A Self-Stabilizing (delta+1)- Edge-Coloring Algorithm of Arbitrary Graphs.

Abstract : Given a graph G = (V,E), an edge-coloring of G is a function from the set of edges E to colors {1, 2, · · ·, k} such that any two adjacent edges are assigned different colors. In this paper, we propose a self-stabilizing edge-coloring algorithm in a polynomial number of moves. The protocol assumes the unfair central dæmon and the coloring is a (delta + 1)-edge-coloring of G, where delta is the maximum degree in G. To our knowledge, we give the first self-stabilizing edge-coloring algorithm using (delta+ 1) colors of arbitrary graphs.
Type de document :
Communication dans un congrès
International Conference on Parallel and Distributed Computing, Applications and Technologies, Dec 2009, Hiroshima, Japan. IEEE Computer Society, pp.312-317, 2009, ISBN: 978-0-7695-3914-0
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00448313
Contributeur : Graphe Liesp Equipe <>
Soumis le : lundi 18 janvier 2010 - 16:29:26
Dernière modification le : mercredi 31 octobre 2018 - 12:24:09

Identifiants

  • HAL Id : hal-00448313, version 1

Collections

Citation

Kaouther Drira, Lyes Dekar, Hamamache Kheddouci. A Self-Stabilizing (delta+1)- Edge-Coloring Algorithm of Arbitrary Graphs.. International Conference on Parallel and Distributed Computing, Applications and Technologies, Dec 2009, Hiroshima, Japan. IEEE Computer Society, pp.312-317, 2009, ISBN: 978-0-7695-3914-0. 〈hal-00448313〉

Partager

Métriques

Consultations de la notice

150