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Chapter 1

I. Hidden Markov models. Exact
likelihood.

1.1 Introduction

Consider a diffusion process (xt, t ≥ 0) given as the solution of a stochastic differential equation
with unknown parameters in the drift and diffusion coefficients to be estimated. For simplicity,
we consider that (xt) is one-dimensional but multidimensional processes may be considered too.

At times 0 ≤ t1 < . . . < tn < . . ., noisy observations y1, y2, . . . , yn, . . . of xt1 , . . . , xtn , . . .
are taken: for instance, one observes yi = xti + εi (additive noise) or yi = xtiεi (multiplicative
noise). More generally, the distribution of yi given xti may be specified by a kernel F (xti , dy).
We intend to describe the exact likelihood of such observations and focus on models where
explicit computations are possible.

In our first lecture, we give the assumptions implying that (yi, i ≥ 1) is a hidden Markov
model. Under these assumptions, we explain how to compute the exact likelihood of (y1, . . . , yn)
using the filtering-prediction algorithm. Some theoretical properties of the observed process
(yi, i ≥ 1) and of the exact maximum likelihood estimator are given.

In the second lecture, we study discrete observations of diffusions observed with additive
noise. Explicit formulae for the likelihood can be obtained for Gaussian diffusions with Gaussian
noise using the Kalman filter approach. Even when the noise is non Gaussian, the previous
likelihood can be used as a contrast (quasi-likelihood) to obtain consistent and asymptotically
Gaussian estimators.

In the third lecture, we consider discrete observations of diffusions observed with multi-
plicative noise. The square-root diffusion model (Cox-Ingersoll-Ross diffusion) with a specific
multiplicative noise allows to obtain an explicit expression of the likelihood.
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In the fourth lecture, we look at other kernels such as Poisson observations or binomial
observations with stochastic parameters described by a diffusion.

1.2 Hidden Markov models. The framework.

1.2.1 The hidden diffusion.

Consider a one-dimensional diffusion process (xt, t ≥ 0) described by:

dxt = b(θ, xt)dt+ σ(θ, xt)dWt, x0 = η (1.1)

where (Wt)t≥0 is a Wiener process defined on a probability space (Ω,F , P ) , η is a random vari-
able on Ω independent of (Wt), b(θ, .), σ(θ, .) are continuous functions on IR. The parameter θ is
unknown and belongs to a parameter set Θ ⊂ IRp. Although d-dimensional diffusion processes
could be considered too, we focus on the one-dimensional case for the sake of simplicity.

Classical assumptions on b(θ, .), σ(θ, .) ensure that the stochastic differential equation (1.1)
admits a unique strong solution and a unique stationary distribution πθ (see e.g. Rogers and
Williams (1990)). We assume that these assumptions hold and that (xt) is in stationary regime,
i.e. that the initial variable η has distribution πθ. In this case, (xt, t ≥ 0) is strictly stationary,
ergodic, β-mixing and therefore α-mixing. For details, see e.g. Genon-Catalot et al. (2000).
We denote by X the state space of (xt) which is an interval of the real line.

Let Pθ,t(x, dx
′) denote the transition semigroup of (xt). Under standard regularity assump-

tions on the functions b(θ, .), σ(θ, .), we know that :

Pθ,t(x, dx
′) = pθ,t(x, x

′)dx′, πθ(dx) = gθ,t(x)dx, (1.2)

where dx denotes the Lebesgue measure on the state space X and pθ,t(x, x
′) is the transition

density of Pθ,t(x, dx
′) (see e.g. Rogers and Williams (1990)). The transition semigroups of dif-

fusion processes have several nice properties (reversibility, spectral decomposition, eigenvalues,
eigenfunctions, ergodicity . . . ) and this is why it is especially interesting to consider as hidden
Markov process a hidden diffusion process.

1.2.2 Observations.

At equispaced instants ti = i∆ with ∆ > 0, one takes measurements (xti) but these measure-
ments are not direct. We assume that, at time ti, a random variable yi is observed and that
the following holds:

• (H1) (Conditional independence) Given (xti , i ≥ 0), the random variables yi are indepen-
dent and the conditional distribution of yi given (xtj , j ≥ 0) only depends on xti .
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• (H2) (Stationarity) The conditional distribution of yi given xti = x does not depend on i.

Under these assumptions, the process (yi) is called a hidden Markov model with hidden chain
(xti) (see e.g. Leroux (1992), Bickel and Ritov (1996), Cappé et al. (2005)). The third
important assumption concerns the kernel F (x, dy) specifying the conditional distribution of yi
given xti = x. We denote by Y the state space of yi.

• (H3) F (x, dy) = f(y|x)µ(dy) for some dominating positive measure µ on Y .

This means that the observation yi is a random function of xti . The existence of the density
f(y|x) is crucial for the computation of the likelihood of (y1, . . . , yn) and of all the conditional
distributions involved in filtering and prediction. Note that the transition operator of the
hidden chain (xti) is Pθ := Pθ,∆ where (Pθ,t, t ≥ 0) is the transition semi-group of (xt). We
denote below pθ(x, x

′) := pθ,∆(x, x′) the transition density of the hidden chain.

Let us know give some examples that will be detailed further on.

1.2.3 Examples.

• Example 1: Additive noise. Let (εi) be a sequence of real-valued i.i.d. random
variables, having density f(.), independent of the whole process (xt). Assume that yi =
xti + εi, i ≥ 0. Then, assumptions are fulfilled and f(y|x) = f(y − x). When (xt) is
Gaussian and f is a Gaussian density, we are in the Kalman filter model.

• Example 2: Multiplicative noise. With (εi) as in Example 1, consider yi = xtiεi.
Then, f(y|x) = 1

x
f( y

x
). When εi has law N (0, 1), (yi) is often called a stochastic volatility

models (in discrete time). This model is investigated in Ruiz (1994), with (xt) equal to
the exponential of an Ornstein-Uhlenbeck process. With another kind of noise and with
(xt =

√
rt) and (rt) a Cox-Ingersoll-Ross diffusion, the model is treated in Chaleyat-

Maurel and Genon-Catalot (2006). With (xt) equal to the absolute value of an Ornstein-
Uhlenbeck diffusion, the model is studied in Comte et al. (2008).

• Example 3: Other kernels.

– (Poisson observations) Suppose that, given (xt) , yi has Poisson distribution with
parameter λ(xti) for some continuous function λ : X → (0,+∞). Then Y = IN and
F (x, dy) = f(y|x)µ(dy) with

f(y|x) = exp (−λ(x))
λ(x)y

y!
, µ(y) = 1, y ∈ IN.

When X = [0,+∞), λ(x) = λx + µ (with λ > 0, µ ≥ 0) and (xt = rt) with (rt) a
Cox-Ingersoll-Ross diffusion or the square of an Ornstein-Uhlenbeck process, explicit
computations are possible (see Chaleyat-Maurel and Genon-Catalot (2006)). The
continuous time version of this model is studied in Boel and Benes (1980).

5



– (Binomial observations) suppose that X = [0, 1] and that, given (xt), yi has binomial
distribution with parameters N, xti . In this case, Y = {0, 1, . . . , N}, µ(y) = 1 for
y = 0, 1, . . . , N and f(y|x) =

(

N
y

)

xy(1 − x)N−y. With (xt) a Wright-Fisher diffu-

sion process, the model is studied in Chaleyat-Maurel and Genon-Catalot (2008).
With the same unobserved diffusion, geometric observations or negative binomial
observations with parameter x also lead to explicit computations.

1.3 Filtering. Prediction. Marginals.

Recall the notations and assumptions. Since ∆ is fixed, we set xi = xi∆.The following holds.

• (A0) The chain (xi) is strictly stationary, ergodic, with transition operator Pθ(x, dx
′) =

pθ(x, x
′)dx′ and stationary distribution πθ(dx) = gθ(x)dx where dx denotes the Lebesgue

measure on the interval X (state space of the hidden diffusion process).

• (A1) Given (xi), the random variables (yi) are independent and the conditional distribu-
tion of yi given (xi, j ≥ 0) when xi = x is given by F (x, dy) = f(y|x)µ(dy) where µ is a
positive measure on the state space Y of yi.

Proposition 1.3.1. The joint process (xi, yi) is Markov with transition kernel

Q(x, y; dx′, dy′) = pθ(x, x
′)f(y′|x′)dx′µ(dy′).

Moreover, the process is strictly stationary, ergodic with marginal distribution
gθ(x)f(y|x)dxµ(dy).

Proof. For ψ : Y → IR+, set

hψ(x) =

∫

Y

ψ(y)f(y|x)µ(dy).

Consider positive functions ϕi, i = 1, . . . , n on X and positive functions ψi, i = 1, . . . , n on Y .
Using successively the conditional independence property and the Markov property of (xi), we
get:

IE

(

n
∏

i=1

ϕi(xi)ψi(yi)

)

= IE

(

n
∏

i=1

ϕi(xi)hψi
(xi)

)

= IE

(

n−1
∏

i=1

ϕi(xi)Pθ(ϕnhψn
)(xn−1)

)

,

where

Pθ(ϕnhψn
)(x) =

∫

X×Y

ϕn(x
′)ψn(y

′)pθ(x, x
′)f(y′|x′)dx′µ(dy′).

So, there appears the transition kernel Q(x, y; dx′, dy′).
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The stationarity is immediate. For the ergodicity (which is not immediate), we refer to
e.g. Leroux (1992) for a direct proof or Genon-Catalot et al. (2000) where ergodicity is proved
using α-mixing. �

Now, we are in position to compute the following distributions:

• (Predictive distributions): νi|i−1:1(dx) = L(xi|yi−1, . . . , y1), i ≥ 1, with, by convention,
ν1|0:1(dx) = L(x1).

• (Filtering distributions): νi|i:1(dx) = L(xi|yi, . . . , y1), i ≥ 1

• (Marginal distributions): µi|i−1:1(dy) = L(yi|yi−1, . . . , y1), i ≥ 1 with, by convention,
µ1|0:1(dy) = L(y1).

Theorem 1.3.1. The distributions νi|i−1:1(dx), νi|i:1(dx)µi|i:1(dx) can be recursively computed
using the three following operators:

1. Up-dating operator: For ν a probability measure on X , and y ∈ Y, ϕy(ν) is the probability
measure on X defined by:

ϕy(ν)(dx) =
f(y|x)ν(dx)

pν(y)
, with pν(y) =

∫

X

ν(dx)f(y|x). (1.3)

2. Prediction operator: For ν a probability measure on X , ψθ(ν) = νPθ is the probability on
X defined by:

νPθ(dx
′) = (

∫

X

ν(dx)pθ(x, x
′))dx′ (1.4)

3. Marginal operator: For ν a probability measure on X , we define the marginal distribution
on Y, pν(y)µ(dy) with pν(y) given above.

Then, the algorithm is as follows. Set ν1|0:1(dx) = L(x1). We have, for all i ≥ 1,

(up-dating) νi|i:1 = ϕyi
(νi|i−1:1), (prediction) νi+1|i:1 = νi|i:1Pθ,

(marginal) µi|i−1:1(dy) = pνi|i−1:1
(y)µ(dy).

Proof. To simplify notations, we denote by p(z1, . . . , zn) the density of any n-tuple (z1, . . . , zn)
of random variables and by p(zi|zl, . . . , zn) the conditional density of a random variable zi given
(zl, . . . , zn). We use the symbol ∝ to ignore constants in densities. For the first up-dating, it is
immediate that:

ν1|1:1(dx) ∝ ν1|0:1(dx)f(y|x).
Hence, ν1|1:1 = ϕy1(ν1|0:1). Then, we have

p(xi|yi, . . . , y1) ∝ p(xi, yi, . . . , y1),
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where

p(xi, yi, . . . , y1) =

∫

X i−1

gθ(x1)f(y1|x1)

(

i
∏

j=2

pθ(xj−1, xj)f(yj|xj)
)

dx1 . . . dxi−1

= p(xi, yi−1, . . . , y1)f(yi|xi) ∝ νi|i−1:1(dxi)f(yi|xi) ∝ ϕyi
(νi|i−1:1)(dxi).

For the prediction, we have

p(xi+1|yi, . . . , y1) ∝ p(xi+1, yi, . . . , y1),

with

p(xi+1, yi, . . . , y1) =

∫

X i

p(x1, . . . , xi, xi+1, y1, . . . , yi) dx1 . . . dxi

=

∫

X i

gθ(x1)f(y1|x1)

(

i
∏

j=2

pθ(xj−1, xj)f(yj|xj)
)

pθ(xi, xi+1)dx1 . . . dxi

=

∫

dxi p(xi, yi, . . . , y1)pθ(xi, xi+1) ∝ νi|i:1Pθ(dxi+1).

For marginals, we have

p(yi|yi−1, . . . , y1) ∝ p(y1, . . . , yi) =

∫

X i

p(x1, . . . , xi, y1, . . . , yi) dx1 . . . dxi

=

∫

X i

gθ(x1)f(y1|x1)

(

i−1
∏

j=2

pθ(xj−1, xj)f(yj|xj)
)

pθ(xi−1, xi)f(yi|xi)dx1 . . . dxi

=

∫

dxi p(xi, yi−1, . . . , y1)f(yi|xi) ∝
∫

νi|i−1:1(dxi)f(yi|xi).

Hence, the results. �

Let us stress that, although the steps of the prediction-filtering algorithm are simple, there
are few models where computations can be done explicitly. Let us define the two compound
operators:

Φy = ψθ ◦ ϕy, and Ψy = ϕy ◦ ψθ. (1.5)

The iterations of Φy define the algorithm for predictive distributions. We have

νi|i−1:1 = Φyi−1
◦ . . . ◦ Φy1(ν1|0:1).

The iterations of Ψy define the algorithm for filtering distributions:

νi|i:1 = Ψyi
◦ . . . ◦ Ψy2(ν1|1:1).

In filtering theory, authors generally concentrate on the filtering distibutions νi|i:1. For
statistical inference, the predictive distributions are more important because they give the
marginal distributions used to compute the likelihood.
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1.4 Likelihood.

1.4.1 Exact likelihood.

Several formulae are available for the exact likelihood of (y1, . . . , yn). First, we can integrate
the joint density of (x1, . . . , xn, y1, . . . , yn) with respect to x1, . . . , xn. This gives:

pn(θ, y1, . . . , yn) =

∫

Xn

dx1 . . . dxn gθ(x1)f(y1|x1)
n
∏

i=2

pθ(xi−1, xi)f(yi|xi). (1.6)

Setting

pn(θ, y1, . . . , yn|x1) = f(y1|x1)

∫

Xn−1

dx2 . . . dxn

n
∏

i=2

pθ(xi−1, xi)f(yi|xi) (1.7)

which is the conditional density of (y1, . . . , yn) given x1, we obtain:

pn(θ, y1, . . . , yn) =

∫

X

dx1 gθ(x1) pn(θ, y1, . . . , yn|x1). (1.8)

Finally, we have

pn(θ, y1, . . . , yn) = p1(θ, y1)
n
∏

i=2

pi(θ, yi|yi−1, . . . , y1), (1.9)

where pi(θ, yi|yi−1, . . . , y1) = pνi|i−1:1
(yi) is the conditional density of yi given (yi−1, . . . , y1).

The latter formula gives a recursive way of computing the exact likelihood provided that the
successive marginal distributions are explicitly computable.

1.4.2 The Leroux method.

Formula (1.8) suggests, following Leroux (1992), to consider other functions of (y1, . . . , yn)
and θ that can be used as contrast functions to build maximum contrast estimators. For g a
probability density on X , set

pgn(θ, y1, . . . , yn) =

∫

X

dx1 g(x1) pn(θ, y1, . . . , yn|x1). (1.10)

Analogously, we have:

pgn(θ, y1, . . . , yn) = pg1(θ, y1)
n
∏

i=2

pgi (θ, yi|yi−1, . . . , y1), (1.11)

where the successive terms of the product are computed via the filtering-prediction-marginal
algorithm starting with the initial density g. The interest of this approach is that, for a well-
chosen g, pgn may be much simpler to compute than the exact likelihood. Moreover, Leroux’s
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paper, completed by Genon-Catalot and Larédo (2006), proves that the estimators computed
by maximizing the pgn have good asymptotic properties like the exact maximum likelihood
estimator.

1.5 Asymptotic properties of the exact maximum likeli-

hood estimator and related estimators.

Denote by Θ the parameter set. Let θ̂n (resp. θ̃gn) be any solution of

pn(θ̂n, y1, . . . , yn) = sup
θ∈Θ

pn(θ, y1, . . . , yn),

(resp.
pgn(θ̃

g
n, y1, . . . , yn) = sup

θ∈Θ
pgn(θ, y1, . . . , yn).)

The study of θ̂n (and θ̃gn) is a difficult problem and several papers have dealt with the subject.
We may quote:

• Leroux (1992) proves the strong consistency of θ̂n and θ̃gn, under very mild assumptions,
when the state space of the hidden chain is finite.

• Bickel et al. (1998) prove the asymptotic normality of θ̂n also for X finite under additional
assumptions.

• Douc and Matias (2001) prove the strong consistency and the asymptotic normality of θ̂n
when X is compact (see also references given therein).

• Cheng Der Fuh (2006) claims that strong consistency and asymptotic normality of θ̂n for
a general state space X (including the non compact case) is proved. But, the paper is
obscure and contains errors.

• Genon-Catalot and Larédo (2006) study, in the spirit of Leroux’s paper, the likelihood
(1.8) and the contrast (1.10) for a non compact state space X and some related properties.
A special attention is given to the Kalman filter model. In particular, an adequate choice
of g in (1.10) simplifies considerably the formula and the study of the associated estimator
and gives a clear identifiability assumption. See also Genon-Catalot et al. (2003).

• Douc et al. (2009) give a proof of consistency of the exact maximum likelihood estimator
under general assumptions including the Kalman model and non linear state-space models.
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1.6 Appendix

Consider a one-dimensional diffusion process (xt, t ≥ 0) given by:

dxt = b(xt)dt+ σ(xt)dWt, x0 = η, (1.12)

where (Wt) is a Wiener process, η a real valued random variable independent of (Wt). Consider
the following assumptions:

• The functions b, σ : R → R are continuous.

• There exists an interval (l, r) such that b, σ are C1 on (l, r) and σ2(x) > 0 for all x ∈ (l, r).

• The scale density given by

s(x) = exp (−2

∫ x

x0

b(u)

σ2(u)
du), x0, x ∈ (l, r)

satisfies
∫

l
s(x)dx = +∞ =

∫ r
s(x)dx.

• The speed measure given by

m(x) =
1

σ2(x)s(x)

satisfies
∫ r

l
m(x)dx = M <∞.

• P (η ∈ (l, r)) = 1.

Then, equation (1.12) admits a unique strong solution, which is a positive recurrent diffusion
process on the state space (l, r). The probability π(dx) = M−1m(x)1(l,r)(x)dx is the unique
invariant probability of (1.12). If η has distribution π, (xt) is strictly stationary, ergodic and
β-mixing.
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Chapter 2

Gaussian diffusions and additive noise.

2.1 Introduction

In this second lecture, we consider a Gaussian diffusion, i.e. an Ornstein-Uhlenbeck process,
observed in discrete time with an additive perturbation. When the perturbation is Gaussian,
this model is the well-known Kalman filter, which is of common use in the field of filtering
(on-line estimation of the unobserved data). Likelihood inference in such models is also rather
standard. Nevertheless, it is indeed difficult and we intend to focus on some maybe less known
features of this model. In particular, we insist on the links with hidden Markov models and
the classical Gaussian likelihood theory. We give the expression of the exact likelihood and
some related contrasts which yield estimators asymptotically equivalent to the exact maximum
likelihood estimator. For simplicity, we consider the one-dimensional Ornstein-Uhlenbeck pro-
cess first and give indications for the multidimensional case later on. There is a huge number
of references on the subject. Therefore, it is difficult to give an exhaustive list. Since we rely
mostly on hidden Markov models, we refer to Brockwell and Davies (1991), Cappé et et al.
(2005) for general properties and to specific papers quoted in the text.

2.2 Model and observations.

Let (x(t), t ≥ 0) be given by:

dx(t) = αx(t)dt+ cdWt, x(0) = η (2.1)

with η a real random variable independent of the Brownian motion W . We assume that α < 0
and set θ = (α, c2) for the unknown parameter. This process admits a stationary distribution
πθ(dx) = N (0, σ2

s(θ)) with

σ2
s(θ) =

c2

2|α| , (2.2)
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and we assume that the distribution of η is the stationary distribution so that the process (x(t))
is strictly stationary, Gaussian and ergodic. Solving (2.1) yields, for all t, h ≥ 0:

x(t+ h) = eαhx(t) + Zt,h, (2.3)

where

Zt,h = ceα(t+h)

∫ t+h

t

e−αsdWs

is independent of Ft = σ(η,Ws, s ≤ t) and has distribution N (0, β2(h)) with

β2(h) = c2
e2αh − 1

2α
. (2.4)

Considering a sampling interval ∆, the observation times ti = i∆ and setting xi = x(i∆) for
the discretized process, we get:

xi = axi−1 + βηi, x0 = η, (2.5)

where a = eα∆, β = β(∆) and (ηi ≥ 1) is a sequence of i.i.d. random variables independent of
η with distribution N (0, 1). Note that obviously, for all ∆,

σ2
s(θ) =

β2

1 − a2
.

At time ti, the observation is
yi = xi + εi, (2.6)

where (εi) is a sequence of i.i.d. random variables with law N (0, γ2) independent of (x(t)).
We assume (for somplicity) that γ2 is known. The joint process (xi, yi) is a hidden Markov
model (H1-H2 are immediate). The hidden chain (xi) has state space X = IR, transition kernel
Pθ(x, dx

′) = N (ax, β2)(dx′) and transition density

pθ(x, x
′) =

1

β
√

2π
exp (−(x′ − ax)2

2β2
).

The observation space is Y = IR and F (x, dy) = f(y|x)dy with

f(y|x) =
1

γ
√

2π
exp (−(y − x)2

2γ2
).

2.3 Conditional distributions.

To compute the exact likelihood associated with the observation (y1, . . . , yn), we need to com-
pute the predictive distributions νθi|i−1:1(dx) = L(xi|yi−1, . . . , y1), i ≥ 1, from which we derive
the conditional densities

pi(θ, yi|yi−1, . . . , y1) = pνθ
i|i−1:1

(yi) =

∫

f(yi|x)νθi|i−1:1(dx).
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Usually, in the case of the Kalman filter model, these distributions are directly computed using
the fact that they are all Gaussian. Hence, one can compute directly the conditional means and
variances. This approach has a drawback. It cannot be generalized to non Gaussian models.
On the contrary, the hidden Markov model approach is general. Moreover, in the case of the
Kalman model, it is especially simple. Indeed, we only need to compute the up-dating operator
ϕy, the prediction operator ψθ. Then, the compound operator Φθ

y = ψθ ◦ϕy gives the algorithm
for predictive distributions. We recover the special feature of this model as these operators
evolve within the family of Gaussian distributions (with the convention that a Dirac mass δx
is considered as a Gaussian distribution with mean x and nul variance).

Proposition 2.3.1. • (Up-dating operator) If ν = N (m,σ2) and y ∈ IR, then, ϕy(ν) =
N (m̂(y), σ̂2) with

m̂(y) = σ̂2(
y

γ2
+
m

σ2
), σ̂2 =

σ2γ2

σ2 + γ2
.

• (Prediction operator) If ν = N (m,σ2), then ψθ(ν) = νPθ = N (m̄, σ̄2) with

m̄ = am, σ̄2 = β2 + a2σ2.

• (Marginal operator) If ν = N (m,σ2), pν(y) = N (m,σ2 + γ2).

Proof. These results are elementary. For the first and third points, consider (X, Y ) such that
X ∼ ν = N (m,σ2) and given X = x, Y ∼ N (x, γ2), then, ϕy(ν) is exactly the conditional
distribution of X given Y = y and pν(y)dy is the marginal distribution of Y . For the second
point, consider (X,X ′) with X ∼ ν = N (m,σ2) and X ′ = aX + η1 with η1 ∼ N (0, β2)
independent of X, then ψθ(ν) is the distribution of X ′. �

Corollary 2.3.1. (Operator for predictive distributions) If ν = N (m,σ2), then, Φθ
y(ν) = ψθ ◦

ϕy(ν) = N (m̃, σ̃2) with

m̃ := Φθ
y(m,σ

2) = a
(

mδ(σ2) + y(1 − δ(σ2))
)

, with δ(σ2) =
γ2

γ2 + σ2
,

σ̃2 := Φθ(σ2) = β2 + a2σ2δ(σ2)

The corollary is an obvious consequence of the previous proposition. Let us stress some
specific features which appear now. First, since only Gaussian distributions are involved, they
are completely specified by their mean and variances. Hence, the operators acting on measures
are simplified into operators acting on IR × IR+. This corresponds to the definition of a finite-
dimensional filter. Moreover, note that the variance of Φy(ν) only depends on σ2 and neither
on m nor on y). Now, we state the following useful lemma.

Lemma 2.3.1. The function

v → Φθ(v) = β2 + a2vδ(v) = β2 + a2v
γ2

γ2 + v
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giving the variance of the prediction algorithm is increasing from I = [β2, β2

1−a2 ] onto I and

Lipschitz with constant a2. Consequently, Φθ admits a unique fixed point σ2
∞(θ) ∈ I defined as

the solution of
Φθ(σ2

∞) = σ2
∞(θ).

Moreover, for all v ∈ I, the n-th iterate Φθ ◦ Φθ ◦ . . .Φθ(v) tends with exponential rate a2n to

σ2
∞(θ) as n tends to infinity. In particular, this holds for v = β2

1−a2 .

The proof is elementary and omitted. The fixed point can be explicitly computed since it
solves a simple second degree equation. We do not need its explicit expression.

Now, for further use, we introduce the dependence on the inital distribution (distribution of
x1) in the notations. We denote by νθi|i−1:1(ν) the conditional distribution of xi given yi−1, . . . , y1

when L(x1) = ν = νθ1|0:1(ν). With ν = N (m,σ2), we have:

νθi|i−1:1(ν) = N (mi|i−1:1(θ, (m,σ
2)), σ2

i|i−1:1(θ, σ
2)) = Φθ

yi−1
◦ . . . ◦ Φθ

y1
(ν). (2.7)

The predictive conditional mean

IEθ
ν(xi+1|yi, . . . , y1) = mi+1|i:1(θ, (m,σ

2)) = Φθ
yi

(mi|i−1:1(θ, (m,σ
2))), m1|0:1(θ, (m,σ

2)) = m
(2.8)

depends on the inital distribution (through (m,σ2)) and the previous observations (yi, . . . , y1).
And, the conditional variance of xi+1 given yi, . . . , y1

σ2
i+1|i:1(θ, σ

2) = Φθ(σ2
i|i−1:1(θ, σ

2), σ2
1|0:1(θ, σ

2) = σ2 (2.9)

is deterministic. Using Lemma 2.3.1, it converges as i tends to infinity to the fixed point σ2
∞(θ)

of Φθ. Finally, the conditional distribution of yi given yi−1, . . . , y1 when the inital distribution
is ν = N (m,σ2) is equal to

p
(m,σ2)
i (θ, yi|yi−1, . . . , y1) = N (mi|i−1:1(θ, (m,σ

2)), γ2 + σ2
i|i−1:1(θ, σ

2)) (2.10)

The distribution of y1 is equal to

p
(m,σ2)
1 (θ, y1) = N (m1|0:1(θ, (m,σ

2), γ2 + σ2
1|0:1(θ, σ

2)) = N (m, γ2 + σ2).

2.4 Exact likelihood and related contrasts.

If the initial distribution is ν = N (m,σ2), then the exact likelihood is

p(m,σ2)
n (θ, y1, . . . , yn) = p

(m,σ2)
1 (θ, y1)

n
∏

i=2

p
(m,σ2)
i (θ, yi|yi−1, . . . , y1).
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Therefore, under our assumptions, the exact likelihood corresponds to ν = πθ, i.e. (m,σ2) =
(0, σ2

s(θ)). For the exact likelihood, we simply omit the superscript in the notation and write

p(0,σ2
s(θ))

n (θ, y1, . . . , yn) = pn(θ, y1, . . . , yn).

The exact maximum likelihood estimator θ̂n is computed as a maximizer of the above function.

Nevertheless, the function p
(m,σ2)
n (θ, y1, . . . , yn) can be considered as a contrast function and the

associated maximum contrast estimator can be studied.

Let us stress the fact that the expression of the exact likelihood is far from simple. Indeed,
we have:

pn(θ, y1, . . . , yn) ∝
n
∏

i=1

(γ2 + σ2
i|i−1:1(θ))

−1/2 exp [−(yi −mi|i−1:1(θ))
2

2(γ2 + σ2
i|i−1:1(θ))

], (2.11)

where we have set for simplicity:

mi|i−1:1(θ) = mi|i−1:1(θ, (0, σ
2
s(θ)) = Φθ

yi−1
◦ . . . ◦ Φθ

y1
((0, σ2

s(θ)))),

σ2
i|i−1:1(θ) = σ2

i|i−1:1(θ, σ
2
s(θ)) = Φθ ◦ . . . ◦ Φθ(σ2

s(θ)).

The iterations can be solved explicitly but lead to rather complicated sums. Nevertheless, the
computation of the exact maximum likelihood estimator is numerically feasible. The score
function and the hessian can be recursively computed.

Consistency and asymptotic normality with rate
√
n hold for the exact maximum likelihood

estimatior. This is evidently well known and can be obtained by a classical approach for
Gaussian likelihoods (see below).

Following Genon-Catalot and Larédo (2006), instead of looking at the exact likelihood,

we can consider the contrasts p
(m,σ2)
n (θ, y1, . . . , yn) for (m,σ2) 6= (0, σ2

s(θ)). It can be proved
that the associated maximum contrast estimators are asymptotically equivalent to the exact
maximum likelihood estimator whatever (m,σ2) provided that σ2 > 0. Consequently, we may
choose in a convenient way the values m,σ2 and study the associated contrast instead of the
exact likelihood. The choice

m = 0, σ2 = σ2
∞(θ)

leads to an noteworthy simplification. We denote by p̃n(θ, y1, . . . , yn) = p
(0,σ2

∞(θ))
n (θ, y1, . . . , yn)

the contrast corresponding to this choice. Let us note that, since the initial variance is equal
to the fixed point of Φθ, this value remains unchanged along the iterations. As a consequence,
the algorithm for the mean is simplified into:

Hθ
y (m) := Φθ

y(m,σ
2
∞(θ)) = a

(

y

γ2
+

m

σ2
∞(θ)

)

σ2
∞(θ)γ2

σ2
∞(θ) + γ2

.

Let us set

ρ =
σ2
∞(θ)

σ2
∞(θ) + γ2

∈ (0, 1).
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Then,
Hθ
y (m) = a(ρy +m(1 − ρ)).

Hence,

Hθ
yi−1

◦ . . . ◦Hθ
y1

(0) =
i−2
∑

j=0

aρ(a(1 − ρ))jyi−1−j = xi(θ, yi−1, . . . , y1).

Thus

p̃n(θ, y1, . . . , yn) ∝ (γ2 + σ2
∞(θ))−n/2 exp

(

−
n
∑

i=1

(yi − xi(θ, yi−1, . . . , y1))
2

2(γ2 + σ2
∞(θ))

)

.

This expression is much easier to handle. In particular, it allows to obtain an explicit and simple
representation of the limit of the normalized log-likelihood. For details and futher results, we
refer to Genon-Catalot et al. (2003) and Genon-Catalot and Larédo (2006).

2.5 ARMA property and consequences.

We establish the links with the standard likelihood theory for stationary Gaussian processes.
For this, refer to e.g. Dzhaparidze and Yaglom (1983), Dacunha-Castelle and Duflo (1986),
Brockwell and Davies (1991).

Proposition 2.5.1. The process (yi) is ARMA(1, 1). Its spectral density is equal to

fθ(λ) =
β2 + γ2(1 + a2) − 2aγ2 cosλ

1 + a2 − 2a cosλ
.

Proof. Setting ξi = yi−ayi−1 = βηi+εi−aεi−1, we see that Cov(ξi, ξi+k) = 0 for k ≥ 1. Thus,
(ξi) is MA(1). The ARMA property follows. Since Varξi = β2 + γ2(1 + a2) and Cov(ξi, ξi+1) =
−aγ2, using the ARMA property, we deduce the spectral density. �

This simple result has some important consequences. First, it provides another way to de-
duce the asymptotic behaviour of the exact maximum likelihood estimator since the asymptotic
behaviour of exact m.l.e. in stationary ARMA Gaussian processes is well known.

First, after some computations, we have the following identifiablility property:

∀λ, fθ(λ) = fθ′(λ) ⇒ θ = θ′.

Then, setting θ = (θ1, θ2) (with θ1 = a, θ2 = β2), the matrix

I(θ) =

(∫ π

−π

f−2
θ (λ)

∂fθ
∂θi

(λ)
∂fθ
∂θj

(λ)
dλ

2π

)

1≤i,j≤2

is the asymptotic Fisher information matrix. Under some additional standard assumptions,√
n(θ̂n − θ) converges in distribution to N (0, I−1(θ)).
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For stationary Gaussian processes, the Whittle approximation of the likelihood defines a
contrast which yields minimum contrasts estimators which are asymptotically equivalent to the
exact maximum likelihood estimator. Let us define the periodogramm:

In(λ) =
1

n
|

n
∑

j=1

yj exp (−ijλ)|2.

The Whittle contrast is given by:

Un(θ) =

∫ π

−π

(

log fθ(λ) +
In(λ)

fθ(λ)

)

dλ

2π
.

The associated minimum contrast estimators are defined as minimisers of Un(θ).

2.6 Non Gaussian noises.

Suppose that the noise εi is non Gaussian. Then, it is possible to use the Gaussian likelihood
as a contrast. This yields consistent and asymptotically Gaussian estimators which are much
better than simple moment estimators. This is demonstrated e.g. in Ruiz (1994).

2.7 Multidimensional extension.

Consider a d-dimensional Ornstein-Uhlenbeck process (X(t)) satisfying:

dX(t) = AX(t)dt+ ΣdWt, X(0) = η,

with η a IRd-valued random variable, independent of the Brownian motion W of IRd and A is
a (d, d) matrix. Assume that the observations are:

Y (ti) = HX(ti) + εi

where H is a known (k, d)-matrix εi is a sequence of i.i.d. variables with law Nk(0, Q), inde-
pendent of (X(t)).

We make some simplifying assumptions. Assume that the matrix A is diagonalisable with
negative eigenvalues (λi, i = 1, . . . , d). Denote by P a matrix of eigenvectors such that P−1AP =
D := diag((λi, i = 1, . . . , d). Then, the process Z(t) = P−1X(t) satifies:

dZ(t) = DZ(t)dt+ ΓdWt, Γ = P−1Σ.

Since (X(t)) is not observed, we can change the model into:

Yi = Y (ti) = JZ(ti) + εi, J = HP.
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It is worth noting that each column of P (eigenvector of P ) is defined up to a mulitiplicative
constant. In some cases, P can be chosen such that J = HP does not depend on unknown
parameters. Let us assume that this holds. Therefore, the unknown parameters are θ = (λi, i =
1, . . . , d, γi,j, i, j = 1, . . . , d) where the γi,j’s are the elements of Γ.

The discretization of (Z(t)) standardly yields a AR(1) process Zi = Z(i∆) such that

Zi+1 = exp (D∆)Zi + exp (D(i+ 1)∆)

∫ (i+1)∆

i∆

exp (−Ds) ΓdWs.

Here, the matrix exp (D∆) = diag(exp (λi∆), i = 1, . . . , d) is diagonal. The kernel of the hidden
chain (Zi) is

Pθ(z, dz
′) = N (exp (D∆)z, R)

where

R =

∫ ∆

0

exp (Du) ΓΓ′ exp (Du)du =

(

αi,j
e(λi+λj)∆ − 1

λi + λj

)

,

where the αi,j’s are the elements of ΓΓ′. The process (Z(t)) admits a unique stationary distri-
bution equal to the law N (0, V ) with

V =

∫ +∞

0

exp (Du) ΓΓ′ exp (Du)du =

( −αi,j
λi + λj

)

.

The conditional distribution of Yi given Zi = z is the distribution

F (z, dy) = N (Jz,Q)(dy).

Hence, the up-dating and prediction operators can be easily computed. This allows to obtain
the exact likelihood. We state the proposition analogous to Proposition 2.3.1:

Proposition 2.7.1. • (Up-dating operator) If ν = Nd(m,K) and y ∈ IRk, then ϕy(ν) =

Nd(m̂(y), K̂) with

m̂(y) = m+KJ ′(JKJ ′ +Q)−1(y − Jm), K̂ = K −KJ ′(JKJ ′ +Q)−1JK.

• (Prediction) If ν = Nd(m,K), then ψθ(ν) = νPθ = Nd(m̄, K̄) with

m̄ = exp (D∆)m, K̄ = exp (D∆)K exp (D∆) +R.

• (marginal operator) If ν = Nd(m,K), then pν(y) = Nk(Jm, JKJ
′ +Q).

The algorithm of predictive distributions is ruled by the compound operator Φy = ψθ ◦ ϕy.
The exact likelihood is obtained recursively. The score function and the Hessian are also
obtained recursively.

Note that the following matrix relation holds:

(

I +KJ ′Q−1J
)−1

= I −KJ ′(JKJ ′ +Q)−1J.
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(Compare with the one-dimensional relation 1
1+α

x

= 1 − α
α+x

).

In Favetto and Samson (2010), a complete study of a partially observed model with biolog-
ical motivation is treated. The unobserved process is a two-dimensional Ornstein-Uhlenbeck
process and the observation is the sum of the components to which a noise is added. A special
attention is given to the recursive computation of the score function and the Hessian and to
the identifability of parameters.

Note that Pedersen (1994) gives a description of the computation of the likelihood in the
general case.
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2.8 Appendix

We detail the iterations of the operator Φθ
y for predictive distributions given in Corollary 2.3.1.

Starting with ν = N (m,σ2), let us set:

m1|0:1 = m, σ2
1|0:1 = σ2,
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mi|i−1:1(m,σ
2) = Φθ

yi−1
◦ . . . ◦ Φθ

y1
(m,σ2), σ2

i|i−1:1(σ
2) = Φθ ◦ . . . ◦ Φθ(σ2)

δi =
γ2

γ2 + σ2
i|i−1:1(σ

2)
.

Then,

mi|i−1:1(m,σ
2) = ai−1δiδi−1 . . . δ1m+ a

i−1
∑

l=1

yi−l(1 − δi−l)a
l−1δi−1δi−2 . . . δi−l+1 .

The conditional distributions of yi given yi−1, . . . , y1 is the Gaussian distribution with mean
mi|i−1:1(m,σ

2) and variance σ2
i|i−1:1(σ

2) + γ2.

As seen above, if the iterations start with m = 0 and σ2 = σ2
∞(θ), the expressions are

considerably simpler as δi = δ = 1 − ρ remains constant.
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Chapter 3

Diffusions with multiplicative noise.

3.1 Introduction

Consider a one-dimensional diffusion process (x(t), t ≥ 0) and assume that the observations
taken at times 0 ≤ t1 < . . . < tn < . . . are of the form: yi = x(ti)εi where (εi) is a sequence
of i.i.d. random variables independent of the process (x(t)). The noise (εi) is multiplicative.
As it is natural for scale perturbations, we assume that (x(t)) is non negative. As for the
noise, we may assume that the εi’s are nonnegative or signed and symetric. We present below
models for which the up-dating, prediction and marginal operators can be computed explicitly.
Consequently, the exact likelihood is also explicit. As for the Kalman model, explicit compu-
tations are obtained for a specific class of diffusion models and for a specific class of noises
distributions. For this lecture, we refer to Genon-Catalot (2003), Genon-Catalot and Kessler
(2004), Chaleyat-Maurel and Genon-Catalot (2006), Comte et al. (2007).

3.2 Computable filters.

Computations of the conditional distributions of x(ti), x(ti+1) or yi+1 given y1, . . . , yi rely on
iterations of the up-dating, prediction and marginal operators. These iterations are rapidly
intractable unless both the up-dating and the prediction operators evolve within a relatively
simple class of distributions on the state space of the hidden process. The ideal stituation is
when this class is a parametric family, i.e. a family of distributions specified by a fixed number
of parameters. This is the case of the Kalman filter model: the up-dating and prediction
operators both evolve within the family of Gaussian distributions. Hence, it is enough to
specify recursively the means and variances. Such an ideal situation is not often encountered.
Hence, the idea is to find a larger class built using mixtures of parametric distributions.

Recall the general notations. We have an unobserved Markov chain (xi) (which we have
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supposed to be a regular discrete sampling of a diffusion process) with state space X and
transition kernel Pθ(x, dx

′). Observations yi are such that L(yi|xi = x) = f(y|x)µ(dy). The
up-dating operator acting on distributions on X is the mapping:

ν → ϕy(ν) ∝ f(y|x)ν(dx).

The proportionality coefficient is the marginal distribution pν(y). The prediction operator ψθ
is the mapping:

ν → ψθ(ν) = νPθ.

In Chaleyat-Maurel and Genon-Catalot (2006), sufficient conditions are exhibited in order to
obtain a “computable filter” model. We detail these conditions now.

Proposition 3.2.1. Let F = {νc, c ∈ C} be a parametric family of distributions on X where
C ⊂ IRp is a set of parameters (and c 6= c′ implies νc 6= νc′). Consider the enlarged class

F̄f = {ν =
L
∑

i=0

αiνci , L ∈ IN, ci ∈ C, αi ≥ 0, i = 0, 1, . . . , L,
L
∑

i=0

αi = 1}

composed of finite mixtures of distributions of F and the following conditions:

• (C1) F is a conjugate class for the family y → f(y|x), x ∈ X .

• (C2) If ν ∈ F , then ψθ(ν) = νPθ ∈ F̄f .

Then, if ν ∈ F̄f , then, for all y, ϕy(ν) and ψθ(ν) both belong to F̄f .

Condition (C1) means that, if c ∈ C, then ϕy(νc) belongs to F , i.e.:

ϕy(νc) = νϕy(c) (3.1)

where ϕy(c) ∈ C. Since we can identify a distribution νc to its parameter c, the operator ϕy is
identified to the mapping:

c ∈ C → ϕy(c) ∈ C. (3.2)

Condition (C1) is classical in Bayesian statistics for obtaining explicit Bayes estimators. Indeed,
interpreting ν as a prior on x for the parametric family of densities (y → f(y|x), x ∈ X ), ϕy(ν)
is the corresponding posterior distribution.

Condition (C2) means that, if c ∈ C, then ψ(νc) is a finite mixture of the form

ψθ(νc) =
Lc
∑

i=0

αi(c)ντi(c), (3.3)

where Lc, αi(c), τi(c) depend on θ. Hence, the image of νc by the prediction operator ψθ is not
an element of F , but an element of F̄f . This is why we are not in the ideal situation of a finite-
dimensional filter and we need an extension of this notion, namely, the notion of computable
filter.
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The proof of Proposition 3.2.1 is simple algebra (using (3.1)-(3.3)) and omitted (see
Chaleyat-Maurel and Genon-Catalot (2006)). Nevertheless, the result is important since it
induces a recursive algorithm to compute the filtering or predictive distributions. The diffi-
culty lies in finding the adequate class F . This is what we give in our examples.

Let us stress some facts. First, a distribution ν =
∑L

i=0 αiνci in the class F̄f is specified
by the finite sequence of parameters (L, α0, . . . , αL, c0, c1, . . . , cL). Hence, it is “computable”.
Along the iterations of the prediction and up-dating operators, all these parameters will be
up-dated. This includes the length L of the mixture. Hence, the situation is not the same as
in the Kalman filter. The number of parameters to be specified may change along iterations.
In this sense, a “computable filter” is not a finite-dimensional filter.

It is also important to note that (C1) only concerns the kernel f(y|x)µ(dy) whereas (C2)
only concerns the kernel Pθ(x, dx

′). Therefore, they may be checked separately.

3.3 Hidden diffusion model. Prediction operator.

Now, we give a diffusion process (x(t)) and a class of distributions F such that condition (C2)
is fulfilled.

Consider the one-dimensional diffusion process (xt, t ≥ 0) described by:

dx(t) = (2θx(t) + δc2)dt+ 2c
√

x(t)dWt, x(0) = η, (3.4)

with η a random variable independent of the Brownian motion (Wt). When η is nonnegative,
θ ∈ IR, σ > 0, δ ≥ 0, x(t) is uniquely defined and x(t) ≥ 0 for all t ≥ 0. First, we give a
representation of (x(t)) when δ is a positive integer.

Proposition 3.3.1. Let δ ≥ 1 an integer, and consider (ξit, i = 1, . . . , δ) δ i.i.d. Ornstein-
Uhlenbeck processes satifying

dξit = θξitdt+ cdW i
t , ξ

i
0 = xi,

where (W i, i = 1, . . . , δ) are independent Wiener processes, xi, i = 1, . . . , δ are real values.
Then, setting x(t) =

∑δ
i=1(ξ

i
t)

2,

dx(t) = (2θx(t) + δc2)dt+ 2c
√

x(t)dBt, x(0) =
δ
∑

i=1

(xi)2,

where (Bt) is a Wiener process.

Proof. Applying the Ito fromula, we get:

dx(t) = (2θx(t) + δc2)dt+ 2c
δ
∑

i=1

ξitdW
i
t .
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Consider B̃ a Wiener process independent of (W i, i = 1, . . . , δ) and set

Bt =

∫ t

0

1(x(s)>0)

∑δ
i=1 ξ

i
sdW

i
s

x1/2(t)
+

∫ t

0

1(x(s)=0)dB̃s.

We find < B >t= t, so B is a Wiener process and

√

x(t)dBt =
δ
∑

i=1

ξitdW
i
t ,

which gives the result.�

For general positive δ, the process (x(t) has been largely popularized by its use for modelling
interest rate data (see Cox et al. (1985)). Moreover, the CIR process is used to model the
volatility in the stochastic volatility model proposed by Heston (1993). In the latter paper, a
financial asset price S(t) is described by:

d logS(t) =
√

x(t)dBt

with (Bt) a Wiener process independent of (x(t)). Therefore,

log2 S((i+ 1)∆)

S(i∆)
≃ x(i∆)εi,

where εi = (B(i+1)∆ − Bi∆)2. However, with such noises distribution, it is not possible to get
explicit computations of the filters. This is why we introduce below other distributions for the
noises.

Let us introduce

a(t) = eθt, β(t) = c

(

eθt − 1

2θ

)1/2

. (3.5)

The transition density of (x(t)) can be written as a mixture of distributions: for x ≥ 0,

pt(x, x
′) =

∑

i≥0

wi

(

a2(t)x

β2(t)

)

gi,β(t)(x
′), (3.6)

where, for i ≥ 0, the weights wi are given by

u ∈ IR, wi(u) = exp (−u/2) (u/2)i/i! (3.7)

and the function

gi,σ(x) = 1(x>0)
1

σ
√

2π
exp (− x

2σ2
)

xi−1+ δ
2

C2i+δ−1σ2i+δ−1
, (3.8)

is the density of a Gamma distribution G(i + δ/2, 1/2σ2) with scale parameter 1/2σ2 and
location parameter (i + δ/2). The normalising constant Ca, is simply the absolute moment of
order a of a Gaussian standard variable, i.e. , for a ≥ 0 or b ≥ 1/2,

Ca = IE(|X|a) =
2a/2√
π

Γ(
a+ 1

2
), Γ(b) =

√
2π

2b
C2b−1
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for X a standard Gaussian variable (Γ is the usual Gamma function). The transition density

pt(x, x
′) is exactly a β2(t)χ′2(a

2(t)x
β2(t)

, δ).

For δ = 1, x(t) = ξ2
t is the square of an Ornstein-Uhlenbeck process. When θ < 0,

this process admits a unique stationary distribution πϑ equal to the distribution of ξ2 with
ξ ∼ N (0, σ2

s(ϑ)) and

σ2
s(ϑ) =

c2

2|θ| . (3.9)

The invariant distribution is therefore

πϑ(dx) = 1(x>0)
1

σs(θ)
√

2π
exp (− x

2σ2
s(θ)

) x−
1
2dx = G(1/2,

1

2σ2
s(θ)

).

When δ ≥ 2 and θ < 0, x(t) is positive recurrent on (0,+∞). In this case, its unique stationary
distribution obtained by normalizing its speed measure is πϑ(dx) = G(δ/2, 1

2σ2
s(θ)

)).

Let us note that formula (3.6) still holds in the case x = 0 and we have:

pt(0, x
′) = g0,β(t)(x

′).

The special structure of the transition density of (x(t)) suggests to introduce the class

F δ = {νi,σ = gi,σ(x)dx, i ∈ IN, σ ≥ 0}, (3.10)

where, by convention νi,0 = δ0 for all i (note that, as σ → 0, νi,0 ⇒ δ0). The stationary
distribution belongs to F δ and corresponds to i = 0, σ = σs(ϑ). We define the extended class
F̄ δ as the class of mixtures of distributions νi,σ having the same scale parameter:

F̄ δ = {ν = να,σ =
∑

i≥0

αiνi,σ, α = (αi), αi ≥ 0, ,
∑

i≥0

αi = 1, σ ≥ 0}. (3.11)

The sub-class F̄ δ
f is composed of all distributions να,σ having finite-length mixture parameter,

i.e. such that
L(α) = sup{i;αi > 0} <∞.

Note that the transition density belongs to the class F̄ δ of infinite mixtures.

Now, we state the result concerning the prediction operator.

Proposition 3.3.2. (Prediction operator) Let ϑ = (θ, c2, δ) denote the unknown parameters.
For ∆ > 0, let P ϑ

∆ denote the transition operator of (x(t)) with step ∆. The prediction operator
ψϑ satifies the following property.

• If νi,σ belongs to F δ with σ > 0, then

ψϑ(νi,σ) = νi,σP
ϑ
∆ =

i
∑

l=0

αi,σl νl,τ(σ),
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with τ 2(σ) = β2(∆) + a2(∆)σ2 and for l = 0, . . . , i,

αi,σl =

(

i

l

)(

1 − β2(∆)

τ 2(σ)

)l(
β2(∆)

τ 2(σ)

)i−l

.

If σ = 0, then, ψϑ(δ0) = ν0,β(∆).

• If ν = να,σ belongs to F̄ δ
f with σ > 0,

ψϑ(να,σ) = να,σP
ϑ
∆ =

∑

l≥0

ᾱlνl,τ(σ)

with, for l ≥ 0,

ᾱl = ᾱl(α, σ) =
∑

i≥l

αiα
i,σ
l .

Morever, L(ᾱ) = L(α). If σ = 0, then, ψϑ(δ0) = ν0,β(∆) and L(ᾱ) = 0.

Hence, condition (C2) holds for the class F δ and the extended class F̄ δ
f .

Note that the moments of a distribution να,σ are obtained easily: for r ≥ 0,

∫

xrνα,σ(dx) = σ2r
∑

i≥0

αi
C2(i+r)+δ−1

C2i+δ−1

. (3.12)

It can be simplified using the classical relation Ca+1 = aCa−1. In particular, for r = 1,

∫

xνα,σ(dx) = σ2
∑

i≥0

αi(2i+ δ) = σ2(δ + 2
∑

i≥0

iαi).

For all r ≥ 1,

∫

xrνα,σ(dx) = σ2r
∑

i≥0

αi([2i+ 2(r − 1) + δ][2i+ 2(r − 2) + δ] . . . [2i+ δ]. (3.13)

The variance is given by:

Varνα,σ = σ4[2δ + 4
∑

i≥0

i(i+ 1)αi − 4(
∑

i≥0

iαi)
2].

3.4 Noise distribution. Up-dating operator.

Recall that we observe yi = xiεi with xi = x(i∆). In order to fulfill condition (C1), we choose
the noise distribution as follows. The random variables εi are chosen to have Inverse Gamma
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distribution InvG(k, λ) with scale parameter λ and location parameter k which must be a
positive integer, i.e. the distribution of yi given xi = x has density (w.r.t. dy)

f(y|x) = 1y>0e
−λx

y
xkλk

yk+1Γ(k)
. (3.14)

This is the density of λx/G(k, 1).

It is worth noting that IE(εr) <∞ holds if and only if r < k. In this case,

IE(εr) =
λr Γ(k − r)

Γ(k)
.

Proposition 3.4.1. (up-dating and marginal operators)

• If νi,σ belongs to F δ and σ > 0, then, for all positive y,

ϕy(νi,σ) = νi+k,ϕy(σ)

with
1

ϕ2
y(σ)

=
1

σ2
+

2λ

y
.

If y = 0 or σ = 0, ϕy(ν) = δ0. Hence, the following holds, for all non negative y:

ϕ2
y(σ) =

σ2y

y + 2λσ2
.

The corresponding marginal distribution has density (when σ > 0):

pνi,σ
(y) =

λk

Γ(k)

C2(k+i)+δ−1

C2i+δ−1

σ2k

y

yi+
δ
2

(y + 2λσ2)i+k+
δ
2

If y or σ equal 0, then, the marginal distribution is δ0.

• If ν = να,σ belongs to F̄ δ
f ,

ϕy(ν) =
∑

i≥0

α̂i νi,ϕy(σ)

where

α̂i = α̂i(α, σ) ∝ 1i≥k αi−k
C2i+δ−1

C2(i−k)+δ−1

(

ϕ2
y(σ)

σ2

)i−k

Morover, L(α̂) = L(α) + k except if y = 0 in which case ϕy(ν) = δ0 ( with α̂(k) = 1).

For the marginal distribution, we have, when σ > 0,

pν(y) =
∑

i≥0

αipνi,σ
(y).

Condition (C1) holds for the class F δ and the extended class F̄ δ
f .
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3.5 Algorithm for predictive distributions.

Now, we have to compute the iterations of Φϑ
y = ψϑ ◦ϕy. By the previous paragraph, when the

distribution of x1 belongs to the class F̄ δ
f , for all i, the distributions νi|i−1:1(dx), νi|i:1(dx) also

belong to the class F̄ δ
f . It is therefore enough to specify these distributions by their parameters

αi|i−1:1, αi|i:1 (mixture parameters), Li|i−1:1 = L(αi|i−1:1), Li|i:1 = L(αi|i:1) (lengths of the mixture
parameters), σi|i−1:1, σi|i:1 (scale parameters)

Proposition 3.5.1. Assume that ν1|0:1 belongs to the class F̄ δ
f . The scale and mixture and

lengths parameters of νi|i−1:1(dx), νi|i:1(dx) can be recursively computed as follows.

• (up-dating) For i ≥ 1,

σ2
i|i:1 =

σ2
i|i−1:1yi

yi + 2λσ2
i|i−1:1

.

For j ≥ 0,

αi|i:1(j) ∝ 1j≥k αi|i−1:1(j − k)
C2j+δ−1

C2(j−k)+δ−1

(

σ2
i|i:1

σ2
i|i−1:1

)j−k

.

If yi 6= 0,
Li|i:1 = Li|i−1:1 + k.

If yi = 0, αi|i:1(k) = 1 and Li|i:1 = k.

• (prediction)
σ2
i+1|i:1 = β2(∆) + a2(∆)σ2

i|i:1.

For j ≥ 0,

αi+1|i:1(j) =
∑

l≥j

αi|i:1(l) κ
(l)
j (∆)

with

κ
(l)
j (∆) =

(

l

j

)

(

1 − β2(∆)

σ2
i+1|i:1

)j (

β2(∆)

σ2
i+1|i:1

)l−j

.

If σ2
i|i:1 > 0, Li+1|i:1 = Li|i:1. If σ2

i|i:1 = 0, Li+1|i:1 = 0.

• (Marginal distributions):

pνi|i−1:1
(yi) = pi(yi|yi−1, . . . , y1) =

Li|i−1:1
∑

j=0

αi|i−1:1(j)pνj,σi|i−1:1
(yi).

Since it always hold that σ2
i|i−1:1 ≥ β2(∆) > 0, this distribution always has density.
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A special attention must be given to the length of the mixture parameters. Starting with a
length L1|0:1, if y1 6= 0, L1|1:1 = L1|0:1 + k and L2|1:1 = L1|1:1 = L1|0:1 + k. If y1 = 0, α1|1:1(k) = 1
and α2|1:1(0) = 1 which implies L2|1:1 = 0. More generally,

Li|i−1:1 ≤ L1|0:1 + (i− 1)k.

Each time a new observation is equal to 0, the filtering distribution is δ0. Then, the length
of the mixture parameter in the predictive distribution is reset to 0 and the scale parameter
is reset to β2(∆) (this means that the predictive distribution is not a mixture and is simply a
Gamma G(δ/2, 1/2β2(∆)). Thus, the length of the mixture parameter may be much smaller
than the above upper bound. This can be seen on simulated data where only two or three
mixture parameters are significantly non nul.

The scale parameter of the predictive distributions is bounded from below and positive.
The scale parameter of the filtering distributions is not bounded from below and may be nul.

It must be stressed that the scale parameter of predictive distributions evolve in a relatively
simple way. Indeed, we have

σ2
i+1|i:1 = Fyi

(σ2
i|i−1:1) with Fy(v) = β2(∆) + a2(∆)

vy

y + 2λv
.

When θ < 0 (a2(∆) < 1), the function Fy is increasing from I = [β2(∆), β2(∆)
1−a2(∆)

] onto I and

Lipschitz with constant a2(∆). This allows to obtain stability properties for the scale parameter
σ2
i|i−1:1 (see Genon-Catalot and Kessler (2004)).

Using the formula for moments (3.12), we obtain:

IE(xi|yi−1, . . . , y1) = σ2
i|i−1:1



δ + 2

Li|i−1:1
∑

j=0

jαi|i−1:1(j)



 ,

IE(xi|yi, . . . , y1) = σ2
i|i:1



δ + 2

Li|i:1
∑

j=0

jαi|i:1(j)



 .

The other conditional moments are obtained analogously.

3.6 Exact likelihood.

Let us now assume that θ < 0 and either δ = 1 (x(t) is the square of an Ornstein-Uhlenbeck
process) or δ ≥ 2 (x(t) is positive recurrent on (0,+∞)). Moreover, let us assume that the
initial variable η has the stationary distribution πϑ = G(δ/2, 1

2σ2
s(ϑ)

)). Hence, the computation
of the predictive distributions starts with

ν1|0:1 = πϑ = ν0,σs(ϑ)

33



which belongs to F̄ δ
f and has parameters L1|0:1 = 0 and σ = σs(ϑ). The process (xi, yi) is

strictly stationary. The exact likelihood is computed by:

pn(ϑ, y1, . . . , yn) = p1(ϑ, y1)
n
∏

i=2

pi(ϑ, yi|yi−1, . . . , y1)

where p1(ϑ, y1) is the density of y1 (and of all yi’s) and is equal to

p1(ϑ, y1) = pν1|0:1(y1) = pν0,σs(ϑ)
(y1) =

λk

Γ(k)

C2k+δ−1

Cδ−1

σ2k
s (ϑ)y

δ
2
−1

(y + 2λσ2
s(ϑ))k+

δ
2

and
pi(ϑ, yi|yi−1, . . . , y1) = pνi|i−1:1

(yi) =
∑

0≤j≤Li|i−1:1

αi|i−1:1(j)pνj,σi|i−1:1
(yi)

where Li|i−1:1 ≤ (i− 1)k and

pνj,σi|i−1:1
(yi) =

λk

Γ(k)

C2(k+j)+δ−1

C2j+δ−1

σ2k
i|i−1:1

yi

y
j+ δ

2
i

(yi + 2λσ2
i|i−1:1)

j+k+ δ
2

One can compute the maximum likelihood estimators of (θ, σ, δ). The parameters k, λ come
from the noise distribution. They are supposed to be known. The other parameters and the
observations yi−1, . . . , y1 are included in the formulae of σ2

i|i−1:1, αi|i−1:1.

Note that the density of yi is equal to the density of G/G′ with G,G′ independent, G ∼
G(δ/2, 1/2σ2

s(ϑ)) and G′ ∼ G(k, λ). This is the distribution of 2λσ2
s(ϑ)F where F has Fisher

distribution F (δ, 2k).

3.7 Related models.

Analogous results can be obtained for the following models:

yi =
√
xiεi

where εi has distribution 1/
√

G(k, λ). Or,

yi =
√
xiεi

where εi has the symmetric distribution ε/
√

G(k, λ) with ε independent of G(k, λ) and with
symetric Bernoulli distribution (P (ε = 1) = P (ε = −1) = 1/2).
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Chapter 4

Other kernels.

4.1 Introduction

In this lecture, we present two families of models:

• The hidden process is the same as in the previous lecture: x(t) is either the square of
an Ornstein-Uhlenbeck process or the CIR diffusion process. Given the state x(ti), the
observation yi has Poisson distribution with parameter λ(x(ti)) = λx(ti).

• The hidden process (x(t)) is a Wright-Fisher diffusion process. Given the state x(ti), the
observation yi has Bernoulli distribution with parameter x(ti) (or binomial distribution).

We refer to Chaleyat-Maurel and Genon-Catalot (2006, 2009) for more details.

4.2 Conditional Poisson observations.

Let us assume that observations yi are such that the conditional distribution of yi given x(ti) = x
is F (x, dy) = f(y|x)µ(dy) where µ(dy) is the counting measure on IN simply given by µ(y) = 1
for all y ∈ IN and

f(y|x) = exp (−λx)(λx)
y

y!
y ∈ IN.

The hidden diffusion process (x(t)) is given by

dx(t) = (2θx(t) + δc2)dt+ 2c
√

x(t)dWt, x(0) = η, (4.1)

with η a random variable independent of the Brownian motion (Wt). We assume that δ = 1 or
δ ≥ 2.

36



We need to check the conditions (C1)-(C2) for computable filters presented in the previous
lecture. Since the hidden process is the same, condition (C2) holds for the class

F δ = {νi,σ = gi,σ(x)dx, i ∈ IN, σ ≥ 0}, (4.2)

where the densitity gi,σ(x) is given by

gi,σ(x) = 1(x>0)
1

σ
√

2π
exp (− x

2σ2
)

xi−1+ δ
2

C2i+δ−1σ2i+δ−1
. (4.3)

It is the density of a Gamma distribution G(i + δ/2, 1/2σ2) with scale parameter 1/2σ2 and
location parameter (i + δ/2). The normalising constant Ca, is simply the absolute moment of
order a of a Gaussian standard variable.

The extended class F̄ δ is defined as the class of mixtures of distributions νi,σ having the
same scale parameter:

F̄ δ = {ν = να,σ =
∑

i≥0

αiνi,σ, α = (αi), αi ≥ 0, ,
∑

i≥0

αi = 1, σ ≥ 0}. (4.4)

The sub-class F̄ δ
f is composed of all distributions να,σ having finite-length mixture parameter,

i.e. such that
L(α) = sup{i;αi > 0} <∞.

If σ = 0, ν{α, 0) = δ0 whatever α.

We only need to check condition (C1) for the same class of distributions.

Proposition 4.2.1. (up-dating and marginal operators)

• If νi,σ belongs to F δ, then, for all integer y

ϕy(νi,σ) = νty(i),Ty(σ)

with

ty(i) = y + i and
1

T 2
y (σ)

=
1

T 2(σ)
=

1

σ2
+ 2λ

(T 2(σ) = σ2

1+2λσ2 ). The up-dating operator is therefore:

(i, σ) → (ty(i) = y + i, T (σ) =
σ

(1 + 2λσ2)1/2
).

The corresponding marginal distribution has density, w.r.t. the counting measure on IN,

pνi,σ
(y) =

(λ T 2(σ))y

y!

C2(y+i)+δ−1

C2i+δ−1

(

T (σ)

σ

)2i+δ
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• If ν = να,σ belongs to F̄ δ
f ,

ϕy(ν) =
∑

i≥0

α̂i νi,T (σ)

where
α̂i = α̂i(α, σ) ∝ 1i≥y αi−y pνi−y,σ

(y).

We have L(α̂) = L(α) + y. Condition (C1) holds for the class F δ and the extended class F̄ δ
f .

Proof. Noting that:

f(y|x)gi,σ(x) ∝ xy+i−1+δ/2 exp (−(λ+
1

2σ2
)x),

we get the results.�

Note that, here, the scale parameter does not depend on the new observation y.

4.2.1 Algorithm for predictive distributions.

We denote the parameters of a distribution νi|i−1:1(dx) by αi|i−1:1, σi|i−1:1 and Li|i−1:1 for the
length of the mixture parameter. We use analogous notations for νi|i:1(dx). Let us stress here
the interest of conditions (C1)-(C2). Since (C2) only concerns the hidden Markov process,
there are no changes at all for the prediction step.

Proposition 4.2.2. Assume that ν1|0:1 belongs to the class F̄ δ
f . The scale, mixture and length

parameters of νi|i−1:1(dx), νi|i:1(dx) can be recursively computed as follows.

• (up-dating) For i ≥ 1,

σ2
i|i:1 =

σ2
i|i−1:1

1 + 2λσ2
i|i−1:1

.

For j ≥ 0,

αi|i:1(j) ∝ 1j≥yi
αi|i−1:1(j − yi)

C2j+δ−1

C2(j−yi)+δ−1

(

σ2
i|i:1

σ2
i|i−1:1

)j−yi

.

The lengths of the mixture parameters satisfy Li|i:1 = Li|i−1:1 + yi.

• (prediction)
σ2
i+1|i:1 = β2(∆) + a2(∆)σ2

i|i:1.

For j ≥ 0,

αi+1|i:1(j) =
∑

k≥j

αi|i:1(k) κ
(k)
j (∆)

38



with

κ
(k)
j (∆) =

(

k

j

)

(

1 − β2(∆)

σ2
i+1|i:1

)j (

β2(∆)

σ2
i+1|i:1

)k−j

.

The lengths of the mixture parameters satisfy Li+1|i:1 = Li|i:1 = L1|0:1 + y1 + . . .+ yi.

• (Marginal distributions):

pνi|i−1:1
(yi) = pi(yi|yi−1, . . . , y1) =

Li|i−1:1
∑

j=0

αi|i−1:1(j)pνj,σi|i−1:1
.

4.2.2 Exact likelihood.

We assume now that θ < 0 and that the process (x(t)) is in stationary regime with marginal
distribution

ν1|0:1 = πϑ = G(δ/2,
1

2σ2
s(ϑ)

)) = ν0,σs(ϑ).

The joint process (xi, yi) is therefore strictly stationary and the distribution of yi is given by

p1(ϑ, y) = pν1|0:1(y) =
(λ T 2(σs(ϑ)))y

y!

C2y+δ−1

Cδ−1

(

T (σs(ϑ))

σs(ϑ)

)δ

The exact likelihood is computed by:

pn(ϑ, y1, . . . , yn) = p1(ϑ, y1)
n
∏

i=2

pi(ϑ, yi|yi−1, . . . , y1)

where
pi(ϑ, yi|yi−1, . . . , y1) = pνi|i−1:1

(yi) =
∑

0≤j≤Li|i−1:1

αi|i−1:1(j)pνj,σi|i−1:1
(yi)

where Li|i−1:1 = y1 + . . .+ yi−1 and

pνj,σi|i−1:1
(yi) =

λyiσ2yi

i|i:1

yi!

C2(yi+j)+δ−1

C2j+δ−1

(

σi|i:1
σi|i−1:1

)2j+δ

4.2.3 Extension.

It is possible to consider a more general observation kernel. We may assume that the observa-
tions yi are such that the conditional distribution of yi given xi = x is Poisson with parameter
λxi + λ0 for λ0 > a constant. Then, F (x, dy) = f(y|x)µ(dy) with

f(y|x) = exp (−λx+ λ0)
(λx+ λ0)

y

y!

=

y
∑

i=0

exp (−λ0)
λy−i0 λi

(y − i)!i!
xi exp (−λx).
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The previous study can be generalized.

Note that this is a discrete time version of the continuous time model proposed in Boel and
Benes (1980).

4.3 Wright-Fisher diffusion and conditional Bernoulli

observations.

Consider the following stochastic differential equation

dx(t) = [−δx(t) + δ′(1 − x(t))]dt+ 2[x(t)(1 − x(t))]1/2dWt, x(0) = η, (4.5)

where (Wt) is a standard one-dimensional Brownian motion and η is a random variable with
values in (0, 1) independent of (Wt). This process is known as the Wright-Fisher gene frequency
diffusion model with mutation effects. It has values in the interval (0, 1). It appears as the
diffusion approximation of the discrete time and space Wright-Fisher Markov chain and is used
to model the frequency of an allele A in a population of genes composed of two distinct alleles
A and a (see e.g. Karlin and Taylor (1981, p. 176-179 and 221-222) or Wai-Yuan (2002, Chap.
6)). Suppose now that the current state x(t) cannot be directly observed. Instead, at times
t1, t2, . . . , tn with 0 ≤ t1 < t2 . . . < tn, we have observations y(ti) such that, given the whole
process (x(t)), the random variables y(ti) are independent and the conditional distribution of
y(ti) only depends on the corresponding state variable x(ti). More precisely, we consider the
following discrete conditional distribution: a binomial distribution, i.e., for N ≥ 1 an integer,

P (y(ti) = y|x(ti) = x) =

(

N

y

)

xy(1 − x)N−y, y = 0, 1, . . . , N, (4.6)

For simplicity, we focus on the Bernoulli case where N = 1. Let us set

P (y(ti) = y|x(ti) = x) = fx(y) = xy(1 − x)1−y, y = 0, 1, x ∈ (0, 1). (4.7)

We consider, on the finite set {0, 1}, the dominating measure µ(y) = 1, y = 0, 1.

The scale density model (4.5) is given by:

s(x) = exp (−(1/2)

∫ x −δu+ δ′(1 − u)

u(1 − u)
du) = x−δ

′/2(1 − x)−δ/2, x ∈ (0, 1).

It satifies
∫

0
s(x)dx = ∞ =

∫ 1
s(x)dx if and only if δ ≥ 2 and δ′ ≥ 2, conditions that we assume

from now on. The speed density is equal to m(x) = xδ
′/2−1(1 − x)δ/2−1, x ∈ (0, 1). Therefore,

the unique stationary distribution of (4.5) is the Beta distribution with parameters δ′/2, δ/2
which has density

π(x) =
x

δ′

2
−1(1 − x)

δ
2
−1

B( δ
′

2
, δ

2
)

1(0,1)(x). (4.8)
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The instants of observations are equally spaced with sampling interval ∆, i.e. tn = n∆, n ≥ 1.
Hence, the process (x(tn)) is a time-homogeneous Markov chain. We denote by p∆(x, x′) its
transition density and by P∆ its transition operator. The transition density is not explicitly
known. However, it has a precise spectral expansion (see e.g. Karlin and Taylor, 1981, p.335-
336: Note that 2x(t) − 1 is a Jacobi diffusion process).

The proper parametric class of distributions on (0, 1) for checking (C1)-(C2) is the following
one. Let us define the class of distributions indexed by Θ = IN × IN:

F = {νi,j(dx) ∝ hi,j(x)π(x)dx, (i, j) ∈ IN × IN}, (4.9)

where
hi,j(x) = xi(1 − x)j. (4.10)

Hence, each distribution in F is a Beta distribution with parameters (i + δ′

2
, j + δ

2
) and (see

(4.8))

νi,j(dx) =
xi+

δ′

2
−1(1 − x)j+

δ
2
−1

B(i+ δ′

2
, j + δ

2
)

1(0,1)(x)dx. (4.11)

The extended class is:

F̄f = {
∑

(i,j)∈Λ

αi,jνi,j,Λ ⊂ IN × IN, |Λ| < +∞, α = (αi,j, (i, j) ∈ Λ) ∈ Sf}, (4.12)

where

Sf = {α = (αi,j, (i, j) ∈ Λ),Λ ⊂ IN × IN, |Λ| < +∞,∀(i, j), αi,j ≥ 0,
∑

(i,j)∈Λ

αi,j = 1} (4.13)

is the set of finite mixture parameters. It is worth noting that the stationary distribution
π(x)dx = ν0,0(dx) belongs to F . Thus, in the important case where the initial distribution, i.e.
the distribution of η (see (4.5)), is the stationary distribution, the exact and optimal filters have
an explicit formula. The exact formulae for the filtering-prediction algorithm and the likelihood
can be obtained from Chaleyat-Maurel and Genon-Catalot (2009). Although explicit, they are
not simple and not given here.

41



Bibliography

[1] Boel R.K., Benes V.E. (1980). Recursive nonlinear estimation of a diffusion acting as the
rate of an observed Poisson process IEEE Transactions on information theory 26 (5),
561-575.

[2] Chaleyat-Maurel M. and Genon-Catalot V. (2006). Computable infinite-dimensional filters
with applications to discretized diffusion processes. Stoch. Proc. and Applic. 116, 1447-
1467.

[3] Chaleyat-Maurel M. and Genon-Catalot V. (2009). Filtering theWright-Fisher diffusion,
to appear in ESAIM P & S.

42


