Random model of vibrations for Foreign Object Damage detection in a civil aircraft engine

Abstract : In this article we analyze several vibration time series measured on a real fan test rig before and after it is hit by a flying object. We show first evidence that a windowed autoregressive model may be used to detect the shock after it occurred. We compare these results with a second time series that measures the rotation period of the fan. Lastly we repeat this experiment using adaptive autoregressive estimation instead of the classical AR estimation algorithm. First results show that vibration data allow better prediction. Furthermore, the windowed AR estimation algorithm seems to perform better than the adaptive one.
Type de document :
Communication dans un congrès
GCOE, Pascal 2. Machine Learning for Aerospace International Workshop, Jul 2009, Marseille, France. pp.149-152, 2009
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00446258
Contributeur : Aurélien Hazan <>
Soumis le : mercredi 13 janvier 2010 - 11:58:48
Dernière modification le : jeudi 17 novembre 2011 - 14:44:54
Document(s) archivé(s) le : vendredi 18 juin 2010 - 00:44:10

Fichier

mla_articleV2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00446258, version 1

Collections

Citation

Aurélien Hazan, Michel Verleysen, Marie Cottrell, Jérôme Lacaille. Random model of vibrations for Foreign Object Damage detection in a civil aircraft engine. GCOE, Pascal 2. Machine Learning for Aerospace International Workshop, Jul 2009, Marseille, France. pp.149-152, 2009. 〈hal-00446258〉

Partager

Métriques

Consultations de
la notice

165

Téléchargements du document

73