sgn(x).y ≤ |y| for any x, y in R
2, we get out of (2.16) for any k ∈ R:

∂τ |ū− k| ≤ ν∆t
(

|Ph(ū)− k| − |ū− k|
)

.

We observe that ∂τ |Ph(ū)− k| = 0 along the flow of (2.16) and this implies:

|ū− k|(x, 1)− |ū− k|(x, 0) ≤
(

1− exp(−ν∆t)
)

.
(

|Ph(u)− k| − |u− k|
)

(x, 0).

Therefore, we just have to recall the following from (2.15) to conclude the proof:

∑

n∈N∗

ν∆t

∫

R

(
∫ 1

0

sgn(ū − k)
(

Ph(ū)− ū
)

(x, τ).dτ

)

φ(x, n∆t).dx =

∑

n∈N∗

∫

R

(
∫ 1

0

∂τ |ū− k|(x, τ).dτ

)

φ(x, n∆t).dx.



12 Laurent Gosse

2

This means in particular that the following inequality holds as a consequence of

(2.24) and this last lemma:

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣
≤

∑

n∈N∗

[

(

|Ph(u)− k| − |u− k|+ |Ph(v) − l| − |v − l|
)(

1− exp(−ν∆t)
)

+µ∆tR(u, v)
(

sgn(v − l)− sgn(u − k)
)

]

δ(t− n∆t),

(3.27)

in the sense of Proposition 2. One can notice the similarity between this last inequal-

ity and the one derived in 31 §3; indeed the numerical approximation considered

by these authors matches ours in the special case where ν → +∞ and a backward

Euler solver is chosen instead of (2.20). This reduces to a time-splitting scheme with

some kind of “straight lines” approximation of the quantity (2.19). In contrast, we

recall that it has been proved in 3 §5, that one has:

∑

n∈N∗

ν∆t
(

Ph(u)− u
)(

sgn(u− k)− sgn(Ph(u)− k)
)

.δ(t− n∆t) ≤ 0,

for any positive continuous test-function in the case where u ∈ C0(R+
∗ ;L

1(R)).

3.2. The classical time-splitting scheme

We plan to study the behavior of the system (2.23) in the limit ν → +∞.

Roughly speaking, this reduces to insert a projection stage every time n∆t, n ∈ N∗

before igniting the relaxation mechanism.

Proposition 3 Under the assumptions of Theorem 3, the sequence of entropy solu-

tions of (2.23) converges strongly in L1
loc(R×R

+
∗ ) as ν → +∞ towards the entropy

solution of:

{

∂tu+ ∂xf(u) = −
∑

n∈N∗

µ∆tR(u, v).δ(t− n∆t),
∂tv =

∑

n∈N∗

µ∆tR(u, v).δ(t− n∆t),
(3.28)

where the right-hand side is still defined by means of (2.19), (2.20), but with the

piecewise constant initial data for t = n∆t, n ∈ N∗:

ū(x, τ = 0) = Ph(u)(x, t− 0), v̄(x, τ = 0) = Ph(v)(x, t − 0). (3.29)

Moreover, the following entropy inequality holds true for any nonnegative test func-

tion in D(R× R
+
∗ ):

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣
≤

∑

n∈N∗

{

(

|Ph(u)− k| − |u− k|
)

+
(

|Ph(v) − l| − |v − l|
)

+

µ∆t.R(u, v)
(

sgn(v − l)− sgn(u− k)
)

}

δ(t− n∆t),

(3.30)

with k, l in R and according to (2.19), (2.20), (2.21).
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Proof. We split it into several steps for the sake of clarity.

(i) Construction of the solution of (2.16) by a fixed point argument; for τ ∈ [0, 1],

we consider any function w ∈ C0(0, 1;L1(R)) together with:

∂τ ū = ν∆t(Ph(w)− ū), ū(., 0) ∈ L1(R)

whose solution is obvious:

ū(x, τ) = exp(−ν∆tτ)ū(x, 0) + ν∆t exp(−ν∆tτ)

∫ τ

0

exp(ν∆ts)Ph(w)(x, s).ds.

This defines a linear mapping w 7→ ū in C0(0, 1;L1(R)) for any choice of the initial

datum. We want to establish a contraction property: for all w1, w2 and any τ ∈

[0, 1], we observe that
∫

R

|ū1 − ū2|(τ).dx ≤ ν∆t

∫ τ

0

exp(ν∆t(s− τ))

∫

R

|Ph(w1)− Ph(w2)|(x, s).dx.ds

≤ (1 − exp(−ν∆t))‖w1 − w2‖C0(0,1;L1(R))

By Picard’s fixed point theorem, we obtain a unique solution in C0(0, 1;L1(R)) for

any ν ∈ R
+ to:

∂τ ū = ν∆t(Ph(ū)− ū), ū(., 0) ∈ L1 ∩BV (R)

Now, since ∂τPh(ū) = 0 along its flow, this differential equation therefore admits

an explicit solution:

ū(., τ) = exp(−ν∆tτ)ū(., 0) + (1− exp(−ν∆tτ))Ph(ū)(., 0).

In particular, we get:
(

ū− Ph(ū)
)

(., τ) = exp(−ν∆tτ)
(

ū− Ph(ū)
)

(., 0). (3.31)

(ii) Limit as ν → +∞ of the measure (2.15); for any φ ∈ C0
c (R×R

+
∗ ), we have:

∑

n∈N∗

ν∆t

∫

R

(
∫ 1

0

(

Ph(ū)− ū
)

(x, τ).dτ

)

φ(x, n∆t).dx =

∑

n∈N∗

ν∆t

∫

R

(

Ph(u)− u
)

(x, n∆t− 0)

(
∫ 1

0

exp(−ντ).dτ

)

φ(x, n∆t).dx

ν→+∞
→

∑

n∈N∗

∫

R

(

Ph(u)− u
)

(x, n∆t− 0)φ(x, n∆t).dx,

which is a finite sum provided ∆t remains strictly positive.

(iii) Strong compactness as ν → +∞: the bound (2.14) seems to blow up despite

the fact that (2.12), (2.13) still hold. Making use of (3.31) in the last step of the

proof of Lemma 2, we notice that for any T ∈ R
+ and ξ > 0:

∫

R×[t,t+ξ]

1+[T/∆t]
∑

n=1

ν∆t

{
∫ 1

0

∣

∣

∣
ū− Ph(ū)

∣

∣

∣
+
∣

∣

∣
v̄ − Ph(v̄)

∣

∣

∣
(x, τ)dτ

}

.dx.ds ≤

ξ h
∆t(T +∆t)

(

TV (u0) + TV (v0)
)

(

1− exp(−ν∆t)
)

.

(3.32)
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Therefore, exploiting (2.15) and Lemma 1, we can deduce a fine estimate for the

weak solutions of (2.23), (2.15), (2.16) which is uniform in both ν and µ:

sup
ξ 6=0

∫

R×[0,T ]

|u(x, t+ ξ)− u(x, t)|

ξ
+

|v(x, t+ ξ)− v(x, t)|

ξ
.dx.dt ≤

(T +∆t)
{

(h/∆t+ Lip(f))
(

TV (u0) + TV (v0)
)

+O(1)
}

(3.33)

Together with (2.12), (2.13), this provides compactness in L1
loc(R×R

+
∗ ) by means of

Helly’s theorem. And in the limit, we get the following system: (recall from (1.2))







∂tu+ ∂xf(u) =
∑

n∈N∗

[

(Ph(u)− u)(., n∆t− 0)− µ∆tR(u, v)
]

δ(t− n∆t),

∂tv =
∑

n∈N∗

[

(Ph(v) − v)(., n∆t− 0) + µ∆tR(u, v)
]

δ(t− n∆t).

Since we know that aǫ(t) = bǫ(t − ǫ), we must handle the projection step first and

the initial data for (2.20) becomes (3.29). The preceding system then rewrites like

(3.28).

(iv) Entropy inequality: Using the same arguments together with Lemma 4, we

derive for any k ∈ R:

∑

n∈N∗

ν∆t

∫

R

(
∫ 1

0

sgn
(

ū− k
)(

Ph(ū)− ū
)

(x, τ).dτ

)

φ(x, n∆t).dx =

∑

n∈N∗

∫

R

(

|ū− k|(x, 1)− |ū − k|(x, 0)
)

φ(x, n∆t).dx ≤

∑

n∈N∗

∫

R

(

|Ph(u)− k| − |u− k|
)

(x, n∆t− 0)
(

1− exp(−ν∆t)
)

φ(x, n∆t).dx

ν→+∞
→

∑

n∈N∗

∫

R

(

|Ph(u)− k| − |u− k|
)

(x, n∆t− 0)φ(x, n∆t).dx.

This way, we get (3.30) out of (2.24) and the contraction property of Theorem 3 is

also preserved. 2

One can observe that as soon as the initial data of (3.28), (2.19), (2.20), (3.29)

is Ph–invariant and the CFL condition ∆t‖f ′(u)‖L∞ ≤ h holds, its entropy solu-

tion matches the piecewise constant approximation generated by a classical time-

splitting Godunov scheme, see e.g. 1,31 and 9.

Theorem 4 Under the assumptions (2.4), the CFL restriction ∆t‖f ′(u)‖L∞ = h

and for v0 = A(u0), u0 ∈ L1 ∩ BV (R), the entropy solutions of (3.28), (3.30),

(2.19), (2.20), (3.29) converge strongly in L1
loc(R × R

+
∗ ) towards u, the entropy

solution in the sense of Kružkov to:

∂t
(

u+A(u)
)

+ ∂xf(u) = 0, u(x, 0) = u0.

as µ∆t→ +∞, h→ 0.

Proof. As we did before concerning Proposition 3, we are about to split the

forthcoming proof for the sake of clarity.
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(i) Study of the solution of (2.20); for τ ∈ [0, 1], we rewrite its second equation

as:

∂τ v̄ = µ∆t(Ã(v̄)− v̄), Ã(v̄) = A
(

ū(x, 0) + v̄(x, 0)− v̄(x, τ)
)

. (3.34)

We follow the classical approach, see e.g. 4, and we introduce the following Banach

space for some k ∈ R
+ to be fixed later:

X =

{

ϕ ∈ C0(0, 1;L1(R)) such that sup
t∈[0,1]

(

exp(−k.t)‖ϕ(., t)‖L1(R)

)

< +∞

}

.

For any w ∈ X , we consider the mapping w 7→ v̄ ∈ X ,

v̄(x, τ) = v̄(x, 0) exp(−µ∆tτ) +

∫ τ

0

µ∆t exp(µ∆t(s− τ))Ã(w)(x, s).ds,

which turns out to be a contraction for k > µ∆t(Lip(A) − 1). By Picard’s fixed

point theorem, we get a unique solution to (3.34) v̄ ∈ X for any µ ∈ R
+. Moreover,

it satisfies

∂τ (Ã(v̄)− v̄)(x, τ) = −µ
(

1 +A′
(

ū(x, 0) + v̄(x, 0)− v̄(x, τ)
)

)

(Ã(v̄)− v̄)(x, τ),

which leads to:
∣

∣A(ū)− v̄
∣

∣(x, τ) ≤ exp(−µ∆tτ)
∣

∣A(ū)− v̄
∣

∣(x, 0).

(ii) Behavior of (3.30) as µ→ +∞; the bound (3.33) can be simplified by means

of the CFL condition:

sup
ξ 6=0

∫

R×[0,T ]

|u(x, t+ ξ)− u(x, t)|

ξ
+

|v(x, t+ ξ)− v(x, t)|

ξ
.dx.dt ≤

(T +∆t)
{

2Lip(f)
(

TV (u0) + TV (v0)
)

+O(1)
}

.

(3.35)

This provides strong L1
loc compactness and for any positive continuous test function

φ ∈ C0
c (R× R

+
∗ ), we have:

∑

n∈N∗

∆t

∫

R

µ
(

∫ 1

0

(

A(ū)− v̄
)(

sgn(v̄ − l)− sgn(ū− k)
)

(x, τ).dτ
)

φ(x, n∆t).dx

≤ 2
∑

n∈N∗

∫

R

∣

∣A(Ph(u))− Ph(v)
∣

∣(x, n∆t)
(

∫ 1

0

µ∆t. exp(−µ∆tτ).dτ
)

φ(x, n∆t).dx

≤ O
(

1−exp(−µ∆t)
µ∆t

)

‖φ‖C0 .

We used the preceding estimates in conjunction with the bound in Lemma 1. There-

fore, this term vanishes in the limit µ∆t → +∞, h → 0. Moreover, by Jensen’s in-

equality for convex functions, we also have thanks to (2.13) and the CFL condition,

∑

n∈N∗

∫

R

(

|Ph(u)− k| − |u− k|
)

(x, n∆t− 0)φ(x, n∆t).dx ≤

∑

n∈N∗

∫

R

∣

∣Ph(u)− u
∣

∣(x, n∆t− 0)
∣

∣Ph(φ) − φ
∣

∣(x, n∆t).dx ≤

h
∑

n∈N∗

∆tLip(f)
(

TV (u0) + TV (v0)
)

Lip(φ)
h→0
→ 0.
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(iii) It remains to pass to the limit in (3.30); we perform the following splitting

for x ∈ R and t ∈ [n∆t, (n+ 1)∆t[

|v −A(u)|(x, t) ≤ |v(x, t) − v(x, n∆t)| + |v − Ph(v)|(x, n∆t)+
|A(Ph(u))− Ph(v)|(x, n∆t)+
|A(Ph(u))−A(u)|(x, n∆t) + |A(u)(x, t) −A(u)(x, n∆t)|,

each term converging to zero in L1 as µ∆t → +∞, h → 0 under the prescribed

CFL condition. Therefore, we fix l = A(k) ∈ R and we observe that for any positive

ψ ∈ D(R × R
+
∗ )

∫

R×R
+
∗

|v − l|∂tψ(x, t).dx.dt →

∫

R×R
+
∗

|A(u)−A(k)|∂tψ(x, t).dx.dt,

which leads to the integral form of Kružkov’s entropy inequality:
∫

R×R
+
∗

(

|u− k|+ |A(u)−A(k)|
)

∂tψ(x, t) +
∣

∣

∣
f(u)− f(k)

∣

∣

∣
∂xψ(x, t).dx.dt ≥ 0.

2

3.3. A modified time-splitting scheme

It is clear that the estimates of Lemmas 2 and 1 still hold for the slightly modified

system (compare with (2.10)):






∂tu
ǫ + ∂xf(u

ǫ) = −µR(uǫ, vǫ)∂taǫ + ν(Ph(uǫ)− uǫ)∂tb
ǫ,

∂tv
ǫ = µR(uǫ, vǫ)∂ta

ǫ + ν(Ph(vǫ)− vǫ)∂tb
ǫ,

uǫ(., 0) = u0, v
ǫ(., 0) = v0.

x ∈ R, t > 0 (3.36)

The Cauchy problem for (3.36) still can be studied within the framework of 32 for

any ǫ > 0. According to the same ideas, we send ǫ→ 0 to get the following result.

Proposition 4 Let (u0, v0) ∈ L1 ∩ BV (R); under the assumptions (2.4), the se-

quence (uǫ, vǫ) of entropy solutions to (3.36) converges in L1
loc(R×R

+
∗ ) towards the

entropy solution in the sense of Definition 2 to






∂tu+ ∂xf(u) =
∑

n∈N∗

∆t
[

− µR(u, v) + ν(Ph(u)− u)
]

δ(t− n∆t),

∂tv =
∑

n∈N∗

∆t
[

µR(u, v) + ν(Ph(v) − v)
]

δ(t− n∆t),
(3.37)

which satisfies for any k, l ∈ R and any nonnegative test function in D(R× R
+
∗ ):

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣
≤

∑

n∈N∗

∆t
[

µR(u, v)
(

sgn(v − l)− sgn(u− k)
)

+ν(Ph(u)− u)sgn(u− k) + ν(Ph(v)− v)sgn(v − l)
]

δ(t− n∆t),

(3.38)

in the sense of Propositions 1 and 2. Given any other set of initial data (ũ0, ṽ0) in

L1 ∩BV (R), this last inequality implies the contraction property for any t ∈ R
+:

‖u(., t)− ũ(., t)‖L1(R) + ‖v(., t)− ṽ(., t)‖L1(R) ≤ ‖u0 − ũ0‖L1(R) + ‖v0 − ṽ0‖L1(R).
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Proof. Similar estimates than the ones shown in the proof of Lemma 2 ensure

the strong L1
loc compactness. The inequality (3.38) comes from (2.25) together with

Propositions 1 and 2. The contraction property in L1(R) is proved the same way

than for Theorem 3. 2

Remark 3 It is important to notice that the entropy solutions of (3.37) do not

coincide with the ones of (2.23) since the relaxation and the projection steps are not

applied in the same order. This means in particular that one has to be careful when

dealing with the right-hand sides as different processes are concentrated inside the

Dirac masses. Hence there is no uniqueness problem for both systems (2.23), (3.37)

relying on Propositions 1 and 2 together with the inequalities (2.24) and (3.38).

We plan now to carry out the same program as we did for the classical time-

splitting scheme in the preceding section. By letting ν → +∞, we derive an equation

whose entropy solution coincide with the piecewise constant approximation gener-

ated by a numerical scheme designed in the context of reactive Euler equations for

which the reaction process operates before the projection stage, 10.

Proposition 5 Assume (2.4) and (u0, v0) ∈ L1 ∩ BV (R), the sequence of entropy

solutions to (3.37) converges strongly in L1
loc(R × R

+
∗ ) as ν → +∞ towards the

entropy solution of:

∂tu+ ∂xf(u) =
∑

n∈N∗

[

− µ∆tR(u, v) + (Ph(u)− u)(., n∆t+ 0)
]

δ(t− n∆t),

∂tv =
∑

n∈N∗

[

µ∆tR(u, v) + (Ph(v)− v)(., n∆t + 0)
]

δ(t− n∆t),

(3.39)

where the right-hand sides are defined by means of (2.19), (2.20), (2.21). More-

over, the following entropy inequality holds true for any nonnegative test function

in D(R× R
+
∗ ) with k, l in R:

∂t

[

|u− k|+ |v − l|
]

+ ∂x

∣

∣

∣
f(u)− f(k)

∣

∣

∣
≤

∑

n∈N∗

{

µ∆t.R(u, v)
(

sgn(v − l)− sgn(u− k)
)

+
(

|Ph(u)− k| − |u− k|
)

+
(

|Ph(v) − l| − |v − l|
)

}

δ(t− n∆t),

(3.40)

The final statement is concerned with the relaxation limit in (3.39).

Theorem 5 Under the assumptions (2.4), the CFL restriction ∆t‖f ′(u)‖L∞ = h

and for v0 = A(u0), u0 ∈ L1 ∩ BV (R), the entropy solutions of (3.39), (3.40),

(2.19), (2.20), (2.21) converge strongly in L1
loc(R × R

+
∗ ) towards u, the entropy

solution in the sense of Kružkov to:

∂t
(

u+A(u)
)

+ ∂xf(u) = 0, u(x, 0) = u0.

as µ∆t→ +∞, h→ 0.

The proofs of these last two statements are completely similar to the ones of

Proposition 3 and Theorem 4 hence we skip them.

4. Conclusion
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In this paper, we considered some “measure source terms” for a quasilinear relax-

ation system whose weak solutions coincide with piecewise constant approximations

generated by commonly-used time-splitting numerical schemes. This allows to es-

tablish convergence results directly relying on properties of the underlying original

system and bypassing some heavy computations required to show the stability of

the numerical processes (see e.g. §2.5 in 7).
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