
HAL Id: hal-00444330
https://hal.science/hal-00444330

Submitted on 6 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological graph polynomials and quantum field
theory, Part II: Mehler kernel theories

Thomas Krajewski, Vincent Rivasseau, Fabien Vignes-Tourneret

To cite this version:
Thomas Krajewski, Vincent Rivasseau, Fabien Vignes-Tourneret. Topological graph polynomials and
quantum field theory, Part II: Mehler kernel theories. Annales Henri Poincaré, 2011, 12, pp.483-545.
�10.1007/s00023-011-0087-2�. �hal-00444330�

https://hal.science/hal-00444330
https://hal.archives-ouvertes.fr


Topological graph polynomials

and quantum field theory

Part II: Mehler kernel theories

T. Krajewski1,2, V. Rivasseau1 and F. Vignes-Tourneret3

January 5, 2010

1) Laboratoire de Physique Théorique, CNRS UMR 8627,
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Abstract

We define a new topological polynomial extending the Bollobás-Riordan one,
which obeys a four-term reduction relation of the deletion/contraction type and has
a natural behavior under partial duality. This allows to write down a completely
explicit combinatorial evaluation of the polynomials, occurring in the parametric
representation of the non-commutative Grosse-Wulkenhaar quantum field theory.
An explicit solution of the parametric representation for commutative field theories
based on the Mehler kernel is also provided.
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Introduction

In [15] the relation between the parametric representation of Feynman graph amplitude
[13, 18] and the universal topological polynomials of graph theory was explicited. This
was done for theories with ordinary propagators of the Laplace type, whose parametric
representation is based on the heat kernel. These theories were defined either on ordinary
flat commutative space or on noncommutative Moyal-Weyl flat noncommutative space.
The parametric polynomials turned out to be evaluations of the multivariate version of
the Tutte polynomial [see 21] in the commutative case and of the Bollobás-Riordan one
in the noncommutative case [16].

However heat-kernel based noncommutative theories such as the φ⋆4
4 model show a phe-

nomenon called UV/IR mixing which usually prevents them from being renormalizable.
The first renormalizable noncommutative quantum field theory, the Grosse-Wulkenhaar
model [8, 9, 20], is based on a propagator made out of the Laplacian plus a harmonic
potential, hence the parametric representation of these models involve the Mehler kernel
rather than heat kernel. The physical interest of such theories also stems from the fact
that constant magnetic fields also induce such Mehler-type kernels.

Since the Mehler kernel is quadratic in direct space, such theories have computable
parametric representations but which are more complicated than the ordinary ones. The
corresponding topological polynomials were defined and first studied in [10], then extended
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to covariant theories in [19]. However a global expression has been found only for the
leading part of these polynomials under rescaling and a full explicit solution was not
found until now. This is what we provide here.

We have found that the corresponding universal polynomials, defined on ribbon graphs
with flags, are not based on the usual contraction-deletion relations on ordinary graphs
but on slightly generalized notions which involve four canonical operations which act on
them, the usual deletion and contraction plus an anticontraction and a superdeletion.
These last two operations are analogous to contraction and deletion, but create extra
flags. Moreover, our new polynomial is covariant under Chmutov’s partial duality [7],
thus extending the invariance property of the multivariate Bollobás-Riordan polynomial
[23].

This paper is organized as follows. In section 1 the definitions of ribbon graphs (with
flags) and of partial duality are given.

Section 2 is a mathematical prelude to the study of the polnomials defining the para-
metric representation of the Grosse-Wulkenhaar model. There we define bijections be-
tween several classes of sub(ribbon)graphs.

In section 3 the new polynomial is defined, together with its redution relation, rela-
tionship with other known polynomials and properties under partial duality.

In section 4 the Grosse-Wulkenhaar model and its parametric representation is recalled,
following closely the notations of [10].

In section 5 we prove that the corresponding topological polynomials are particular
evaluations of the topological polynomial of section 3.

In section 6 various limits of the model are performed. The particular case of the com-
mutative limit is computed and the corresponding commutative Mehler-based Symanzik
polynomials are written down.

1 Ribbon graphs

There are several equivalent definitions of ribbon graphs: topological, combinatorial, in
between. We will first give the topological definition and some basic facts about ribbon
graphs. Then we will give a purely combinatorial definition which allows us to slightly
generalize ribbon graphs to ribbon graphs with flags.

Remark. In the following, and unless explicitely stated, when we write graph, the reader
should read ribbon graph.

1.1 Basics

A ribbon graph G is a (not necessarily orientable) surface with boundary represented as
the union of two sets of closed topological discs called vertices V (G) and edges E(G).
These sets satisfy the following:

• vertices and edges intersect by disjoint line segment,

• each such line segment lies on the boundary of precisely one vertex and one edge,
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• every edge contains exactly two such line segments.

Figure 1 shows an example of a ribbon graph. Note that we allow the edges to twist (giving
the possibility to the surfaces associated to the ribbon graphs to be non-orientable). A
priori an edge may twist more than once but the polynomials we are going to consider
only depend on the parity of the number of twists (this is indeed the relevant information
to count the boundary components of a ribbon graph) so that we will only consider edges
with at most one twist.

Figure 1: A ribbon graph

Definition 1.1 (Notations). Let G be a ribbon graph. In the rest of this article, we will
use the following notations:

• v(G) = cardV (G) is the number of vertices of G,

• e(G) = cardE(G) is the number of edges of G,

• k(G) its number of components,

• for all E ′ ⊂ E(G), FE′ is the spanning sub(ribbon) graph of G the edge-set of which
is E ′ and

• for all E ′ ⊂ E(G), E ′c := E(G) \ E ′.

Loops Contrary to the graphs, the ribbon graphs may contain four different kinds of
loops. A loop may be orientable or not, a non-orientable loop being a twisting edge.
Let us consider the general situations of figure 2. The boxes A and B represent any ribbon
graph so that the picture 2a (resp. 2b) describes any ribbon graph G with an orientable
(resp. a non-orientable) loop e at vertex v. A loop is said nontrivial if there is a path
in G from A to B which is not the trivial path only made of v. If not the loop is called
trivial [4].

1.2 Combinatorial maps

Based on [22], we slightly generalize the notion of combinatorial map to combinatorial
map with flags. We will use it as a (purely combinatorial) definition for (possibly non-
orientable) ribbon graphs with flags.
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(a) An orientable loop

A Bv

e

(b) A non-orientable loop

Figure 2: Loops in ribbon graphs

Definition 1.2 (Combinatorial map with flags). Let X be a finite set of even cardi-
nality. Its members are called crosses. A combinatorial map with flags on X is a triple
(σ0, θ, σ1) of permutations on X which obey the following axioms:

A.1 θ2 = σ2
1 = id and θσ1 = σ1θ.

A.2 θ is fixed-point free. Moreover if x is any cross, θx and σ1x are distinct.

A.3 σ0θ = θσ−10 .

A.4 For each cross x, the orbits of σ0 through x and θx are distinct.

Let us now explain why such a combinatorial map describes a ribbon graph G with
flags. The involution θ being fixed-point free, the set X is partitioned into pairs of the
form {x, θx}, namely the orbits of θ. The involution σ1 may have fixed points. Note that
if x is a fixed point of σ1, so is θx because θ and σ1 commute, see axiom 1. The pairs
{x, θx} of fixed points of σ1 form the set F (G) of flags of G.

Let us denote by FX the set of fixed points of σ1. Then X \FX =: HX has a cardinality
which is a multiple of 4. HX is partitioned into the orbits of θ. The set H(G) of pairs
{x, θx} , x ∈ HX is the set of half-edges of G. HX can also be partitioned into the orbits
of the group EG generated by θ and σ1. Each orbit is of the form {x, θx, σ1x, σ1θx}.
Thanks to axiom 2, the members of a given orbit are all distinct. Each orbit contains two
distinct half-edges and is therefore called an edge. We write E(G) for the set of orbits
of EG on HX . It is the set of edges of G.

The elements of the set HR(G) := F (G) ∪ H(G) made of the orbits of θ on X are
called half-ribbons.

Finally we describe the vertices of G. σ0 being a permutation, X can be partitioned
into its cycles. Each cycle is of the form C(σ0, x) := (x, σ0x, . . . , σ

m−1
0 x) where m is the

least integer such that σm
0 x = x. Thanks to axiom 4, the cycles through x and θx are

distinct. But they have the same length. Indeed σm
0 x = x ⇐⇒ θx = θσ−m0 x ⇐⇒ θx =

σm
0 θx thanks to axiom 3. The cycle C(σ0, θx) can be formed from C(σ0, x):

C(σ0, θx) =(θx, σ0θx, . . . , σ
m−1
0 θx) (1.1)

=(θx, θσ−10 x, . . . , θσ−m+1
0 x) (1.2)

=(θx, θσm−1
0 x, . . . , θσ0x). (1.3)
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Thus C(σ0, θx) is formed from C(σ0, x) by reversing the cyclic order of the elements and
then premultiplying each by θ. We express this relation by saying that C(σ0, x) and
C(σ0, θx) are conjugate. A pair of conjugate orbits of σ0 is called a vertex of G.

We now examplify the previous definition with the ribbon graph G of figure 3. The
set of crosses is X = [1, 12] ∩ Z. Using the cyclic representation, the three permutations
defining this graph are:

σ0 =(1, 3)(4, 2)(6, 9, 11, 8)(5, 7, 12, 10), (1.4a)

θ =(1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12), (1.4b)

σ1 =(1, 5)(2, 6)(3, 8)(4, 7)(9)(10)(11)(12). (1.4c)

As noticed above, the set X is partitioned into pairs which are the orbits of θ. Those
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Figure 3: A ribbon graph G with flags

pairs which are fixed by σ1 are called flags:

F (G) = {{9, 10} , {11, 12}} . (1.5)

The half-edges of G are the orbits of θ which are not fixed by σ1:

H(G) = {{1, 2} , {3, 4} , {5, 6} , {7, 8}} (1.6)

and the edges of G are thus

E(G) = {{1, 2, 5, 6} , {3, 4, 7, 8}} . (1.7)

Finally, G has two vertices:

v1 = {(1, 3), (2, 4)} , v2 = {(6, 9, 11, 8), (5, 7, 12, 10)} . (1.8)

Remark. A ribbon graph without flag is represented by three permutations σ0, θ and σ1
obeying definition 1.2 with, in addition, σ1 fixed-point free.

Definition 1.3 (Subgraphs). Let G be a ribbon graph, possibly with flags. A subgraph
of G consists in a graph, the edge-set of which is a subset of E(G) and the flag-set of
which is a subset of F (G). A cutting subgraph of G is a graph the half-ribbon-set of which
is a subset of HR(G). By convention, if the half-ribbon set of a cutting spanning subgraph
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contains the two halfs of an edge, the subgraph contains this edge. The set of spanning
(cutting) subgraph of G is S(G) (Š(G)).

Moreover if the edges and flags of G are labelled, the (cutting) subgraphs of G inherit
the labels of G with the following convention: the two half-edges of a given edge of G share
the same label in the cutting subgraphs of G.

In contrast to a subgraph, a cutting subgraph may have flags coming both from the flags
of G and from half-edges of G. Each edge of G is made of two half-edges. A subgraph
contains, in particular, some of the edges of G whereas a cutting subgraph may contain
a half-edge of an edge without taking the other half, see figure 4 for examples.
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(a) A subgraph of the graph of figure 1
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(b) A cutting subgraph of the graph of figure 1

Figure 4: Subgraphs

1.3 Operations on edges

From a ribbon graph with flags, we can define two other ribbon graphs with flags either
by deleting an edge or by cutting it:

Definition 1.4 (Operations on ribbon graphs with flags). Let G be a ribbon graph
with flags and e ∈ E(G) any of its edges. We define the two following operations:

• the deletion of e, written G− e,

• the cut of e, written G ∨ e, which consists in replacing e by two flags attached at the
former end-vertices (or end-vertex) of e, respecting the cyclic order at these (this)
vertices (vertex).

In the combinatorial map representation of a ribbon graph G, an edge e corresponds to
a set of four crosses: e = {x1, x2, x3, x4} , ∀ 1 6 i 6 4, xi ∈ X(G). The graph G − e has
X \e as set of crosses and the restriction of σ0, θ and σ1 to X \e as defining permutations.

Let φ be any member of the group generated by σ0, θ and σ1. For any subset E ′ ⊂ X,
we let φE′ be the following map:

φE′ :=

{
φ on E ′,

id on X \ E ′ =: E ′. (1.9)

The graph G ∨ e is defined on the same crosses as G and given by σ0, θ and σ1X′ where
X ′ = X \ e. For example, considering the ribbon graph of figure 3, and if e = {1, 2, 5, 6},
G ∨ e is the ribbon graph, with flags, of figure 5.
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Figure 5: Cutting an edge

1.4 Natural duality

For ribbon graphs without flags, there is a well-known notion of duality, hereafter called
natural duality, also known as Euler-Poincaré duality. From a given ribbon graph G, it
essentially consists in forming another ribbon graph G⋆, the vertices of which are the faces
(or boundary components) of G and the faces of which are the vertices of G. The edges
of G⋆ are in bijection with those of G.

Every ribbon graph can be drawn on a surface of minimal genus such that no two of
its edges intersect. To build the dual G⋆ of G, first draw G on such a surface. Then place
a vertex into each face of G. Each such face is homeomorphic to a disk. Then draw an
edge between two vertices of G⋆ each time the corresponding faces of G are separated by
an edge in G.

At the combinatorial level, if G = (σ0, θ, σ1), then G⋆ = (σ0θσ1, σ1, θ), the cycles
of σ0θσ1 representing the faces of G. If G has flags, we define its natural dual G⋆ by
(σ0θHX

σ1, σ1HX
θFX

, θHX
σ1FX

), see figure 6 for an example.
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Figure 6: The natural dual of the graph of figure 5

1.5 Partial duality

S. Chmutov introduced a new “generalised duality” for ribbon graphs which generalises
the usual notion of duality (see [7]). In [17], I. Moffatt renamed this new duality as “par-
tial duality”. We adopt this designation here. We now describe the construction of a
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partial dual graph and give a few properties of the partial duality.

Let G be a ribbon graph and E ′ ⊂ E(G). Let F̌E′ := G ∨ E ′c be the spanning subgraph
with flags of G, the edge-set of which is E ′ and the flag-set of which is made of the cut
edges in E ′c = E(G) \ E ′. We will construct the dual GE′

of G with respect to the edge-
set E ′. The general idea is the following. We consider the spanning subgraph with flags
F̌E′ . Then we build its natural dual F̌ ⋆

E′ . Finally we reglue the edges previously cut in E ′c.

More precisely, at the level of the combinatorial maps, the construction of the partial
dual GE′

of G goes as follows:

G = (σ0, θ, σ1) F̌E′ = (σ0, θ, σ1E′)

F̌ ⋆
E′ = (σ0θE′σ1E′ , σ1E′θE′c , θE′)GE′

= (σ0θE′σ1E′ , σ1E′θE′c , σ1E′cθE′)

cut

natural duality

glue

partial duality

Figure 7 shows an example of the construction of a partial dual. The direct ribbon graph
is drawn on figure 7a. We choose E ′ = {{3, 4, 7, 8}} and the subgraph F̌E′ is depicted on
figure 7b. Its natural dual F̌ ⋆

E′ is on figure 7c. Finally the partial dual GE′
of G is shown

on figure 7d.

S. Chmutov proved among other things the following basic properties of the partial
duality:

Lemma 1.1 ([7]) For any ribbon graph G and any subset of edges E ′ ⊂ E(G), we have

• (GE′
)E

′
= G,

• GE(G) = G⋆ and

• if e /∈ E ′, then GE′∪{e} = (GE′
){e}.

His proof relies on graphical and commonsensical arguments. Here we would like to point
out that the combinatorial map point of view allows very direct algebraic proofs.

For example, an interesting exercise consists in checking that the partial duality is an
involution, namely that (GE′

)E
′
= G:

(GE′
)E

′
= (σ0θE′σ1E′(σ1E′θE′c)E′(σ1E′cθE′)E′ , (σ1E′cθE′)E′(σ1E′θE′c)E′c , (σ1E′cθE′)E′c(σ1E′θE′c)E′) =

(σ0, θ, σ1).

We can also prove that for any subset E ′ ⊂ E(G) and any e ∈ E ′c, (GE′
){e} = GE′∪{e}.

9



1

2

4

3

5

6

8

7

9

10

12

11

(a) A ribbon graph G

1

2

4

3

5

6

8

7

9

10

12

11

(b) The subgraph F̌E′ with E′ = {{3, 4, 7, 8}}
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(c) The natural dual F̌ ⋆

E′ of
F̌E′
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(d) The partial dual GE
′

of G

Figure 7: Construction of a partial dual

Proof. We define E ′′ := E ′ ∪ {e}.

GE′′

=(σ0θE′′σ1E′′ , σ1E′′θE′′c , σ1E′′cθE′′) (1.10)

σ0
(
(GE′

){e}
)
=σ0θE′σ1E′(σ1E′θE′c)e(σ1E′cθE′)e = σ0θE′σ1E′θeσ1e = σ0θE′′σ1E′′ (1.11)

θ
(
(GE′

){e}
)
=(σ1E′cθE′)e(σ1E′θE′c)ec = σ1eσ1E′θE′c\{e} = σ1E′′θE′′c (1.12)

σ1
(
(GE′

){e}
)
=(σ1E′cθE′)ec(σ1E′θE′c)e = σ1E′c\{e}θE′θe = σ1E′′cθE′′ (1.13)

�

The partial duality allows an interesting and fruitful definition of the contraction of
an edge:

Definition 1.1 (Contraction of an edge [7]).
Let G be a ribbon graph and e ∈ E(G) any of its edges. We define the contraction of e
by:

G/e :=G{e} − e. (1.14)

From the definition of the partial duality, one easily checks that, for an edge incident with
two different vertices, the definition 1.1 coincides with the usual intuitive contraction of
an edge. The contraction of a loop depends on its orientability, see figures 8 and 9.

Different definitions of the contraction of a loop have been used in the litterature. One
can define G/e := G−e. In [12], S. Huggett and I. Moffatt give a definition which leads to
surfaces which are not ribbon graphs anymore. The definition 1.1 maintains the duality
between contraction and deletion.
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A ribbon graph G with
an orientable loop e

A Be

G{e}

A B

G/e = G{e} − e

Figure 8: Contraction of an orientable loop

A B

e

A ribbon graph G with
a non-orientable loop e
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e

G{e}

A

B

G/e = G{e} − e

Figure 9: Contraction of a non-orientable loop
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2 Bijections between classes of subgraphs

This section consists in a mathematical preliminary to the study of the HU polynomial,
introduced in section 4. This ribbon graph invariant is a key ingredient of the parametric
representation of the Grosse-Wulkenhaar model amplitudes.

Let G be a ribbon graph. For any E ′ ⊂ E(G), there is a natural bijection between
E(G) and E(GE′

). This leads to a bijection between the spanning subgraphs of G and
those of GE′

. In particular, it is true for E ′ = {e} with e ∈ E(G). Representing a bijective
map by the following symbol ⇋, we have:

s : S(G) ⇋ S(G{e}), |S(G)| = |S(G{e})| = 2|E(G)|. (2.1)

The map s extends trivially on ribbon graphs with flags. In the following, we will be
interested in maps betweens different classes of subgraphs. We are going to generalize s
to odd and even (cutting) (colored) subgraphs. A special case of these bijections will be
used in section 6.1 to prove the factorization of the polynomial HU(G; t,1).

2.1 Subgraphs of fixed parity

Definition 2.1 (Odd and even graphs). A (ribbon) graph (with flags) is said of fixed
parity if all the degrees of its vertices have the same parity. It is odd (resp. even) if all its
vertices are of odd (resp. even) degrees. Given a ribbon graph G, with or without flags, we
denote by Odd(G) (resp. Even(G)) the set of odd (resp. even) spanning subgraphs of G.

We would like to know if the bijection s of equation (2.1) preserves the subclasses of odd
(even) subgraphs. It is easy to see that it is not the case, as the following example shows.

Let us consider the ribbon graph G made of two vertices and two edges between
those two vertices. G is sometimes called a (planar) 2-banana, see figure 10a. We have

1

2

(a) G = a 2-banana

1

2

(b) G{1} = a non-planar 8

Figure 10: Partial duals

Odd(G) = {{1} , {2}}, Even(G) = {∅, {1, 2}} whereas Odd(G{1}) = ∅ and Even(G{1}) =
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{∅, {1} , {2} , {1, 2}}. This means that there exist graphs and edges such that s does not
preserve the classes of odd and even subgraphs. Note however that there may be graphs
G and/or subsets E ′ ⊂ E(G) such that the natural bijection between subgraphs of G
and GE′

let the classes Odd and Even invariant. This is trivially the case for self-dual
graphs G and E ′ = E(G). Classifying the graphs and subsets of edges such that s let
some classes of subgraphs invariant clearly deserves further study. Nevertheless, here, we
will restrict ourselves to bijections valid for any G and any e ∈ E(G).

2.2 Colored subgraphs

Going back to the example of figure 10, we have |Even(G)| = 2 and |Even(G{1})| = 4

but 2v(G)|Even(G)| = 2v(G
{1})|Even(G{1})| = 23. For any graph g, 2v(g) is the number of

colorings of V (g) with two colors. This means that there exists a bijection between the
colored even subgraphs of G and G{1}. This is actually true for any ribbon graph with
flags and any edge.

Remark. This is clearly not the case for the odd subgraphs, as shows the example of the
2-banana. Note also that, in general, there is no bijection between the colored subgraphs
of a graph G and of its partial duals G{e}, the number of vertices of G and G{e} being
usually different.

Definition 2.2 (Colored graphs). A colored (ribbon) graph G is a (ribbon) graph and
a subset C(G) of V (G). The set of colored odd (resp. even) subgraphs of G is denoted by
Odd(G) (resp. Even(G)).

Lemma 2.1 Let G be a ribbon graph with flags. For any edge e ∈ E(G), there is a
bijection between Even(G) and Even(G{e}).

Proof.

Even(G) = {B ⊂ E(G) : FB is even} (2.2)

= {B′ ⊂ E(G) \ {e} : FB′ is even} ∪
{
B′ ⊂ E(G) \ {e} : FB′∪{e} is even

}
(2.3)

=
⋃

B′⊂E(G)\{e}
{B ∈ {B′, B′ ∪ {e}} : FB is even} (2.4)

=:
⋃

B′⊂E(G)\{e}
EvenB′(G). (2.5)

For any B′, B′′ ⊂ E(G) \ {e} ,EvenB′(G) ∩ EvenB′′(G) = ∅. Moreover EvenB′(G) may
have a cardinality of 0, 1 or 2. We now prove that ∀B′ ⊂ E(G) \ {e} , |EvenB′(G)| =
|EvenB′(G{e})|, which would prove lemma 2.1.

We distinguish between two cases: either e is a loop (in G) or it is not.

1. e is a loop: let v be the endvertex of e. It may be represented as in figure 11a.

• p and q have the same parity: v is even in FB with or without e, then
|EvenB′(G)| = 2 and |EvenB′(G)| = 2 × 2. If p and q are odd, FB is even
in G{e} iff e ∈ B, see figure 11b. On the contrary, if p and q are even, FB is
even in G{e} iff e /∈ B. Then |EvenB′(G{e})| = 1× 22.

13



1

p

1 q

v

e

(a) The vertex v in FB

1 q

1

p

v1 v2e

(b) The corresponding situation in F
{e}
B∪{e}

Figure 11: Bijection in case of a loop

• p and q have different parities: |EvenB′(G)| = |EvenB′(G{e})| = 0.

2. e is not a loop: using G =
(
G{e}

){e}
, this is the same situation as in the preceding

case with G replaced by G{e}. �

2.3 Cutting subgraphs

Both from a mathematical and physical point of view, it is quite natural to consider not
only spanning subgraphs but also spanning cutting subgraphs of a ribbon graph G. For
any e ∈ E(G), |Š(G)| = |Š(G{e})| = 2HR(G) = 2F (G)+2E(G). Thus there exists a (natural)
bijection between those two sets. What about the odd (resp. even) cutting subgraphs?

Definition 2.3. Let G be a ribbon graph with flags. We denote by ˇOdd(G) (resp. ˇEven(G))
the set of odd (resp. even) spanning cutting subgraphs of G.

It is easy to check that there is no bijection between ˇOdd(G) (resp. ˇEven(G)) and
ˇOdd(G{e}) (resp. ˇEven(G{e})). For example, let us consider once more the graphs of

figure 10. We have | ˇOdd(G)| = | ˇEven(G)| = 4 whereas | ˇOdd(G{1})| = | ˇEven(G{1})| = 8.

2.4 Colored cutting subgraphs

Definition 2.4. Let G be a ribbon graph with flags. The set of colored cutting spanning
subgraphs of G is Š(G). The set of odd (resp. even) colored cutting spanning subgraphs of
G is denoted by ˇOdd(G) (resp. ˇEven(G)).

As in the case of colored subgraphs, there is generally no bijection between Š(G) and
Š(G{e}), because v(G) 6= v(G{e}) usually. Nevertheless we have

Lemma 2.2 Let G be a ribbon graph with flags. For any e ∈ E(G), there is a bijection

χ
{e}
G between ˇOdd(G) (resp. ˇEven(G)) and ˇOdd(G{e}) (resp. ˇEven(G{e})).
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Proof. Let us denote by
→
e and

←
e the two half-edges of e. Let us define 〈e〉 :=

{→
e ,
←
e
}
.

Recall that, by convention (see definition 1.3), when both halves of an edge e appear in a
subset H ⊂ HR(G), it means that e ∈ E(FH).

ˇOdd(G) = {H ⊂ HR(G) : FH is odd} (2.6)

=
⋃

H′⊂HR(G)\〈e〉
{A ⊂ 〈e〉 : FH∪A is odd} (2.7)

=:
⋃

H′⊂HR(G)\〈e〉

ˇOddH′(G). (2.8)

We define ˇEvenH′(G) the same way. We prove that ˇOddH′(G) and ˇOddH′(G{e}) have the
same cardinality for any H ′ ⊂ HR(G) \ 〈e〉. We let the case of even subgraphs to the
reader.

Using once more G =
(
G{e}

){e}
, it is enough to prove it in the case e is a loop in

G. The situation is thus again the one of figure 11, where now figure 11a represents the
endvertex of e in FH′∪A∪{e}.

• If p and q have the same parity, in order FH′∪A to be odd, A contains one of the
two half-edges of e: e is a flag in FH′∪A. Thus | ˇOddH′(G)| = 2 × 2. If p and q are
odd, FH′∪A is odd in G{e} iff A = ∅, see figure 11b. On the contrary, if p and q are

even, FH′∪A is odd in G{e} iff A =
{→
e ,
←
e
}
. Then | ˇOddH′(G{e})| = 1× 22.

• If p and q have different parities: FH′∪A is odd iff A = ∅ or
{→
e ,
←
e
}

which implies

| ˇOddH′(G)| = 2 × 2. Let us say that p is odd and q even. There is only one
possibility for A such that FH′∪A is odd. Namely A should only contain the half-
edge of e which is hooked to the vertex incident with the other q half-ribbons. Thus
| ˇOddH′(G{e})| = 1× 22. �

We have proven the existence of a bijection between ˇOdd(G) (resp. ˇEven(G)) and ˇOdd(G{e})
(resp. ˇEven(G{e})). To exhibit such a bijection, one would need to choose a convention
for the coloring of the vertices v1 and v2, see figure 11, depending on the color of v and
on the fact that e belongs or not to A, as an edge or as a flag.

Properties of χ
{e}
G

Here we precise the bijection χ
{e}
G of lemma 2.2. This will be useful

in section 6.

Definition 2.5 (Partitions by flags). For any ribbon graph G with flags, the set ˇOdd(G)
(resp. ˇEven(G)) can be partitioned into subsets of cutting subgraphs labelled by their flag-
set. For all F ′ ⊂ F (G) ∪ E(G), we write ˇOdd(G) ̥ F ′ (resp. ˇEven(G) ̥ F ′) the set of
all odd (resp. even) spanning cutting subgraphs of G with flag-set F ′.

For any F ′, F ′′ ⊂ F (G) ∪E(G), we obviously have ( ˇOdd(G) ̥ F ′) ∩ ( ˇOdd(G) ̥ F ′′) = ∅.
Moreover,

ˇOdd(G) =
⋃

F ′⊂F (G)∪E(G)

ˇOdd(G) ̥ F ′. (2.9)
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These definitions of partitions and subsets of ˇOdd(G) can be applied, mutatis mutandis,
to ˇOdd(G), ˇEven(G) and ˇEven(G).
Let F ′ ⊂ HR(G) and F ′e be the set F ′ ∪ {e} if e /∈ F ′ and F ′ \ {e} if e ∈ F ′. Then,

just by looking at the proof of lemma 2.2, one sees that χ
{e}
G is a one-to-one map between

ˇOdd(G) ̥ F ′ (resp. ˇEven(G) ̥ F ′) and ˇOdd(G) ̥ F ′e (resp. ˇEven(G) ̥ F ′).

3 A new topological graph polynomial

Graph polynomials are graph invariants which encode part of the information contained
in the graph structure. These polynomials allow an algebraic study of graphs, which is
usually easier than a direct approach.

Recently, B. Bollobás and O. Riordan [4] defined such a polynomial invariant for rib-
bon graphs. Here we introduce a generalization of their polynomial, defined for ribbon
graphs with flags or external legs. It turns out that a certain evaluation of this new topo-
logical graph invariant Q enters the parametric representation of the Feynman amplitudes
of the Grosse-Wulkenhaar model.

In the following, we will denote by bold letters, sets of variables attached to edges or
vertices of a graph. For example, given a (ribbon) graph G, x := {xe}e∈E(G). Moreover,

for any A ⊂ E(G), we use the following short notation: xA :=
∏

e∈A xe.

Definition 3.1 (The Q polynomial). Let G be a ribbon graph with flags. We define
the following polynomial:

QG(x,y, z,w, r) :=
∑

A⊂E(G)

∑

B⊂E(GA)

xA
c∩Bc

yA∩B
c

zA∩BwAc∩BrV (FB), (3.1)

where we implicitely use the canonical bijection between E(G) and E(GA), and rV (FB) :=∏
v∈V (FB) rdeg(v).

3.1 Basic properties

Proposition 3.1 QG is multiplicative over disjoint unions and obeys the scaling relations

QG(λx, λy, λµ
−2z, λµ−2w, µ · r) = λ|E(G)|µ|F (G)|QG(x,y, z,w, r) (3.2)

where |E(G)| is the number of edges of G, |F (G)| its number of flags and µ · r is the
sequence (µnrn)n∈mathbbN .

The proof of this proposition is obvious.

In contrast with the Tutte or the Bollobás-Riordan polynomial, Q satisfies a four-term
reduction relation. This relation generalizes the usual contraction/deletion relation and
reflects the two natural operations (see definition 1.4) one can make on a ribbon graph
with flags and on any of its partial dual.
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Lemma 3.2 (Reduction relation) Let G be a ribbon graph with flags and e any of its
edges. Then,

QG(x,y, z,w, r) =xeQG−e(x
e,ye, ze,we, r) + yeQGe−e(x

e,ye, ze,we, r)

+ zeQGe∨e(x
e,ye, ze,we, r) + weQG∨e(x

e,ye, ze,we, r),
(3.3)

where, for any a ∈ {x,y, z,w} and any e ∈ E(G), ae := {ae′}e′∈E(G)\{e}.

Proof. Let e be any edge of G. Refering to the definition (3.1) of Q, we distinguish
between four cases, whether e belongs to A or not, to B or not:

QG(x,y, z,w, r) =xeP1(x
e,ye, ze,we, r) + yeP2(x

e,ye, ze,we, r)

+ zeP3(x
e,ye, ze,we, r) + weP4(x

e,ye, ze,we, r).
(3.4)

The polynomial P1 corresponds to the case e /∈ A and e /∈ B. There is a canonical
bijection ϕ− (resp. ϕ⋆

−) between E(G) \ {e} and E(G − e) (resp. between E(GA) and
E((G− e)ϕ−(A))). For any A ⊂ E(G) and any B ⊂ E(GA), we have

Ac =(ϕ−(A))
c ∪ {e} , Bc =(ϕ⋆

−(B))c ∪ {e} (3.5a)

xA
c∩Bc

=xex
(ϕ−(A))c∩(ϕ⋆

−(B))c yA∩B
c

=yϕ−(A)∩(ϕ⋆
−(B))c (3.5b)

zA∩B =zϕ−(A)∩ϕ⋆
−(B) wAc∩B =w(ϕ−(A))c∩ϕ⋆

−(B). (3.5c)

Let us now check that rV (FB) = r
V (Fϕ⋆

−(B)). The left hand side of this equation encodes
the degree sequence of FB ⊂ GA. But as B does not contain e, FB can be considered as
a subgraph of GA − e = (G− e)ϕ−(A) and FB is then isomorphic to Fϕ⋆

−(B). Their degree
sequences are thus equal to each other. We have

xeP1(x
e,ye, ze,we, r) =

∑

A⊂E(G)\{e}

∑

B⊂E(GA)\{e}
xA

c∩Bc

yA∩B
c

zA∩BwAc∩BrV (FB) (3.6)

=xe
∑

A⊂E(G)\{e}

∑

B⊂E(GA)\{e}
x(ϕ−(A))c∩(ϕ⋆

−(B))cyϕ−(A)∩(ϕ⋆
−(B))c

zϕ−(A)∩ϕ⋆
−(B)w(ϕ−(A))c∩ϕ⋆

−(B)r
V (Fϕ⋆

−(B)) (3.7)

=xe
∑

A⊂E(G−e)

∑

B⊂E((G−e)A)

xA
c∩Bc

yA∩B
c

zA∩BwAc∩BrV (FB) (3.8)

=xeQG−e(x
e,ye, ze,we, r). (3.9)

As we have seen, the difficulty only resides in the proof of the conservation of the
r-part. Thus, for the three other cases, we only focus on that. The polynomial P2

corresponds to the case e ∈ A and e /∈ B. Let ϕ+ denote the canonical bijection between
{A ⊂ E(G) : e ∈ A} and E(G/e). As B does not contain e, FB can also be considered as
a subgraph of GA − e = (Ge − e)A\{e} = (G/e)ϕ+(A). This proves that P2 = QGe−e.

The polynomial P4 corresponds to the case e /∈ A and e ∈ B. As e /∈ A, GA − e =
(G − e)A and the vertex sets V (GA) and V (GA − e) are the same. But as B contains e,
erasing this edge would produce a different degree sequence for Fϕ⋆

−(B). So, we have to
keep track of the contribution of e to the degree sequence of FB by cutting it instead of
deleting it: P4 = QG∨e.
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Finally the polynomial P3 corresponds to the case e ∈ A and e ∈ B. Such sets A
are in one-to-one correspondence with the subsets of E(Ge − e). The vertex sets V (GA)
and V ((Ge − e)A\{e}) are the same but once more, as e ∈ B, we can’t delete e but cut it
instead: P3 = QGe∨e. �

Lemma 3.2 allows to give an alternative definition of the Q polynomial:

Definition 3.2. Let G be a ribbon graph with flags and e any of its edges,

QG(x,y, z,w, r) =xeQG−e(x
e,ye, ze,we, r) + yeQGe−e(x

e,ye, ze,we, r)

+ zeQGe∨e(x
e,ye, ze,we, r) + weQG∨e(x

e,ye, ze,we, r).
(3.10)

Otherwise G consists of isolated vertices with flags and

QG(x,y, z,w, r) =
∏

v∈V (G)

rdeg(v). (3.11)

It is remarkable that equations (3.10) and (3.11) lead to a well defined polynomial in the
sense that it is independent of the order in which the edges are chosen. The proof of
the existence of such a polynomial consists essentially in the proof of lemma 3.2. The
polynomial which results of this recursive process is the Q polynomial of definition 3.1.
The uniqueness of the result is obvious since if e ∈ E(G) then QG is uniquely determined
by QG−e, QGe−e, QG∨e and QGe∨e [3].

3.2 Relationship with other polynomials

• The Bollobás-Riordan polynomial: if we set z = w = 0 and x = 1 for all edges and
rn = r (independent of n), we recover the multivariate Bollobás-Riordan polynomial
at q = 1, in its multivariate formulation (see [16])

QΓ(1, y, 0, 0, r) =
∑

A⊂E(G)

(∏

e∈A
ye

)
rv(G

A) (3.12)

where v(GA) is the number of vertices of GA ie the number of connected components
of the boundary of FA. Note that the evaluation y = w = 0, x = 1 and rn = r gives
the same result.

• The dimer model: if we set y = z = 0, x = 1 and rn = 0 except r1 = 1, then we
recover, for a graph without flags, the partition function of the dimer model on this
graph

QΓ(1, 0, 0, w, r) =
∑

C⊂E(G)
dimer configuration

(∏

e∈C
we

)
, (3.13)

with we = eβεe the Boltzmann weight. Here, each vertex contains a monomer that
can form a dimer with an adjacent monomer, if the edge e supports a dimer then its
energy is −εe. A dimer configuration (also known as a perfect matching in graph
theory) is obtained when each monomer belongs to exactly one dimer. In the recent
years, the dimer model has proven to be of great mathematical interest (see [14] for
a recent review).
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• The Ising model: for y = z = 0, xe = cosh(βJe), we = sinh(βJe), r2n = 2 and
r2n+1 = 0, we recover the partition function of the Ising model. Recall that the
latter is obtained by assigning spins σv ∈ {−1,+1} to each vertex with an interaction
along the edges encoded by the Hamiltonian

H(σ) = −
∑

e=(v,v′)∈E
Jeσvσv′ , (3.14)

with Je an edge dependent coupling constant. The partition function is the sum
over all spins configurations of the Boltzmann weight

ZIsing =
∑

σ

e−βH . (3.15)

Using the identity

eβJeσvσv′ = cosh(βJe) + σvσv′ sinh(βJe) (3.16)

for each edge, we can perform the high temperature expansion of the partition
function

ZIsing =
∑

σ

{
∑

C⊂E

(∏

e/∈C
cosh(βJe)

)(∏

e∈C
sinh(βJe)σvσv′

)
}

(3.17)

Then, the sum over all spins vanishes unless each vertex is matched by a even
number of edges in C, so that

ZIsing = QG(x, 0, 0, w, r) (3.18)

with the specified value of x, w and r. Note that the extra power of 2 arising from
the sum over spins corresponds to r2n = 2.

3.3 Partial duality of Q

One of the most interesting properties of the Q polynomial is that it transforms nicely
under partial duality.

Theorem 3.3 (Partial duality) Let G be a ribbon graph with flags and e ∈ E(G) be
any edge of G. We have

QG{e}(x,y, z,w, r) = QG(xE\{e}y{e},x{e}yE\{e}, zE\{e}w{e}, z{e}wE\{e}, r). (3.19)

Proof. Each monomial of Q is labelled by two sets of edges A ⊂ E(G) and B ⊂ E(GA):

QG(x,y, z,w, r) =:
∑

A,B

M(A,B)(G;x,y, z,w, r) (3.20)

=:
∑

A,B

M(A,B)(G;x,y)N(A,B)(G; z,w)rV (FB). (3.21)
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For any e ∈ E(G), let φe be the following map:

φe :
⋃

A⊂E(G)

A× E(GA) →
⋃

A′⊂E(G{e})

A′ × E
(
(G{e})A

′)
(3.22)

(A,B) 7→ (A∆ {e} , B).

φe is clearly a bijection for any edge e. Note that
(
G{e}

)A∆{e}
= GA which implies

(with a slight abuse of notation) that, for any FB ⊂ GA, rV (FB) = rV (Fφe(B)) where
Fφe(B) ⊂ (G{e})φe(A). Let x⋆{e} be xE\{e}y{e}, y

⋆{e} be x{e}yE\{e}, z
⋆{e} be zE\{e}w{e} and

w⋆{e} be z{e}wE\{e}. To prove the theorem, we prove thatMφe((A,B))(G
{e};x,y, z,w, r) =

M(A,B)(G;x
⋆{e},y⋆{e}, z⋆{e},w⋆{e}, r).

A′ := A∆ {e} =

{
A ∪ {e} if e /∈ A,

A \ {e} if e ∈ A.
(3.23)

A′c = Ac∆ {e} =

{
Ac \ {e} if e /∈ A,

Ac ∪ {e} if e ∈ A.
(3.24)

If e ∈ B, Bc∩A′ = Bc∩A and Bc∩A′c = Bc∩Ac. Thus, in this case, Mφe((A,B))(G
{e};x,y)

is obviously equal to M(A,B)(G;x
⋆{e},y⋆{e}). So let us focus on the terms involving z and

w.

B ∩ A′ =
{
(B ∩ A) ∪ {e} if e ∈ B ∩ Ac,

(B ∩ A) \ {e} if e ∈ B ∩ A. (3.25)

B ∩ A′c =
{
(B ∩ Ac) \ {e} if e ∈ B ∩ Ac,

(B ∩ Ac) ∪ {e} if e ∈ B ∩ A. (3.26)

Then we have

N(A′,B)(G
{e}; z,w, r) =zB∩A

′

wB∩A′c

=

{
z(B∩A)∪{e}w(B∩Ac)\{e} if e ∈ B ∩ Ac,

z(B∩A)\{e}w(B∩Ac)∪{e} if e ∈ B ∩ A (3.27)

=N(A,B)(G; z
⋆{e},w⋆{e}, r).

If e /∈ B, we use exactly the same argument with N replaced by M, z by y and w by x.�

Corollary 3.4 For any ribbon graph G with flags and any subset E ′ ⊂ E(G), we have

QGE′ (x,y, z,w, r) =QG(xE\E′yE′ ,xE′yE\E′ , zE\E′wE′ , zE′wE\E′ , r) (3.28)

Proof. It relies on:

1. for any e ∈ E ′, GE′
=
(
GE′\{e}){e},

2. a repeated use of theorem 3.3. �
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4 Feynman amplitudes of the Grosse-Wulkenhaar model

4.1 The action functional

The Grosse-Wulkenhaar model is defined by the action functional

S[φ] = S0[φ] + Sint[φ], (4.1)

where φ is a real valued function on Euclidean space RD. The free part of the action is

S0[φ] =
1

2

∫
dDxφ(x)

(
−∆+ Ω̃2x2

)
φ(x), (4.2)

where ∆ is the Laplacian on Euclidean space RD and Ω̃ = 2Ω
θ
(with Ω, θ > 0) the frequency

of the corresponding harmonic oscillator. In a system of units such that ~ = c = 1, the
only remaining dimension is length and Ω is dimensionless.

Its kernel KΩ̃(x, y) defined by
∫
dDz δD(x− z)

(
−∆z + Ω̃2z2

)
KΩ̃(z, y) = δD(x− y), (4.3)

with δD the Dirac distribution on RD, is the Mehler kernel

KΩ̃(x, y) =

(
Ω̃

2π

)D/2 ∫ ∞

0

dα
[
sinh 2Ω̃α

]D/2
exp−Ω̃

4

{
(x− y)2 coth Ω̃α + (x+ y)2 tanh Ω̃α

}
.

(4.4)
To avoid ultraviolet divergences, we introduce a cut-off as a lower bound on the integral
over α,

KΩ̃(x, y) →(
Ω̃

2π

)D/2 ∫ ∞

1/Λ2

dα
[
sinh 2Ω̃α

]D/2
exp−Ω̃

4

{
(x− y)2 coth Ω̃α + (x+ y)2 tanh Ω̃α

}
. (4.5)

Since this paper is not concerned with the limit Λ → ∞, we will always self-understand
that the integration over α ranges over

[
1
Λ2 ,∞

]
. Later on, it will also prove convenient

to introduce t = tanh(Ω̃α) as well as the short and long variables

u =
1√
2
(x− y) and v =

1√
2
(x+ y), (4.6)

so that the propagator reads

KΩ̃(x, y) =

(
Ω̃

2π

)D/2 ∫ ∞

1/Λ2

dα

[
(1− t2)

2t

]D/2

exp−1

2

{
Ω̃

t
u2 + Ω̃t v2

}
. (4.7)

The interaction term is derived form the Moyal product

f ⋆ g (x) =
1

πD| detΘ|

∫
dDy dDz f(x+ y)f(x+ z)e−2ıyΘ

−1z, (4.8)
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with Θ a real, non degenerate, antisymmetric D×D matrix, with D even. In the sequel,
we assumea that Θ = θJ , with θ > 0 and J the antisymmetric D × D block diagonal

matrix made of 2× 2 blocks

(
0 1
−1 0

)
. We define the interaction term as

Sint[φ] =
∑

n≥1

gn
n

∫
dDxφ⋆n(x), (4.9)

where gn ∈ R are coupling constants. In the sequel, it will be necessary to express
explicitely the Moyal interaction as a functional of the fields

Sint[φ] =
∑

n≥1

gn
n

∫
dDx1 · · · dDxnVn(x1, . . . , xn)φ(x1) · · ·φ(xn). (4.10)

Vn(x1, . . . , xn) is a distibution on (RD)n, invariant under cyclic permutations,

Vn(x1, x2, . . . , xn) = Vn(xn, x1, . . . , xn−1). (4.11)

In the commutative limit θ → 0, it reduces to a product of Dirac distributions

lim
θ→0

Vn(x1, . . . , xn) =
∏

j
j 6=i

δ(xi − xj), (4.12)

which is invariant under all permutations of {1, 2, . . . , n}.
Turning back to the noncommutative case θ 6= 0, in lower degree we have V1(x1) = 1

and V2(x1, x2) = δD(x1 − x2). The first interesting interaction is V3

V3(x1, x2, x3) =
1

(πθ)D
exp−2ı

θ

{
x1 · Jx2 + x2 · Jx3 + x3 · Jx1

}
. (4.13)

The last expression of V3 is very convenient since we can associate to it a triangle with
vertices x1, x2 and x3 drawn in cyclic order around its boundary, oriented counterclock-
wise. In the sequel, it will be convenient to express higher order vertices using triangles
glued together in a tree-like manner.

Proposition 4.1 Let T be a plane tree (i.e. a connected acyclic graph embedded in the
plane) with all its inner vertices of degree 3 and its edges labelled using the index set I
and let i1, . . . , in be the cyclically ordered labels of some of the edges attached to the leaves
(terminal vertices), in counterclockwise order around the tree. Then,

Vn(xi1 , . . . , xin) =

∫ ∏

i∈I−{i1,...,in}
dDxi

∏

v
vertices of T

exp−2ı
θ

{
xiv · Jxjv + xjv · Jxkv + xkv · Jxiv

}

(πθ)D
,

(4.14)
with iv, jv, kv the labels of the cyclically ordered edges incident to v.

aOtherwise the amplitude cannot be written as (4.25) and the hyperbolic polynomial are not defined.
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Figure 12: A heptagonal Moyal vertex

Proof. Let us prove this result by induction on the number of inner vertices of T . If T has
a single inner vertex, then the equality for n = 3 is trivial whereas for n = 1, 2 it results
from the identity

1

(πθ)D

∫
dDy exp−2ı

θ
{y · Jz} = δD(z). (4.15)

Next, we suppose the result valid for all trees of order less than m and consider a tree
T of order m + 1. Cut an inner edge in T with label i0, which splits T into T ′ and T ′′.
Without loss of generality, let us assume that i1, . . . , in′ , i0 are the labels of the leaves of
T ′. Then, we separate the vertices of T into vertices of T ′ and T ′′ and use the induction
assumption for T ′ and T ′′,

∫ ∏

i∈I−{i1,...,in}
dDxi

∏

v
vertices of T

exp−2ı
θ

{
xiv · Jxjv + xjv · Jxkv + xkv · Jxiv

}

(πθ)D
=

∫
dDxi0 Vn′+1(xi1 , . . . , xin′ , xi0)Vn−n′+1(xi0 , xin′+1

, . . . , xin). (4.16)

To conclude, we need the following lemma.

Lemma 4.2 The vertices of Moyal interaction obey

∫
dDy Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y, xin′+1

, . . . , xin) = Vn(xi1 , . . . , xin) (4.17)

for any integer 1 ≤ n′ ≤ n− 1.
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Proof of the lemma.
∫
dDy Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y, xin′+1

, . . . , xin) =
∫
dDy dDy ′ δD(y − y′)Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y

′, xin′+1
, . . . , xin) =

∫
dDk

(2π)D
dDy dDy ′ Vn′+1(xi1 , . . . , xin′ , y)ek(y) Vn−n′+1(y

′, xin′+1
, . . . , xin)e−k(y

′) (4.18)

with ek(x) = exp ıkx. Smearing out with functions fi1 , . . . , fin , we thus have
∫
dDy dDxi1 · · · dDxin Vn′+1(xi1 , . . . , xin′ , y)Vn−n′+1(y, xin′+1

, . . . , xin)fi1(xi1) . . . fin(xin) =

∫
dDk

(2π)D

∫
dDxfi1 ⋆ · · · ⋆ fin′ ⋆ ek(x)

∫
dDx′fin′+1

⋆ · · · ⋆ fin ⋆ e−k(x′) =
∫

dDk

(2π)D

∫
dDxfi1 ⋆ · · · ⋆ fin′ (x)ek(x)

∫
dDx′fin′+1

⋆ · · · ⋆ fin(x′)e−k(x′) =
∫
dDx fi1 ⋆ · · · ⋆ fin′ (x) fin′+1

⋆ · · · ⋆ fin(x) =
∫
dDx fi1 ⋆ · · · ⋆ fin′ ⋆ fin′+1

⋆ · · · ⋆ fin(x)
∫
dDxi1 · · · dDxin Vn(xi1 , . . . , xin) fi1(xi1) · · · fin(xin)

(4.19)

where we have repeatedly used
∫
dDx f ⋆ g(x) =

∫
dDxf(x)g(x). (4.20)

�

The lemma ends the proof of (4.14). �

In what follows, we always assume that such a tree has been chosen for every vertex, all
choices leading to the same distribution Vn. Moreover, since V3 is conveniently represented
as a triangle, we represent the contribution of each vertex of T as a triangle whose vertices
are called corners, see figure 12 for an example.

4.2 Parametric representation and the hyperbolic polynomials

Formal perturbative quantum field theory can be compactly formulated within the back-
ground field method. In this approach, the main object is the background field effective
action defined by the expansion over Feynman graphs (we normalize the path integral in
such a way that it takes the value 1 when all the coupling constants vanish)

− log

∫
[Dχ] exp−{S0[χ] + Sint[φ+ χ]} =

−
∑

G connected ribbon graph
with f(G) flags

(−g)v(G)

SGf(G)!

∫ ∏

1≤i≤f(G)

dDxi AG(x1, . . . , xf(G))
∏

1≤i≤f(G)

φ(xi). (4.21)
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Since the interaction vertices are invariant under cyclic permutations (see (4.11)), the sum
runs over all ribbon graphs. The graph also have f(G) flags, which are half-lines that
carry the labels of the field insertions φ(x1) · · ·φ(xf(G)). SG is the symmetry factor of
the graph (cardinality of the automorphism group of the graph, leaving the flags fixed),
(−g)V (G) =

∏
v∈V (G)(−gdv), with dv the degree of v and AG is the amplitude, to be defined

below.
In the sequel, it will prove convenient to allow edge dependent oscillator frequencies

Ωe, so that we recover the amplitude appearing in (4.21) by setting Ωe = Ω.

Definition 4.1. Let G be a ribbon graph with flags and let us attach a variable xi ∈ RD

to each flag of G and Ωe > 0 to each edge. The (generalized) amplitude of a ribbon graph
with flags is the distribution defined as

AG

[
Ω, x

]
=

∫ ∏

i/∈F (G)

dDyi
∏

e∈E(G)

K 2Ωe
θ
(yie,+ , yie,−)

∏

v∈V (G)

Vdv(yiv,1 , . . . , yiv.dv ), (4.22)

where we integrate over variables yi ∈ RD associated to each half-edge of G, with the
convention that for a flag we set yi = xf without integrating over xi. yie,+ , yie,− the
variables attached to the ends of e (the order does not matter since the Mehler kernel is
symmetric) and yiv,1 , . . . , yiv.dv the variables attached in cyclic order around vertex v.

In the commutative case θ = 0, the vertex (4.12) enforces the identification of all the
corners (internal and external) attached to the same vertex and is invariant under all
permutations of the half-edges incoming to a vertex. Therefore, the amplitude is assigned
to ordinary (i.e. non ribbon) graphs, with flags replaced by external vertices.

Definition 4.2. Let G = (V, Vext, E) be a graph with Vext ⊂ V the external vertices to
which variables xv ∈ RD are assigned. Let us attach a variable yv ∈ RD to each vertex of
G, with the convention that yv = xv for an external vertex. The (generalized) commutative
amplitude of a graph with external vertices is defined as

Acommutative
G

[
Ωe, xv

]
=

∫ ∏

v∈V−Vext

dDyv
∏

e∈E
KΩe(yve,+ , yve,−), (4.23)

with Ωe the edge dependent frequency and ve,+ and ve,− the vertices e is attached.

The commutative amplitude is recovered as a limiting case.

Proposition 4.3 Let G be a ribbon graph with flags and let Vext(G) be the subset of ver-
tices of G carrying flags. Then, for the graph with external vertices G = (V (G), Vext(G), E(G))

Acommutative
G

[
Ωe, xv

] ∏

v∈V ext(G)

{ ∏

f∈Fv

δ(xv − xf )

}
= lim

θ→0
AG

[
θ
2
Ωe, xf

]
, (4.24)

with G = (E(G), V (G), Vext(G)) and Fv(G) the set of flags attached to v in G and
(xv)∈Vext(G) and (xf )f∈F (G) independent variables.

Proof. Note that in the commutative case we use oscillators of frequency Ωe instead of
2Ωe

θ
. Then, proposition 4.3 follows immediately from (4.12). �
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Even in the general noncommutative case, the integral over all the corners is Gaußian,
thanks to peculiar form of the Mehler kernel (4.5) and of the Moyal vertex (4.14). There-
fore, the amplitude can be expressed in parametric form as follows, as was first shown in
[10] .

Theorem/Definition 4.1 The generalized amplitude (4.25) of the Grosse-Wulkenhaar
model for a ribbon graph G (which does not contain an isolated vertex with an even number
of flags) with e(G) edges, v(G) vertices and f(G) flags carrying variables xi ∈ RD is

AG(x) =

∫ ∏
edαe

[
2f(G)

∏
e Ωe(1− t2e)

(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

exp−1

θ

{
HVG(Ω, t, x)

HUG(Ω, t)

}
, (4.25)

where the first hyperbolic polynomial HUG(Ω, t) is a polynomial in the edge variables Ωe

and te = tanh 2Ωeαe

θ
and the second hyperbolic polynomial HVG(Ω, t, x) is a linear combi-

nation of the products xi ·xj and xi ·Jxj, whose coefficients are polynomials in Ωe and te.

Proof. The key idea is to write the amplitude (4.23) as a Gaußian integral. To begin with,
let us first derive a more systematic expression of AG. First, we represent each vertex
using a plane tree made of triangles, as in proposition 4.1. The corners of the triangles
attached to the flags of G are the external corners while the other corners over which we
integrate are called internal corners. The internal corners come in three types: related by
an edge, common to two triangles or isolated. In this last case, the variable attached to
the internal corner acts as a Lagrange multiplier, as in (4.15). Since all the triangles are
oriented counterclockwise, we define an antisymmetric adjacency matrix ζ between the
corners (internal and external) by





ζij = 1 if there is a triangle edge oriented from i to j,
ζij = −1 if there is a triangle edge oriented from j to i,
ζij = 0 if there is no triangle edge between i and j.

(4.26)

Let us denote by C int
v (resp. Cext

v ) the set of internal (resp. external) corners attached to
the vertex v and define the matrix α (resp. β, γ) by restricting ζ to the lines and columns
in C int

v (resp. lines in C int
v and columns in Cext

v , lines and columns in Cext
v ). Using (4.14),

the contribution of the vertex v to AG can be written as

1

(πθ)D|Tv | exp−
ı

θ

{ ∑

i,j∈Cint
v

αij xi ·Jxj+2
∑

i∈Cint
v , j∈Cext

v

βij yi ·Jxj+
∑

i,j∈Cext
v

γij xi ·Jxj
}
, (4.27)

with |Tv| the number of triangles used in the chosen tree-like representation of v.
In order to define the short and long variables for all edges, we choose an arbitrary

orientation on the edges of G and introduce the incidence matrix ǫ between the edges and
the internal corners





ǫei = 1 if e arrives at i,
ǫei = −1 if e leaves i,
ǫei = 0 if e is not attached to i.

(4.28)
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The long and short variables associated with the edge e are

ue =
1√
2

(∑

i

ǫeiyi
)

and ve =
1√
2

(∑

i

|ǫei|yi
)
, (4.29)

with xi the variables attached to the corners. We enforce these relations by inserting
δ-functions with Lagrange multipliers λe and µe in the definition of AG

∫
dλe

(πθ)D
exp−2ı

θ

{
λe · J

[
ue −

1√
2

(
∑

i

ǫeiyi

)]}
(4.30)

and ∫
dµe

(πθ)D
exp−2ı

θ

{
µe · J

[
ve −

1√
2

(
∑

i

|ǫei|yi
)]}

. (4.31)

Gathering all the terms together, the expression of the amplitude reads

AG =

∫ ∏
edαe

1

N ×
∫
dNX exp

{
−1

2
tXAX + ıtXB +

C

2

}
, (4.32)

where

X =

√
2

θ

(
ue, ve, λe, µe, yi

)
(4.33)

is a variable in RN with N = 4e(G)D + |C int(G)|D. A is a symmetric N ×N matrix

A =




diag(Ωe/te)⊗ ID 0 ıIe(G) ⊗ J 0 0
0 diag(Ωete)⊗ ID 0 ıIe(G) ⊗ J 0

−ıIe(G) ⊗ J 0 0 0 ı√
2
ǫ⊗ J

0 −ıIe(G) ⊗ J 0 0 ı√
2
|ǫ| ⊗ J

0 0 − ı√
2
tǫ⊗ J − ı√

2
|tǫ| ⊗ J ıα⊗ J



,

(4.34)
with IM the identity M ×M matrix. B ∈ RN and C ∈ ıR are defined by

B =

√
2

θ

(
0, 0, 0, 0

∑

j∈Cext
v

βijJxj

)
and C = −2ı

θ

∑

i,j∈Cext
v

γij xi · Jxj. (4.35)

Finally, the normalization factor is

N =
∏

e

[
2Ωe(1− t2e)

θ × 2π × 2te

]D/2

× 1

(πθ)2e(G)D
× 1

(πθ)|T (G)|D ×
(θ
2

)N/2

, (4.36)

whose respective contributions are the normalization factors of the Mehler kernels (4.5),
the δ functions for the short and long variables, the contributions of the vertices (|T (G)|
is the total number of triangles in the representation of all vertices of G) and the Jacobian
of the change of variables to X.

We are now in a position to perform the Gaußian integration over X in (4.32),

AG =

∫ ∏
edαe

(2π)N/2

N
√
detA

×
∫
dNZ exp

{
−1

2
tBA−1B +

C

2

}
, (4.37)
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where we assumed A to be invertible, as it should be the case by its construction. Alter-
natively, one could have replaced A by A = λIN with λ large enough and show afterwards
that the limit λ→ 0 is well defined. For simplicity, we do not do this here and will show,
in proposition 5.5, that detA > 0 provided G does not contain an isolated graph with an
even number of flags.

To simplify the normalization factor, let us first derive a topological relation between
the number of triangles and internal corners of any representation of the vertices ofG using
triangles. In each case, the graph obtained by joining the center of adjacent triangles is a
forest (i.e. a graph without cycles) with |T (G)| vertices and v(G) connected components,
so that there are |T (G)| − v(G) corners common to two triangles. Next, each triangle
has 3 corners, which are either attached to flags or internal corners, with the internal
corners common to two triangles counted twice. Accordingly, 3|T (G)| = |C int(G)|+f(G)+
(|T (G)| − v(G)), so that

2|T (G)| = |C int(G)|+ f(G)− v(G). (4.38)

Using this relation, we get

(2π)D/2

N =
(2πθ)|C

int(G)|

(2πθ)e(G)(πθ)2||T (G)||2|Cint(G)| = 2f(G)−v(G)(2πθ)v(G)−e(G)−f(G). (4.39)

To define HUG(Ω, t) it is helpful to note that the matrix A can be written as

A = D ⊗ ID +R⊗ ıJ, (4.40)

with D diagonal and R antisymmetric. The matrix P−1ıJP with P the D × D block

diagonal matrix made of 2 × 2 blocks

(
ı√
2

− ı√
2

1√
2

1√
2

)
is diagonal with blocks

(
1 0
0 −1

)
.

Therefore,

detA =
[
det(D +R)

]D/2 ×
[
det(T −R)

]D/2
=
[
det(D +R)

]D
(4.41)

since det(T −R) = det t(D −R) = det(D +R). Thus,

HUG(Ω, t) = 2v(G)
[∏

e te
]
det(D +R) (4.42)

is a polynomial in te (because of the multiplication by
∏

e te) and in Ωe and

(2π)N/2

N
√
detA

=

[
2f(G)

∏
e Ωe(1− t2e)

(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

, (4.43)

which corresponds to the prefactor in (4.25).
Finally, taking into account (4.42), we define the second hyperbolic polynomial as

HVG(Ω, t, x) = 2v(G)θ
[∏

e te
]
det(D +R)

[
tBA−1B + C

]
. (4.44)

The only non trivial assertion to check is its polynomial dependence on te. The latter
follows from

A−1 = (D +R)−1 ⊗
(
1+ıJ
2

)
+ (T −R)−1 ⊗

(
1−ıJ
2

)
, (4.45)

so that
[∏

e te
]
det(D + R)A−1 is a matrix of polynomials in te since

[∏
e te
]
det(D +

R)(D +R)−1 and
[∏

e te
]
det(T −R)(T −R)−1 are. �
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Remark. When expressed in term of Ω and t, both hyperbolic polynomials HUG(Ω, t) and
HVG(Ω, t, x) do not depend on θ. This is the consequence of the use of the Mehler kernel

KΩ̃ in the kinetic term, with Ω̃ = 2Ω
θ
. However, there is an implicit θ dependence in the

relation between t and α.

5 Hyperbolic polynomials as graph polynomials

5.1 Reduction relation for the first hyperbolic polynomial

In general, it is not very convenient to study the hyperbolic polynomials starting from
the relations (4.42) and (4.44). It is preferable to compute the determinants by a series
of successive reductions, instead of trying to manipulate them in one go. This leads to
the following reduction relation.

Theorem 5.1 The first hyperbolic polynomial HUG, defined by (4.42) for any ribbon
graph with flags, is multiplicative over disjoint unions, obeys the reduction relation

HUG = te HUG−e + teΩ
2
e HUG∨e + Ωe HUGe−e + Ωet

2
e HUGe∨e (5.1)

for any edge e. Furthermore, for the graph Vn consisting of an isolated vertex with n flags,
we have

HUVn =

{
2 if n is even,
0 if n is odd.

(5.2)

Proof. Let us recall the defining relation (4.42) of the first hyperbolic polynomial as a
determinant,

HUG(Ω, t) = 2v(G)
[∏

e te
]
det(D +R). (5.3)

The multiplicativity follows readily from (4.42) since the adjacency and incidence matrices
of a disjoint union are block diagonal.

Although all the graphical operations appearing in the reduction relations can be
performed on the lines and columns of D+R, it is much more economical to derive them
using technics from Grassmannian calculus (see for instance [1] for a recent overview of
Grassmannian calculus). To proceed, write the determinant as a Gaußian integral over
Grassmann variables with {ρ, σ} ∈ {ue, ve, λe, µe, yi}b,

det(D +R) =

∫ ∏

ρ

dψρdψρ exp−
{∑

ρ,σ

ψρ(D +R)ρσψσ

}
. (5.4)

Next, we perform the change of variables of

{
ψρ = 1√

2
(χρ − ıηρ),

ψρ = 1√
2
(χρ + ıηρ),

with Jacobian
D(ψ, ψ)

D(χ, η)
= ı. (5.5)

bFor the sake of clarity we use here the same letter for indices and the corresponding integration
variables in the previous section.
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Because all Grassmann variables anticommute, the determinant is expressed as

det(D +R) =∫ ∏

ρ

[
− ıdχρdηρ

]
exp ı

{∑

ρ

dρχρηρ

}
exp−1

2

{∑

ρ,σ

Rρσ(χρχσ + ηρησ)
}
, (5.6)

with dρ = Ωe

te
(resp. dρ = Ωete) for ρ = ue (resp. ρ = ve) and 0 otherwise. Note that

∫ ∏
ρ dχρ exp−1

2

{∑
ρ,σ Rρσχρχσ

}
(or the equivalent expression using η) is the Pfaffian of

the antisymmetric matrix Rρσ.
Let us select a particular edge e from the corner i to the corner j and expand the

related exponential

det(D +R) =

∫ ∏
ρ

[
− ıdχρdηρ]

(
1 + ıΩe

te
ηueχue + ıΩeteηveχve − (Ωe)

2ηueχueηveχve

)

× exp ı
{∑

ρ 6=ue,ve
dρχρηρ

}
exp−1

2

{∑
ρ,σ Rρσ(χρχσ + ηρησ)

} .

(5.7)
Moreover, since the operations on the variables η and χ are identical and independent,
we perform them explicitely only on η. In the sequel, we repeatedly use the following
elementary result from Grassmannian calculus

Lemma 5.2 Let F be a function of the Grassmann variables η1, η2, . . . (i.e. an element
of the exterior algebra generated by η1, η2, . . . ). Then

∫
dη1 η1F (η1, η2, . . . ) = F (0, η2, . . . ), (5.8)

and its corollary, the integral representation of the Grassmannian δ function

∫
dη0dη1 exp a {η0η1}F (η1, η2, . . . ) = dη1 aδ(η1)F (η1, η2, . . . ) = aF (0, η2, . . . ). (5.9)

It is convenient to explicit all the terms involving the edge e in the Pfaffian

∑

ρ,σ

Rρσηρησ = ηueηλe + λveηµe +
1√
2
ηλe

(
ηyj − ηyi

)
+ 1√

2
ηµe

(
ηyj + ηyi

)
+ · · · . (5.10)

To alleviate the expressions, we make the convention that in the following we only repre-
sent the part of the Grasmann integral affected by the equations.

The first term in (5.7),

∫
dηuedηvedηλedηµe

exp−
{
ηueηλe + λveηµe +

1√
2
ηλe

(
ηyj − ηyi

)
+ 1√

2
ηµe

(
ηyj + ηyi

)
+ · · ·

}
, (5.11)

corresponds to the deletion of e in G since the integration over ηue and ηve sets ηλe =
ηµe = 0 by using (5.9). Then, the corners i and j remain as isolated corners. Let us note
that the factors of ı cancel since we integrate over 4 pairs χρηρ and that no extra sign arise
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form the commutation of dχρ and dηρ, since the latter are always performed pairwise on
χρ and ηρ.

In the second term,

∫
dηuedηvedηλedηµe

ηue exp−
{
ηueηλe+λveηµe+

1√
2
ηλe

(
ηyj−ηyi

)
+ 1√

2
ηµe

(
ηyj+ηyi

)
+ · · ·

}
, (5.12)

we have ηue = 0 and the integration over ηve sets ηµe = 0 with an extra sign. The
remaining integration over ηλe enforces δ(ηyi − ηyj) after integration over with an extra

factor of −1/
√
2 using (5.9). To relate this operation to the deletion in the partial dual

Ge, we need to distinguish two cases.

• If e is not a loop, then Ge − e results from the identification of the corners i and j
(belonging to two different vertices) to get a single vertex, as required by ηyi = ηyj .

Taking into account both Pfaffians and the prefactor 2v(G), we get
(

1√
2

)2
× 2v(G) =

2v(G
e−e). After taking into account the variables χρ and ηρ, we integrate over an odd

number of pairs, so that a factor of ı remains, which cancels with the one in (5.7).

• Let us suppose that e is a loop. Using the freedom we have in representing the
vertex using triangles, we may always assume that i and j lie on adjacent triangles
(ikl) and (jkm) with a common corner k and related to the remaining part of the
graph by two additional corners l and m.

k

i

l

m

j

e

Figure 13: A loop e

The contribution of the two triangles to the Pfaffian is

exp−
{
ηyiηyk + ηykηyl + ηylηyi + ηyjηyk + ηykηym + ηymηyj

}
. (5.13)

After the identification ηyi = ηyj , the contribution of the triangles ikl and jkm reads

∫
dηyidηyk exp−{2ηykηyi + (ηyi − ηyk)(ηyl + ηym)} =
∫
dη+dη− exp−

{
2η+η− +

√
2η−(ηyl + ηym)

}
, (5.14)
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using the change of variables η± =
ηyi±ηyk√

2
. Using (5.9), the integration over η+ sets

η− = 0 with an extra −2, so that the contribution of the two triangles is trivial.
Therefore, we suppress the latter, which is nothing but the deletion of e in Ge.

Finally, the factors of 2 are
(

1√
2

)2
× 22 × 2v(G) = 2 × 2v(G) = 2v(G

e−e) since e is

a loop. The signs and factors of ı also cancel since we integrate over 7 pairs of
variables.

The third term,

∫
dηuedηvedηλedηµe

ηveexp−
{
ηueηλe+ηveηµe+

1√
2
ηλe

(
ηyj−ηyi

)
+ 1√

2
ηµe

(
ηyj+ηyi

)
+ · · ·

}
, (5.15)

is very similar to the second one, except that the integration over ηue , ηve , ηλe results in

∫
dηµe exp−

{
(ηµe)

ηyi + ηyj√
2

}
. (5.16)

Again, we distinguish two cases

• If e is not a loop, let us set a new variable ηyp = ηµe√
2
(p does not correspond to an

existing corner in G), so that

∫
dηµe exp−

{
(ηµe)

ηyi + ηyj√
2

}
=

1√
2

∫
dηyp exp−

{
ηypηyi + ηypηyj

}
. (5.17)

This is the contribution of two triangles (piq) and (pjr) attached by a common
corner p with flags on q and r, so that there are no terms in ηyq = ηyr0. Graphically,
it corresponds to identifying the corners i and j with two extra flags separating the
two parts of the graph that were attached to the corners i and j. This is the cut of
e in the partial dual Ge.

• If e is a loop, then we perform the integration over ηµe which enforces ηyi + ηyj = 0
with an extra factor −1√

2
. As in the discussion of the second case, without loss of

generality we assume that i and j lie on adjacent triangles (ikl) and (jkm) whose
contribution is given by (5.13). After the identification ηyj = −ηyi , we are left with

∫
dηyidηyk exp−{(ηyi − ηyk)ηyl + (ηyi + ηyk)ηym} =

∫
dη+dη− exp−

{√
2η−ηyl +

√
2η+ηym

}
, (5.18)

using the change of variables η± =
ηyi±ηyk√

2
. Using (5.9), the integration over η+ and

η− sets ηyl = ηym = 0 with an extra factor of 2, so that the contribution of the
two triangles is trivial. Therefore, we suppress the latter, which is nothing but the
deletion of e in Ge. As in the previous case, all the factors of −1, 2 and ı cancel
after we take into account the contributions of both Pfaffians.
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The fourth term,
∫
dηuedηvedηλedηµe

ηueηveexp−
{
ηueηλe + λveηµe +

1√
2
ηλe

(
ηyj − ηyi

)
+ 1√

2
ηµe

(
ηyj + ηyi

)
+ · · ·

}
, (5.19)

represents the cut of e in G since the integration over ηue and ηve sets ηλe = ηµe = 0 by
using (5.8). The remaining integrations over ηλe and ηµe can be written as

∫
dη+dη− exp

{
η+ηyj + η−ηyi

}
with η± =

ηµe ± ηλe√
2

, (5.20)

which imposes ηyi = ηyj = 0. Graphically, this means that the corners i and j become
flags, which yields G ∨ e. Here, the are neither powers of 2, nor extra signs arising from
the operations. However, we integrate over 6 pairs of variables, so that the Jacobians
yield -1, which cancel with the sign in (5.7).

Finally, let us prove the assertion concerning the isolated vertices. In this case, D+R
reduces to α, the antisymmetric adjacency matrix α of the internal corners of the graph,
defined in the proof of theorem 4.1. For a vertex with an even number of flags, we have
an odd number of internal corners because of the relation (4.38), so that

HUV2n = 2det(α) = 0. (5.21)

In case of an even number of flags

HUV2n+1 = 2det(α) = 2
[
Pf(α)

]2
. (5.22)

Recall that the Pfaffian of a 2n× 2n antisymmetric matrix is defined as

Pf(α) =
∑

π∈Πn

(−1)sign(π)απ(1),π(2)απ(3),π(4) · · ·απ(2n−1),π(2n), (5.23)

with Πn the subset of the permutations of {1, 2 . . . , 2n} such that π(2i−1) < π(2i) for
any 1 ≤ i ≤ n and π(1) < π(3) < · · · < π(2n − 1). Accordingly, if α is the adjacency
matrix of a graph, its Pfaffian is a sum over all its perfect matchings, with relative signs.
In the case of the graph build with the edges of the triangles pertaining to a vertex of odd
degree and with all the external corners and the triangle edges attached to them removed,
it is easy to show by induction on the number of triangles, that there is a unique perfect
matching on the triangle edges, with the convention that the empty graph has a unique
perfect matching, the empty one. Therefore Pf(α) = ±1, so that HUV2n+1 = 2. �

For a graph with e(G) edges, the reduction relation (5.1) involves 4e(G) operations,
many of them leading to terminal forms containing a vertex of even degree. For E(G) ≥ 3,
it is therefore not very convenient to compute HUG using the reduction relation. However,
it is instructive to see how it works on the simplest examples with 1 and 2 edges.

Example 5.1 (Bridge with flags) Let Bm,n be the bridge (i.e. one edge and two ver-
tices) with m flags on one vertex and n flags on the other one. Then, the reduction relation
reads

HUBm,n(Ω1, t1) = t1 HUVm∪Vn + tΩ2
1 HUVm+1∪Vn+1 + Ω1 HUVm+n + Ω1t

2
1 HUVm+n+2 , (5.24)
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, so that we obtain

HUBm,n(Ω1, t) =





4 t1Ω
2
1 if m and n are even,

4 t1 if m and n are odd,
2Ω1(1 + t21) otherwise.

(5.25)

.

Example 5.2 (Loop with flags) Let Lm,n be the loop (i.e. one edge and one vertex)
with m flags on one face and n flags on the other one. The reduction relation

HULm,n(Ω1, t1) = Ω1 HUVm∪Vn + tHUVm+n + Ω1t
2
1 HUVm+1∪Vn+1 + t1Ω

2
1 HUVm+n+2 , (5.26)

implies

HULm,n(Ω1, t1) =





4Ω1t
2
1 if m and n are even,

4Ω1 if m and n are odd,
2 t1(1 + Ω2

1) otherwise.
(5.27)

Example 5.3 (Cycle of length 2 without flags) Let us consider a cycle of length two
without flags. The reduction relation reads

HU cycle
2 edges, no flag

(Ω1,Ω2, t1, t2) =

t1 HUB0,0(Ω2, t2) + t1Ω
2
1 HUB1,1(Ω2, t2) + Ω1 HUL0.0(Ω2, t2) + Ω1t

2
1 HUV1,1(Ω2, t2), (5.28)

and we get, using the previous two examples,

HU cycle
2 edges, no flag

(Ω1,Ω2, t1, t2) = 4
(
t21 + t22

)
Ω1Ω2 + 4

(
Ω2

1 + Ω2
2

)
t1t2. (5.29)

5.2 Some properties of HUG as a graph polynomial

We are now ready to give the combinatorial expression of the first hyperbolic polynomial.

Theorem 5.3 The first hyperbolic polynomial can be expressed as

HUG(Ω, t) = QG(t,Ω,Ωt
2, tΩ2, r), (5.30)

with r2n+1 = 2 and r2n = 0, or explicitly,

HUG(Ω, t) =

∑

A,B⊂E(G)
admissible

{
2v(G

A)
( ∏

e∈Ac∩Bc

te

)( ∏

e∈Ac∩B
teΩ

2
e

)( ∏

e∈A∩Bc

Ωe

)( ∏

e∈A∩B
Ωet

2
e

)}
, (5.31)

with (A,B) admissible if each vertex of the graph obtained from GA by cutting the edges
in B and deleting those in Bc has an odd number of flags.
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Proof. Recall that for ribbon graph with flags the polynomial QG(x, y, z, w, r), depending
on four variables (xe, te, ze, we) for each edge and a sequence (rn)n∈N, is defined as

QG(x, y, z, w, r) =

∑

A,B⊂E(G)




( ∏

v∈V (GA)

rdv

)( ∏

e∈Ac∩Bc

xe

)( ∏

e∈Ac∩B
we

)( ∏

e∈A∩Bc

ye

)( ∏

e∈A∩B
ze

)


 (5.32)

The graph polynomial QG can be characterized as the unique graph polynomial which is
multiplicative over disjoint unions, that obeys the reduction relation

QG = xeQG−e + weQG∨e + yeQGe−e + zeQGe∨e, (5.33)

for any edge e ∈ E(G) and that takes the value QVn(x, y, z, w, r) = rn on a isolated vertex
with n flags, see definition 3.2. These three conditions are precisely the content of theorem
5.1, with xe = te, ye = Ωe, ze = Ωet

2
e, we = teΩ

2
e, r2n = 0 and r2n+1 = 2. The relation

r2n = 0 reduces the summation to admissible subsets (A,B) and r2n+1 = 2 yields a factor
of 2 for each vertex of GA. �

This formula can be used to compute HUG(Ω, t) for simple examples that admit many
symmetries. Otherwise there are many possibilities for the subsets A and B that have to
be treated, many of them being non admissible.

Example 5.4 (Planar banana with three edges) Let us consider the planar graph
with two vertices and three edges, all of three having both ends attached to different vertices.
With A = ∅, we must have |B| odd. Thus, we get four terms

4t1t2t3(Ω
2
1 + Ω2

2 + Ω2
3 + Ω2

1Ω
2
2Ω

2
3), (5.34)

If |A| = 1, GA has a single vertex without flags, so that no cut could yield an odd number
of flags. When |A| = 2, let us suppose that A = {1, 2} for definiteness. Then, GA is a
cycle with two edges 1 and 2 and an extra loop 3 attached to one of the vertices. We have
4 possibilities for B: {1}, {2}, {1, 3} and {2, 3}, that yield the monomials:

4Ω1Ω2(t
2
1t3 + t22t3 + t21t3Ω

2
3 + t22t3Ω

2
3). (5.35)

By cyclic symmetry, we construct 8 other terms that correspond to A = {2, 3} and A =
{1, 3}. Finally, with |A| = 3, GA is a triangle and there is no way to get only odd vertices
after cutting. Therefore, we obtain

HU planar
3-banana

(Ω, t) = 4
[
t1t2t3

[
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
1Ω

2
2Ω

2
3

]
+ t1Ω2Ω3

[
t22 + t23 + Ω2

1(t
2
2 + t23)

]

+ t2Ω1Ω3

[
t21 + t23 + Ω2

2(t
2
1 + t23)

]
+ t3Ω1Ω2

[
t21 + t22 + Ω2

3(t
2
1 + t22)

]]
, (5.36)

A first consequence of theorem 5.3 is the invariance of the first hyperbolic polynomial
under partial duality, provided we interchange some of the variables Ω and t.
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Corollary 5.4 For any A ⊂ E(G), the first hyperbolic polynomial transforms under par-
tial duality as

HUGA(ΩA, tA) = HUG(Ω, t), (5.37)

with {
[ΩA]e = te, [tA]e = Ωe for e ∈ A,
[ΩA]e = Ωe, [tA]e = te for e /∈ A.

(5.38)

Proof. This an immediate consequence of the relation between HUG and QG and of the
transformation of QG under partial duality, see theorem 3.3. �

Remark. It is worthwhile to notice that this is a rather strong result, since the duality
holds with respect to any subset of edges for all graphs, in contradistinction with the
commutative case, where only the duality with respect to all edges holds for a planar
graph. Note that this property also holds for the noncommutative field theories with Moyal
interaction and heat-kernel propagator (see corollary 6.5), since in this case we obtain
an evaluation of the multivariate Bollobàs-Riodan polynomial, which is invariant under
partial duality.

Let us illustrate the use of the partial duality on a simple example.

Example 5.5 (Non-planar double tadpole) The partial dual of a cycle of length 2
with respect to one of its edges is the non-planar double tadpole (i.e. the non planar graph
with one vertex and two edges). Thus, using the result of example 5.3

HU non-planar
double tadpole

(t1, t2,Ω1,Ω2) = HUC2(t1,Ω2,Ω1, t2) = 4
(
Ω2

1 + t22
)
t1Ω2 + 4

(
t21 + Ω2

2

)
Ω1t2.

(5.39)
Note that we obtain the same result if we perform the partial duality on edge 2, since they
are symmetric. Partial duality with respect to both edges yields another cycle of length 2,
with variables all variables Ω and t interchanged.

Before we deal with particular classes of graphs, let us show that HUG is not identically
0, except for a particular case.

Proposition 5.5 HUG is identically 0 only for a graph containing an isolated vertex of
even degree.

Proof. We have already seen that on a isolated vertex HUG = 0 if only if G has an even
number of flags. Using the multiplicativity over disjoint unions, it remains to show that
HUG is not identically zero for a graph with at least one edge. To construct a monomial
with a non zero coefficient, let us choose a spanning tree T in G and an edge e ∈ E(T ).
The tree T/(E(T ) − {e}) obtained by contracting all edges of T but e has two vertices
v1 and v2. If v1 and v2 both carry an odd number of flags then set A = E(T )− {e} and
B = ∅. If v1 and v2 both carry an odd number of flags then set A = E(T ) − {e} and
B = {e}. If one of the vertices carries an odd number of flags and the other an even one,
then set A = E(T ) and B = ∅. Then, with these choices of A and B, the corresponding
monomial in (5.31) is always non zero. �
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Remark. Since all the coefficients of the monomials of HUG are positive as a consequence
of the reduction relation, this shows that HUG(Ω, t) = 0 is possible for te > 0 and Ωe > 0
if and only if G contains an isolated vertex with an even number of flags. Thus, detA > 0
in the Gaussian integration (4.37) if there is no isolated vertex of even degree.

For trees, it is possible to obtain a formula that collects the contribution of various
subsets A and B.

Proposition 5.6 For a tree T with flags, the first hyperbolic polynomial reads

HUT (Ω, t) =
∑

A⊂E(T )

∑

B⊂E(T )−A
(B,V (T/A)) odd

{
2|E(T )|−|A|+1

∏

e∈A
Ωe(1+t

2
e)
∏

e′∈B
Ωe′te′

∏

e′′∈E(T )−(A∪B)

te′′

}
, (5.40)

with T/A the graph resulting from the contraction of the edges in A and a graph is said
to be odd if all its vertices have an odd number of attached half-lines, flags included.

Proof. If e(T ) = 0, then T = Vn is an isolated vertex and A = B = ∅, so that
(B, V (T/A)) = Vn and we recover (5.2). If e(T ) = 1, then T = Bm,n is a bridge with flags
and (5.40) reproduces (5.25). Let us now prove the result by induction on e(T ), singling
out an edge e and using the reduction relation

HUT = Ωe HUT e−e + Ωet
2
e HUT e∨e + te HUT−e + teΩ

2
e HUT∨e. (5.41)

The graphs T1 = T e − e and T2 = T e ∨ e are trees whereas T − e = T3 ∪ T4 and
T ∨ e = T5 ∪ T6 are disjoint unions of 2 trees. All the trees have less than e(T ) edges so
that we may apply the induction assumption, with a sum over Ai, Bi ⊂ E(Ti).

For the first two terms, we gather terms for which A1=A2 and define A = A1 ∪ {e}.
Then, with B = B1 or B = B2, the graph (B, V (T/A)) is odd if only if (B1, V (T1/A1)) or
(B2, V (T2/A2)) are and the powers of 2 agree, 2E(T )−|A|+1 = 2E(T e−e)−|A1|+1 = 2E(T e∨e)−|A2|+1.
This reproduces the terms in (5.40) such that e ∈ A.

In the case of T − e, HUT−e factorizes as two independent summations over (A3, B3)
and (A4, B4) and we set A = A3 ∪ A4 and B = B3 ∪ B4. The graph (B, V (T/A)) is odd
if only if (B1, V (T1/A1)) and (B2, V (T2/A2)) are and the powers of 2 agree, 2E(T )−|A|+1 =
2E(T1)−|A1|+12E(T2)−|A3|+1. This reproduces in (5.40) the terms such that e /∈ A and e /∈ B.

For T ∨ e, we proceed similarly with A = A5 ∪A6 and B = B5 ∪B6 ∪ {e} and recover
the terms in (5.40) for which e /∈ A and e ∈ B. �

Let us illustrate the use of proposition 5.6 on some simple examples.

Example 5.6 (n-star tree without flags) Consider the n-star tree ⋆n is made of one
n-valent vertex, attached to n univalent ones, all without flags. Since all the edges not in
A are necessarily in B (otherwise the leaves yield vertices without flag),

HU⋆n(Ω, t) =
∑

A⊂E(⋆n)
|A|+n odd

{
2n−|A|+2

∏

e∈A
Ωe(1 + t2e)

∏

e′∈E(⋆n)−A
Ωe′te′

}
. (5.42)

Using partial duality, one can compute the first hyperbolic polynomial for every graph
made of loops attached to the vertices of a tree. Indeed, the partial duality with respect
to the loops transforms the diagram into another tree.
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Example 5.7 (Dumbbell) Let us consider the dumbbell graph (an edge labelled 1 at-
tached to two vertices, each carrying a loop labelled 2 and 3). Let us perform the partial
duality with respect to the loops 2 and 3 to obtain a linear tree with two three edges and
no flag, for which proposition 5.6 immediately yields

HU linear tree
3 edges no flag

(Ω, t) = 16t1t2Ω
2
2t3Ω

2
3 + 4t1Ω

2
1Ω2(1 + t22)Ω3(1 + t23)

+4t2Ω
2
2Ω1(1 + t21)Ω3(1 + t23) + 4t3Ω

2
3Ω1(1 + t21)Ω2(1 + t22). (5.43)

Using the partial duality HUdumbbell(Ω1,Ω2,Ω3, t1, t2, t3) = HU linear tree
3 edges no flag

(t1, t2,Ω3, t1,Ω2,Ω3)

we get

HUdumbbell(Ω, t) = 16t1Ω2t
2
2Ω3t

2
3 + 4t1Ω

2
1t2(1 + Ω2

2)t3(1 + Ω2
3)

+4Ω2t
2
2Ω1(1 + t21)t3(1 + Ω2

3) + 4Ω3t
2
3Ω1(1 + t21)t2(1 + Ω2

2). (5.44)

Beyond trees, it is also possible to give a useful formula for cycles, i.e. a connected
graph in which every vertex has valence 2.

Proposition 5.7 For a cycle C with m flags in one face and n in the other one, the first
hyperbolic polynomial reads:

HUC(Ω, t) = 4δ(−1)m,(−1)n
( ∏

e∈E(C)

Ωe

) ∑

A⊂E(C)
|A|+n odd

{
∏

e′∈A
t2e′

}
+

∑

A⊂E(C)
(A,V (C)) acyclic

∑

B⊂E(C/A)
(B,V (C/A)) odd

{
2|E(C)|−|A|

∏

e∈A
Ωe(1 + t2e)

∏

e′∈B′

Ωe′te′
∏

e′′∈E(C)−(A∪B)

te′′

}
, (5.45)

where a graph is acyclic if it does not contain a (non necessarily spanning) subgraph
isomorphic to a cycle.

Proof. We prove this result by induction on the number of edges of C, starting with
e(G) = 1. In this case, C is a loop with flags and (5.45) reduces to (5.27). Let us consider
a cycle with e(G) > 1 edges, m flags on one face and n flags on the other one and apply
the reduction relation to an edge e,

HUC = Ωe HUCe−e + Ωet
2
e HUCe∨e + te HUC−e + teΩ

2
e HUC∨e. (5.46)

Ce − e (resp. Ce ∨ e) are cycles with e(C)− 1 edges and m flags on one face and n flags
on the other one (resp. m + 1 and n + 1), so that we apply the induction assumption
and express both of them using subsets A′ and B′ of E(G) − {e} as in (5.45). Setting
A = A′ ∪ {e} and B′ = B, these terms can be collected and correspond to those terms
in (5.45) such that e ∈ A. The numerical factors agree and

(
B, V (C/A)

)
is odd if

only if
(
B′, V

(
(Ce−e)/A′

))
and

(
B′, V

(
(Ce−e)/A′

))
are because the graphs

(
A, V (C)

)
,

(
A′, V (Ce−e)

)
and

(
A′, V (Ce∨e)

)
are acyclic.

The graphs C − e and C ∨ e are trees, so that we may apply proposition 5.6 to
expand HUC−e and HUC∨e using subsets A′ and B′ of E(C) − {e}. Setting A = A′ and
B = B′, terms in HUC−e correspond to terms in HUC such that neither A nor B contains
e. With A = A′ and B = B′∪{e}, the expansion of HUC∨e reproduces those terms in the
expansion of HUC for which e /∈ A and e ∈ B. �
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Example 5.8 (Triangle without flags) Consider a triangle (cycle with three edges)
and no flags. Applying proposition 5.7, we get

HU triangle
without flag

(Ω, t) = 4Ω1Ω2Ω3(t
2
1 + t22 + t23 + t21t

2
2t

2
3)

+4Ω1(1 + t21)t2t3(Ω
2
2 + Ω2

3) + 4Ω2(1 + t22)t1t3(Ω
2
1 + Ω2

3) + 4Ω3(1 + t23)t1t2(Ω
2
1 + Ω2

2).

(5.47)

As we perform the duality with respect to all three edges, we recover the planar banana
with three edges (see example 5.4), with Ωe ↔ te for all edges.

Example 5.9 (Triangle with flags) For a triangle with one flag on each vertex, all in
the same face, proposition 5.7 immediately yields

HU triangle
with flags

(Ω, t) = 8t1t2t3(1 + Ω2
1Ω

2
2Ω

2
3)

+2t1Ω2(1 + t22)Ω3(1 + t23) + 2t2Ω1(1 + t21)Ω3(1 + t23) + 2t3Ω1(1 + t21)Ω2(1 + t22). (5.48)

Note that the first term in (5.45) vanishes, since there are three flags in one face and none
in the other one.

5.3 The second hyperbolic polynomial

Let us now evaluate the second hyperbolic polynomial HVG in terms of HUG, which is
itself an evaluation of the graph polynomial QG.

Theorem 5.8 The second hyperbolic polynomial can be expressed as

HVG =
∑

i

HUGi
x2i +

1

2

∑

i 6=j

[
HU(Gij)

eij−eij − HU(Gij)
eij∨eij

]
xi · xj

+
1

2

∑

i 6=j

[
HU(Ǧij)

eij−eij − HU(Ǧij)
eij∨eij

]
xi · Jxj, (5.49)

where Gi is the graph obtained from G by removing the flag on the corner i, Gij by joining
the external corners i and j by an extra edge eij and Ǧij by attaching an extra flag to Gij

immediately after i in counterclokwise order around the vertex i is attached.

Proof. Let us isolate two external corners i and j and write

HVG = aii x
2
i + ajj x

2
j + 2aij xi · xj + 2ıbij xi · Jxj + · · · , (5.50)

where the dots stand for terms that vanish when xi = xj = 0. To determine aii, we set
xk = 0 for k 6= i and integrate over xi,

∫
dDxi AG

∣∣∣
xk=0
k 6=i

= AGi

∣∣∣
xk=0
k 6=i

. (5.51)

Comparing both sides with (4.25), we readily get aii = HUGi
.
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Similarly, to compute aij, we insert an extra edge eij between the flags i and j

∫
dDxid

Dxj KΩ̃eij
(xi, xj)AG

∣∣∣
xk=0

k 6=i,k 6=j

= AGij

∣∣∣
xk=0

k 6=i,k 6=j

. (5.52)

The integral is Gaußian over X =

(
xi
xj

)

∫
dDxid

Dxj KΩ̃eij
(xi, xj)AG

∣∣∣
xk=0

k 6=i,k 6=j

= N
∫
d2DX exp−1

2
tXAX, (5.53)

with a normalization factor

N =

[
Ωeij(1− t2eij)

2πθ teij

]D/2

×
[ ∏

e Ωe(1− t2e)

2v(G)−f(G)(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

(5.54)

and

A =
1

θHUG

(
HUGΩeij

(
teij +

1
teij

)
+ 2aii HUGΩeij

(
teij − 1

teij

)
+ 2aij

HUGΩeij

(
teij − 1

teij

)
+ 2aji HUGΩeij

(
teij +

1
teij

)
+ 2ajj

)
⊗ ID

+
1

θHUG

(
0 2bij

−2bij 0

)
⊗ ıJ. (5.55)

This determinant can be expressed as ξD/2, with

ξ =

[
2

θHUG

]2 [
(ΩeijHUG)

2 + aiiajj − a2ij + b2ij+

ΩeijHUG

(
teij +

1

teij

)(aii + ajj
2

)
− ΩeijHUG

(
teij −

1

teij

)
aij

]
. (5.56)

We perform the Gaußian integration over X to obtain AGij

∣∣∣
xk=0

k 6=i,k 6=j

and identify HUGij

HUGij
= (Ωeij)

2teijHUG +
aiiajj − a2ij + b2ij

HUG

teij+

Ωeij

2

[
(teij)

2 + 1
](
aii + ajj

)
− Ωeij

[
(teij)

2 − 1
]
aij. (5.57)

Using the reduction relation, we identify the first term with (Ωeij)
2teijHUGeij

∨ eij, the

second with teijHUGeij
− eij (this proves that HUG dividesc aiiajj − a2ij + b2ij) and the sum

of the last two terms with ΩeijHU(Geij )
eij−eij + Ωeij(teij)

2HU(Geij )
eij∨eij . Thus we have

aij =
1

2

[
HU(Ǧij)

eij−eij − HU(Ǧij)
eij∨eij

]
. (5.58)

cIt is a simple case of the Dodgson condensation identities.
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To compute bij, we use a similar method but introduce an extra flag on the vertex i is
attached to, immediately after i in counterclockwise order. Then, we connect i and j with
an extra edge eij to obtain Ǧij. In terms of graph amplitudes, this can be expressed as

∫
dDxid

Dxjd
Dy KΩ̃eij

(y, xj)V3(xi, y, 0)AG

∣∣∣
xk=0

k 6=i,k 6=j

= AǦij

∣∣∣
xk=0

k 6=i,k 6=j

. (5.59)

As before, the integral over X =



xi
y
xj


 is Gaußian,

∫
dDxid

Dxjd
Dy KΩ̃eij

(y, xj)V3(xi, y, 0)AG

∣∣∣
xk=0

k 6=i,k 6=j

= N
∫
d2DX exp−1

2
tXAX, (5.60)

with a normalization factor

N =

[
Ωeij(1− t2eij)

2πθ teij

]D/2

×
[ ∏

e Ωe(1− t2e)

2v(G)−f(G)(2πθ)e(G)+f(G)−v(G)HUG(Ω, t)

]D/2

× 1

(πθ)D
(5.61)

and

A =
1

θHUG



2aii 0 2aij
0 HUGΩeij

(
teij +

1
teij

)
HUGΩeij

(
teij − 1

teij

)

2aij HUGΩeij

(
teij − 1

teij

)
2ajj +HUGΩeij

(
teij +

1
teij

)


⊗ ID

+
1

θHUG




0 2HUG 2bij
−2HUG 0 0
−2bij 0 0


⊗ ıJ (5.62)

Its determinant is detA = ξD/2 with

ξ =
8

θ3HUG

Ωeij

(
teij −

1

teij

)
bij + ξ1Ωeij

(
teij +

1

teij

)
+ ξ2Ω

2
eij

+ ξ3, (5.63)

with ξ1, ξ2 and ξ3 independent of Ωeij and teij .

We perform the Gaußian integration over X to obtain AǦij

∣∣∣
xk=0

k 6=i,k 6=j

and identify the

terms in Ωeij

(
t2eij − 1

)
to obtain

2bij = HU(Ǧij)
eij−eij − HU(Ǧij)

eij∨eij , (5.64)

which proves our expression for the antisymmetric part of HVG.
Let us note that up to a change of sign, we could have attached the extra flag before

i or on the vertex j is attached to. �

As a consequence, the second hyperbolic polynomial is also invariant under partial duality.
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Corollary 5.9 The second hyperbolic polynomial transforms under partial duality as

HVGA(ΩA, tA, x) = HVG(Ω, t, x), (5.65)

with {
[ΩA]e = te, [tA]e = Ωe for e ∈ A,
[ΩA]e = Ωe, [tA]e = te for e /∈ A.

(5.66)

The variables x attached to the flags are left unchanged.

Proof. This follows immediately from the invariance of HUG and the fact that partial
duality commutes with the operations we performed on the flags. �

Let us illustrate the computation of HVG on some simple examples.

Example 5.10 (Bridge) Consider the graph with a single edge, two vertices, each with
one flag, labeled 1 and 2. Thus, G1 and G2 are graphs with one edge, two vertices and a
single flag, G12 is a banana with two edges and no flag and Ǧ12 is a banana with a single
flag. This immediately leads to

HVG = 2Ω(t2 + 1)(x21 + x22) + 4Ω(t2 − 1)x1x2. (5.67)

Since we also have HUG = 4t, the amplitude reads

AG(Ω, x1, x2) =
∫
dα

[
Ω(1− t2)

2πθt

]D/2

exp− Ω

2θ

{(
t+

1

t

)(
x21 + x22

)
+ 2
(
t− 1

t

)
x1x2

}
. (5.68)

To compare this amplitude with the corresponding one in the commutative theory (see
proposition 4.3), recall that we are working with an oscillator of frequency 2Ω

θ
. Therefore,

we have to substitute Ω → θΩ
2
,

AG

(θΩ
2
, x1, x2

)
=

∫
dα

[
Ω

2π
× (1− t2)

2t

]D/2

exp−Ω

4

{(
t+

1

t

)(
x21 + x22

)
+ 2
(
t− 1

t

)
x1x2

}
, (5.69)

which is nothing but the Mehler kernel of an oscillator of frequency Ω, as it should since
there is no integration on the external flags. Strictly speaking, the commutative amplitude
is recovered after the limit θ → 0, but the latter is trivial since the θ-dependence drops
from AG

(
θΩ
2
, t, x1, x2

)
.

Example 5.11 (Tadpole) Let us now perform the partial duality on the unique edge of
the bridge treated in the last example. We obtain Ge which is a loop with a single vertex
and one flag in each of its two faces. The corresponding amplitude reads

AGe(Ω, t, x1, x2) =
∫
dα

[
(1− t2)

(2πθ)2

]D/2

exp− t

2θ

{(
Ω +

1

Ω

)(
x21 + x22

)
+ 2
(
Ω− 1

Ω

)
x1x2

}
. (5.70)
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Let us note that we exchanged Ω and t in the hyperbolic polynomials, but not in the
prefactor. It is also worthwhile to point out that we have traded the simple graph with
two 2-valent vertices for a more complicated one with one 4-valent vertex. While a direct
evaluation of the former is straightforward, it becomes more complicated for the latter,
because of the structure of the 4-valent vertex.

To compare it with the commutative case, we substitute Ω → θΩ
2

and take the limit
θ → 0, so that

AG

(θΩ
2
, x1, x2

)
=

∫
dα

[
(1− t2)

(2πθ)2

]D/2

exp−tΩ
4

(
x1 + x2

)2
exp− t

4Ωθ

(
x1 − x2

)2
. (5.71)

Then, using

lim
σ→0

1

(2πσ2)D/2
exp−(x1 − x2)

2

2σ2
= δD(x1 − x2), (5.72)

we recover

lim
θ→0

AG

(θΩ
2
, x1, x2

)
= δD(x1 − x2)

∫
dα

[
Ω

2π
× (1− t2)

2t

]D/2

exp−tΩ
4

(
x1 + x2

)2
. (5.73)

This is indeed the commutative amplitude, since the 4-valent vertex reduces in the limit
θ → 0 to a product of Dirac distributions (see (4.12)).

Example 5.12 (Sunset) Consider the graph with two vertices related by three edges
labeled 1,2 and 3 and one flag on each vertex, both in the face bounded by the edges 1 and
3. It is simpler to compute the hyperbolic polynomial of its dual, which is a cycle with
three edges and two faces, each broken by a flag on the vertex not adjacent to the edge 2,
All the graphs involved in the expression of the hyperbolic polynomial are cycles or trees
with flags so that an immediate application of propositions 5.6 and 5.7 provides us with

HU cycle with 3 edges
2 broken faces

= 4Ω1Ω2Ω3

[
1 + t21t

2
2 + t21t

2
3 + t22t

2
3

]
+ 4Ω1t2t3(1 + t21)(Ω

2
2 + Ω2

3)

+4Ω2t1t3(1 + t22)(Ω
2
1 + Ω2

3) + 4Ω3t1t2(1 + t23)(Ω
2
1 + Ω2

2) (5.74)

and

HV cycle with 3 edges
2 broken faces

(x1, x2) =
[
x21 + x22

][
8t1t2t3(Ω

2
2 + Ω2

1Ω
2
3) + 2t1Ω2Ω3(1 + Ω2

1)(1 + t22)(1 + t23)

+2t2Ω1Ω3(1 + Ω2
2)(1 + t21)(1 + t23) + 2t3Ω1Ω2(1 + Ω2

3)(1 + t21)(1 + t22)
]

+x1 · x2
[
16t1t2t3(Ω

2
1Ω

2
3 − 1) + 4t1(1 + t22)(1 + t23)Ω2Ω3(Ω

2
1 − 1)

+4t2(1 + t21)(1 + t23)Ω1Ω3(Ω
2
2 − 1) + 4t3(1 + t21)(1 + t22)Ω1Ω2(Ω

2
3 − 1)

]

+x1 · Jx2
[
4(1 + t21)t2t3Ω1(Ω

2
3 − Ω2

2)

+4(1 + t22)t1t3Ω2(Ω
2
3 − Ω2

1) + 4(1 + t23)t1t2Ω3(Ω
2
2 − Ω2

1)
]
.

(5.75)

We readily obtain the hyperbolic polynomials of the sunset by interchanging Ωe and te for
all edges,

HUsunset = 4t1t2t3
[
1 + Ω2

1Ω
2
2 + Ω2

1Ω
2
3 + Ω2

2Ω
2
3

]
+ 4t1(t

2
2 + t23)Ω2Ω3(1 + Ω2

1)

+4t2(t
2
1 + t23)Ω1Ω3(1 + Ω2

2) + 4t3(t
2
1 + t22)Ω1Ω2(1 + Ω2

3) (5.76)

43



and

HVsunset(x1, x2) =
[
x21 + x22

][
8Ω1Ω2Ω3(t

2
2 + t21t

2
3) + 2Ω1t2t3(1 + t21)(1 + Ω2

2)(1 + Ω2
3)

+2Ω2t1t3(1 + t22)(1 + Ω2
1)(1 + Ω2

3) + 2Ω3t1t2(1 + t23)(1 + Ω2
1)(1 + Ω2

2)
]

+x1 · x2
[
16Ω1Ω2Ω3(t

2
1t

2
3 − 1) + 4Ω1(1 + Ω2

2)(1 + Ω2
3)t2t3(t

2
1 − 1)

+4Ω2(1 + Ω2
1)(1 + Ω2

3)t1t3(t
2
2 − 1) + 4Ω3(1 + Ω2

1)(1 + Ω2
2)t1t2(t

2
3 − 1)

]

+x1 · Jx2
[
4(1 + Ω2

1)Ω2Ω3t1(t
2
3 − t22)

+4(1 + Ω2
2)Ω1Ω3t2(t

2
3 − t21) + 4(1 + Ω2

3)Ω1Ω2t3(t
2
2 − t21)

]
.

(5.77)

In the commutative limit, we keep only the lowest order terms in Ω in the hyperbolic poly-
nomials and we recover the product of three independent Mehler kernels for the amplitude.
Moreover, if we denote by a (resp. b, c) the coefficient of the term in (x21+x

2
2) (resp. half

of the coefficient of x1x2, half of the coefficient of x1Jx2), then the Dodgson condensation
identity a2 − b2 + c2 = HUsunsetHU3-banana is obeyed.

Example 5.13 (3-star tree with flags) We compute the hyperbolic polynomials for the
3-star tree is made of one trivalent vertex, attached to 3 univalent ones, each with one
flag. The first hyperbolic polynomial results from a direct application of proposition 5.6

HU 3-star tree
with flags

= 2Ω1Ω2Ω3(1 + t21)(1 + t22)(1 + t23)

+8Ω1(1 + t21)t2t3 + 8Ω2(1 + t22)t1t3 + 8Ω3(1 + t23)t1t2. (5.78)

All the graphs involved in the computation of the second hyperbolic polynomial reduce to
trees and cycles after a single use of the reduction relation, so that propositions 5.6 and
5.7 yield

HV 3-star tree
with flags

(x1, x2, x3) = x23
[
8t1t2t3Ω

2
3 + 4Ω2

1t1(1 + t22)Ω2(1 + t23)Ω3

+4Ω2
2t2(1 + t21)Ω1(1 + t23)Ω3 + 4Ω2

3t3(1 + t21)Ω1(1 + t22)Ω2

]

+x1 · x2
[
8(1− t21)(t

2
2 − 1)Ω1Ω2t3

]
+ 2 cyclic permutations

+x1 · Jx2
[
4(1− t21)(1− t22)Ω1Ω2Ω3

]
+ 2 cyclic permutations.

(5.79)

6 Various limiting cases

6.1 The critical model Ω = 1

When we set Ωe = 1 for all edges, the hyperbolic polynomial HUG can be factorized
over the faces of G (i.e. the connected components of the boundary). Before we give a
combinatorial proof of a general factorization theorem at Ω = 1, let us present a heuristic
derivation of this result for ribbon graphs without flags, based on the matrix basis.
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The Moyal algebra of Schwartz functions on RD is isomorphic to an algebra of infinite
dimensional matrices Mpq whose indices p, q are elements of ND/2 and whose entries de-
crease faster than any polynomials in p, q. Using this isomorphism φ→M , the interaction
(4.9) can be written as

Sint[M ] = (2πθ)
∑

n≥1

gn
n

Tr
[
Mn
]
, (6.1)

which is the standard interaction familiar from matrix models. The associated vertex
reads

Vn(pi, q1, p2, q2, . . . pn, qn) = (2πθ) δq1,p2δq2,p3 · · · δqn−1,pnδqn,p1 . (6.2)

The quadratic term reads

S0[M ] =
1

2

∑

p,q,r,s

Mpq∆pq,rsMrs. (6.3)

In the critical case Ω = 1,

∆pq,rs = (2πθ)δpsδqr
4(|p|+ |q|+ 1)

θ
, (6.4)

where |p| = p1 + · · ·+D/2 for any multi-index p = (p1, . . . , pD/2) ∈ ND/2.
Because of the Kronecker symbols δ, the multi-indices are identical around each faces

(as in ordinary matrix models), so that the amplitude factorizes over the faces for a graph
without flags,

AG =

∫ ∏

e

dαe
1

(2πθ)e(G)−v(G)

∏

σ faces of G

∏

e edges
bounding σ

{ ∑

ie∈ND/2

exp−4αe

θ

(
|pe|+

1

2

)}
. (6.5)

Summing up the geometric series and expressing the amplitudes in terms of te = tanh 2αe

θ
,

we obtain

AG =

∫ ∏

e

dαe

[
1

(2πθ)e(G)−v(G)
×
∏

e

1− te
1 + te

∏

σ faces of G

(
1−

∏

e edges
bounding σ

1− te
1 + te

)−1]D/2

. (6.6)

Then, identifying a face σ of G with a vertex v∗ of G∗,
∏

e edges
bounding σ

(
1 + te

)
−

∏

e edges
bounding σ

(
1− te

)
= 2

∑

A⊂Ev∗ ,

|A| odd

∏

e∈A
te, (6.7)

with Ev∗ as the set of half-edges of G∗ incident to v∗. Comparing with the general
expression of the amplitude (4.25), this suggests that

HUG(1, t) = 2v(G
∗)

∏

v∗∈V (G∗)

{ ∑

A⊂Ev∗ ,

|A| odd

∏

e∈A
te

}
. (6.8)

Example 6.1 (Dumbbell) Let us consider the dumbbell graph (an edge labelled 1 at-
tached to to vertices, each carrying a loop labelled 2 and 3). The graph has 3 faces and
we get

HUdumbbell(1, t) = 8t2t3
[
2t1(1 + t2t3) + (1 + t21)(t2 + t3)

]
. (6.9)
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Let us now prove the factorization of HU at Ω = 1 in a completely combinatorial way.
To this aim, we will use the bijections introduced in section 2. Moreover, the polynomial
HU can be extended to ribbon graphs with flags and we show that the factorization (6.8)
holds in this case too.

Statement of the problem Via the x-space representation, we computed the para-
metric representation of the Grosse-Wulkenhaar model, see section 4. This representation
involves a new ribbon graph invariant Q, see equation (3.1). In fact, this is only a special
evaluation HU of Q which is used in the Feynman amplitudes:

HU(G; t,Ω) =Q(G; t,Ω, t2Ω, tΩ2, r) (6.10)

with r2n = 0 and r2n+1 = 2. Then, with a slight abuse of notation, and using definition
2.2, the polynomial HU can be written:

HU(G; t,Ω) =
∑

A⊂E(G)

tA ΩAc
∑

B∈Odd(GAc
)

(
tB∩A

c)2(
ΩB∩A)2. (6.11)

Note that if G is a ribbon graph with flags, HU is also well-defined.
On another side, we computed the parametric representation of the critical (Ω = 1)

Grosse-Wulkenhaar model via the matrix base. It involves the following polynomial, see
(6.8) and definition 2.4:

U(G; t) :=
∑

H∈ ˇOdd(G⋆)

tH . (6.12)

Uniqueness of the parametric representation implies

HU(G; t,1) =U(G; t). (6.13)

Our task is now to give a bijective proof of (6.13). To this aim, given a ribbon graph
G with flags, we are going to present a bijection χG between the colored odd cutting
subgraphs of G⋆ and the colored odd subgraphs of all the partial duals of G. Finally
the monomial in HU corresponding to a subgraph g will be proven to be equal to the
monomial of χG(g) in U .

A bijection between colored odd subgraphs

Lemma 6.1 Let G be an orientable ribbon graph with flags. For any total order < on
the set E(G) of edges of G, there is a bijection χG between P :=

⋃
S⊂E(G) Odd(GS) and

ˇOdd(G⋆).

Before entering into the proof of lemma 6.1, let us first give a preliminary definition:

Definition 6.1 (Restrictions). Let G be a ribbon graph with flags. For any E ′ ⊂ E(G),
the restriction of the map χG to Odd(GE′

) is denoted by χG,E′ : Odd(GE′
) → ˇOdd(G⋆).
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Proof. We first explain how the map χG is defined. Let G be a colored ribbon graph with
flags. Let g ∈ ⋃S⊂E(G) Odd(GS) be a colored odd subgraph of a partial dual of G, say

GE′
for E ′ ⊂ E(G). The subgraph ǧ := χG(g) ∈ ˇOdd(G⋆) has edges in E(g) ∩ E ′ and

flags in E ′c. Here is how it is constructed from g.
Each of the maps χG,E′ is defined as the composition of |E ′c| maps that we describe

now. In section 2.4, we introduced bijections

χ
{e}
G : ˇOdd(G) ⇋ ˇOdd(F {e}). (6.14)

We saw that given any flag-set F ′ of G, these maps restrict to bijections

χ
{e}
G : ˇOdd(G) ̥ F ′ ⇋ ˇOdd(G) ̥ F ′e. (6.15)

Given any order on E(G), we can write E ′c =:
{
e1, . . . , e|E′c|

}
. Then we define

χG,E′ := χ
{e|E′c|}
G

E(G)\{e|E′c|} ◦ · · · ◦ χ{e2}
G{e1}

◦ χ{e1}G . (6.16)

This map is well defined and is a bijection from Odd(GE′
) to ˇOdd(G⋆) ̥ E ′c, as shown

by the following diagram:

Odd(GE′
) ˇOdd(GE′∪{e1}) ̥ {e1} ˇOdd(GE′∪{e1,e2}) ̥ {e1, e2}

...

ˇOdd(G⋆) ̥ E ′c

χ
{e1}
G

χ
{e2}
G{e1}

χ
{e3}
G{e1,e2}

χ
{e|E′c|}
G

E(G)\{e|E′c|}

χG,E′

This proves lemma 6.1. �

Factorization of HU Let us define the monomials of HU (for Ω ≡ 1) and U by

HU(G; t,1) =:
∑

g∈P
MHU(G; g), (6.17)

U(G; t) =:
∑

h∈ ˇOdd(G⋆)

MU(G
⋆;h). (6.18)
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Let g ∈ Odd(GAc
), χG(g) ∈ ˇOdd(G⋆) ̥ A. Moreover E(χG(g)) = E(g) ∩ Ac. Thus

MU(G
⋆;χG(g)) = tA(tE(g)∩Ac

)2 = MHU(G; g). This implies

HU(G; t,1) =
∑

g∈P
MHU(G; g) (6.19)

=
∑

g∈P
MU(G

⋆;χG(g)) =
∑

g′∈ ˇOdd(G⋆)

MU(G
⋆; g′) (6.20)

= U(G⋆; t). (6.21)

Example 6.2 (Triangle with flags) Consider the triangle with one flag on each vertex,
all in the same face. In this case, one face has an even number of flags while the other
has an odd number, which yields

HU triangle
3 flags

(1, t) = 4
[
t1 + t2 + t3 + t1t2t3

][
1 + t1t2 + t1t3 + t2t3

]
, (6.22)

in accordance with (5.48).

6.2 An algorithm for computing HUG(Ω, t) based on the critical
model

The previous factorization over faces of G provides us with a useful algorithm to compute
HUG(Ω, t), for any ribbon graph with flags. HUG(1, t) has indeed the same monomials in
t as HUG(Ω, t): all its coefficients are positive and no cancellation is possible. We only
have to write each of the coefficient of each monomial in t as a polynomial in Ω. To
proceed, we first determine the monomials in HUG(1, t) by expanding

HUG(1, t) = 2v(G
∗)

∏

v∗∈V (G∗)

{ ∑

A⊂Ev∗ ,

|A| odd

∏

e∈A
te

}
. (6.23)

Then, for each monomial (discarding the prefactor)

• perform the partial duality with respect to the set A of edges with an even power
of te and multiply the monomial by

∏
e Ωe,

• cut in GA the edges with a factor t2e (edges in A∩B) and delete those with t0e (edges
in A ∩ Bc),

• sum over all possibilities of cutting the edges not in A , with a factor Ω2
e, or deleting,

with a factor 1,

• multiply by 2v(G
A).

At the end, it is useful to check the result by evaluating it at Ω = 1. The interest of
this algorithm is that we are performing the operations only on the subsets A and B that
are admissible, in contradistinction with the general expansion formula (5.31), where the
admissibility can be tested only after having performed the partial duality and the cuts.
Therefore, we avoid non admissible sets right from the beginning.
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Example 6.3 (Non-planar 3-banana) In the case of the non planar banana, the crit-
ical model yields

HU non planar
3-banana

(1, t) =

2
[
8t1t2t3 + 2t1(1 + t22)(1 + t23) + 2t2(1 + t21)(1 + t23) + 2t3(1 + t21)(1 + t23)

]
. (6.24)

Applying the algorithm, we deduce

HU non planar
3-banana

(Ω, t) = 4
[
t1t2t3

[
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
1Ω

2
2Ω

2
3

]
+ t1Ω2Ω3

[
t22 + t23 + Ω2

1(t
2
2 + t23)

]

+t2Ω1Ω3

[
t21 + t23 + Ω2

2(t
2
1 + t23)

]
+ t3Ω1Ω2

[
t21 + t22 + Ω2

3(t
2
1 + t22)

]]
.

(6.25)

6.3 The noncommutative heat kernel limit Ω → 0

In this section, we study the amplitude (4.22) and the first hyperbolic polynomial HUG(Ω, t)
in the limit of vanishing oscillator frequency. In order to avoid a lengthy discussion of the
second hyperbolic polynomial, we restrict ourselves to graphs without flags. The general
case can be treated along the same lines. Without further loss of generality, we also
assume the graph to be connected.

In the limit Ω → 0, the Mehler kernel reduces to the heat kernel,

lim
Ω̃→0

KΩ̃(x, y) = K0(x, y) =
1

(4π)D/2

∫ ∞

1/Λ2

dα

αD/2
exp−(x− y)2

4α
. (6.26)

Notice that K0(x, y) only depends on x − y , so that it is invariant under translations,
K0(x + a, y + a) = K0(x, y). Because the heat kernel and the vertex are both invariant
under translations, the integrand in (4.22) only depends on 2e(G) − 1 variables for a
connected graph without flags. Therefore the integral over the variables attached to the
half-lines is trivially divergent and the limit Ω → 0 of the amplitude is not defined.

In order to cure this problem, graph amplitudes with heat kernel propagators are
usually defined by an integration over all variables associated to the half-lines, save one.

Definition 6.2. Let G be a connected ribbon graph without flags and let us attach a
variable yi ∈ RD to each half-edge of G, with the convention that yi0 = 0 for a fixed
half-edge i0. The (generalized) amplitude of a ribbon graph in the heat kernel theory is
defined as

Aheat kernel

G =

∫ ∏

i 6=i0

dDyi
∏

e∈E(G)

K0(yie,+ , yie,−)
∏

v∈V (G)

Vdv(yiv,1 , . . . , yiv.dv ), (6.27)

with yie,+ , yie,− the variables attached to the ends of e and yiv,1 , . . . , yiv.dv the variables
attached in cyclic order around vertex v.

After the removal of one of these integration variables, the limit Ω → 0 is well-defined
and related to the first Symanzik polynomial UG of a non commutative field theory, which
is itself an evaluation of the Bollobàs-Riodan polynomial. In order to see how this results
from the limit Ω → of an amplitude with Mehler kernel, we first define a new graph whose
amplitude is obtained by integrating over all half-lines but i0.
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Proposition 6.2 et G be a connect ribbon graph without flags and i0 one of its half-lines.
We define Ĝi0 as the graph constructed by replacing the half-line i0 by a flag on the vertex
it is attached to in G and inserting a bivalent vertex with one flag on its other end, see
figure 14. Then, the amplitude of Ĝi0 with variables x = 0 for the two extra flags is

AĜi0
(Ω, 0) =

∫ ∏

i 6=i0

dDyi
∏

e∈E(G)

KΩe(yie,+ , yie,−)
∏

v∈V (G)

Vdv(yiv,1 , . . . , yiv.dv ), (6.28)

with the convention yi0 = 0.

i0 j0
e

(a) An edge e made of 2 half-edges i0 and j0 in a graph G

i0
ev

j0

(b) The transformed edge in Ĝi0

Figure 14: From G to Ĝi0

Proof. The amplitudes AĜi0
(Ω, 0) and AG only differ by the vertex and the edge involving

the half-line i0. Since the two flags of Ĝi0 carry x = 0, the relevant variable in the
interaction and in the propagator is set to 0, which reproduces (6.28). Then, the heat
kernel limit follows immmediately from isolating

∏
e Ωe in (4.25). �

Remark. If Ĝe0 is the graph obtained by encircling i0 by an extra loop e0, then Ĝi0 =

Ĝe0
e0

∨ e0.

Then, the heat-kernel limit can be taken as follows.

Theorem 6.3 For a connected ribbon graph without flag,

Aheat kernel

G =

∫ ∏

e

dαe

[
1

(4π)e(G)−v(G)+1UG(α, θ)

]D
2

, (6.29)

with

UG(α, θ) =
∑

A⊂E(G)
(A,V (G)) quasi−tree

(
θ

2

)|A|−|V (G)|+1{∏

e/∈A
αe

}
, (6.30)

where a quasi-tree is a ribbon graph whose boundary is connected d.

da connected ribbon graph with a single face, in the quantum field theory terminology.
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Proof. Using theorem 4.1, we can express AĜi0
(Ω, 0) as

AĜi0
(Ω, 0) =

∫ ∏
edαe


 2f(Ĝi0

)
∏

e Ωe(1− t2e)

(2πθ)e(Ĝi0
)+f(Ĝi0

)−v(Ĝi0
)HUĜi0

(Ω, t)
,




D/2

(6.31)

since the variables attached to the flags vanish. Then, using proposition 6.2, we take the
Mehler kernel limit Ω → 0 and get

lim
Ω→0

AĜi0
(Ω, 0) = Aheat kernel

G

=

∫ ∏

e

dαe

[
1

(4π)e(G)−v(G)+1UG(α, θ)

]D
2

, (6.32)

with

UG(α, θ) =

(
θ

2

)e(G)−v(G)+1

lim
Ω→0

HUĜi0
(Ω, t)

4
∏

e Ωe

(6.33)

and te = tanh 2Ωeαe

θ
. To express this limit in terms of quasi-trees, recall that theorem 5.3

shows that

HUĜi0
(Ω, t)

∏
e Ωe

=
∑

A,B⊂E(Ĝi0
)

admissible

{
2V (ĜA

i0
)
( ∏

e∈Ac∩Bc

te
Ωe

)( ∏

e∈Ac∩B
teΩe

)( ∏

e∈A∩B
t2e

)}
. (6.34)

In the limit Ω → 0 with te = tanh 2Ωeαe

θ
, only those terms with B = ∅ do not vanish.

Accordingly

lim
Ω→0

HUĜi0
(Ω, t)

∏
e Ωe

=
∑

A⊂E(G)
(A,∅)admissible

{
2V (ĜA

i0
)
( ∏

e∈Ac

αe

θ

)}
. (6.35)

Next, notice that (A, ∅) is admissible if and only if the boundary of (A, V (Ĝi0)) has two
connected components, each carrying one of the flags. To conclude, we need the following
lemma.

Lemma 6.4 The natural bijection between the edges of G and of Ĝi0 induces a bijection

(
A, V (G)

)
7→
(
A, V (Ĝi0)

)
, (6.36)

between spanning quasi-trees of G and spanning subgraphs of Ĝi0 whose boundary has two
components, each carrying one flag.

Proof. In Ĝi0 , let us call v the additional vertex, as in figure 14b. The set QG of spanning
quasi-trees in G is the union of two disjoint subsets, respectively QG,e and Qe

G, who

contain or do not contain e. Let Q ∈ Qe
G. By definition, e /∈ E(Q). In Ĝi0 , v being

connected to the rest of the graph only be e, the subgraph FE(Q) ⊂ Ĝi0 has obviously two
boundaries: the boundary of v and its flag j0, and the boundary of its other component,
which is a quasi-tree. On the contrary, let F ⊂ Ĝi0 be a subgraph with two boundaries,
each of which bearing a flag and such that e /∈ E(F ). Then, one boundary of F is the
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boundary of v and its flag. The rest of the graph F has thus only one boundary and is
therefore a quasi-tree: F ⊂ G is a quasi-tree.

Let us now consider the case of subgraphs, which do contain e as an edge. First of all,
notice that the subgraphs of Ĝi0 which contain e are in one-to-one correspondence with
the subgraphs of G ∨ e and that this map is also a bijection on the subgraphs with two
boundaries, each of which bears a flag. So we are going to prove that QG,e is in one-to-one
correspondence with the spanning subgraphs of G ∨ e with two boundaries, one flag per
boundary.

For any ribbon graph with flags G and any e ∈ E(G), (G ∨ e)⋆ = (G⋆){e} ∨ e. Let
Q ∈ QG,e. Its dual Q⋆ is a one-vertex ribbon graph. The edge e is a loop in Q⋆ which
implies that (Q⋆){e} ∨ e = (Q ∨ e)⋆ has two vertices, each of which bears a flag. It is
exactly the dual of a subgraph of G ∨ e with two boundaries and one flag per boundary.

On the contrary, let F ⊂ G ∨ e be a subgraph with two faces, one flag per face. Its
dual has two vertices and one flag per vertex. To map it to a subgraph of G⋆, one needs to
uncut e that is glue the two flags together and perform a partial duality wrt e. This new
edge links the two vertices of F so that its partial dual has only one vertex. Its (natural)
dual has therefore one boundary and is then a spanning quasi-tree of G. �

Therefore, we always have 2v(Ĝ
A
i0
) = 4 and

lim
Ω→0

HUĜi0
(Ω, t)

4
∏

e Ωe

=
∑

A⊂E(G)
(A,V (G)) quasi−tree

{∏

e/∈A

2αe

θ

}
. (6.37)

Finally, (6.30) follows from the factorization of powers of θ
2
. �

Example 6.4 (Planar banana and non planar banana) In the case of the planar
and non planar bananas (see examples 5.4 and 6.3) bananas , let us remove one of the
half lines of edge 1. Then,

HU
p̂lanar

3-banana

(Ω, t) =

4Ω1(1 + t21)
[
Ω2Ω3(t

2
2 + t23) + t2t3(1 + Ω2

2Ω
2
3)
]
+ 4t1

[
t2(1 + t3)

2 + t3(1 + t22)
]

(6.38)

and

HU ̂non planar
3-banana

(Ω, t) =

4Ω1(1 + t21)
[
Ω2Ω3(1 + t22t

2
3) + t2t3(1 + Ω2

2Ω
2
3)
]
+ 4t1

[
t2(1 + t3)

2 + t3(1 + t22)
]
, (6.39)

from which we deduce

U planar
3-banana

(α, θ) = α1α2 + α1α3 + α2α3 (6.40)

and

U non planar
3-banana

(α, θ) = α1α2 + α1α3 + α2α3 +

(
θ

2

)2

. (6.41)

All the terms in (6.40) and the first three terms in (6.41) correspond to the spanning trees.
The last term in (6.41) is the quasi-tree made of all edges.
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In fact, UG is an evaluation of the multivariate Bollobás-Riordan polynomial Z(a, q, c)

UG(α, θ) =

(
θ

2

)e(G)−v(G)+1

lim
c→0

c−1ZG(
2α

θ
, 1, c). (6.42)

Equivalently, it can be expressed in terms of the polynomial Q as

UG(α, θ) =

(
θ

2

)e(G)−v(G)+1

QG(
2α

θ
, 1, 0, 0, r), (6.43)

with r1 = 1 and rn = 0 for n 6= 1 This suggest that UG has a natural transformation
under partial duality.

Corollary 6.5 For any A ⊂ E(G), the first Symanzik polynomial transforms under par-
tial duality as

UGA(α, θ) =

(
θ

2

)v(G)−v(GA)(∏

e∈A

2αe

θ

)
UG(αA, θ), (6.44)

with [αA]e =
θ2

4αe
if e ∈ A and [αA]e = αe if e /∈ A.

Proof. First write (6.43) as

(
2

θ

)e(GA)−v(GA)+1

UGA(α, θ) = QGA(x, y, 0, 0, r), (6.45)

with xe =
2αe

θ
and ye = 1. Then, partial duality for Q reads

QGA(x, y, 0, 0, r) = QG(x
′, y′, 0, 0, r) (6.46)

with x′e = 1 and y′e =
2αe

θ
for e ∈ A and x′e =

2αe

θ
and y′e = 1 for e /∈ A. Next, we expand

QG(x
′, y′, 0, 0, r) =

∑

A′⊂E(G)

(A′,V (G)) quasi-tree

{( ∏

e∈A′c∩Ac

2αe

θ

)( ∏

e∈A′∩A

2αe

θ

)}

=
∑

A′⊂E(G)

(A′,V (G)) quasi-tree

{( ∏

e∈A′c∩Ac

2αe

θ

)( ∏

e∈A′c∩A

2αe

θ

θ

2αe

)( ∏

e∈A′∩Ac

2αe

θ

θ

2αe

)( ∏

e∈A′∩A

2αe

θ

)}

=
(∏

e∈A

2αe

θ

) ∑

A′⊂E(G)

(A′,V (G)) quasi-tree

{( ∏

e∈A′c∩Ac

2αe

θ

)( ∏

e∈A′c∩A

θ

2αe

)}
= QG(x

′′, y′′, 0, 0, r),

(6.47)

with x′′e = θ
2αe

for e ∈ A and x′′e = 2αe

θ
for e /∈ A and y′′e = 1 for all e . Reverting to the

Symanzik polynomials UG and UGA , we get the announced result. �

Example 6.5 (Non-planar double tadpole in the heat kernel theory) The partial
dual of a cycle of length 2 with respect to one of its edge is the non-planar double tadpole
(see example 5.5). For a cycle of length two, we have a sum over 2 spanning trees

U cycle with
2 edges

(α1, α2, θ) = α1 + α2, (6.48)
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from which we deduce, using partial duality,

U non-planar
double tadpole

(α1, α2, θ) = α1α2 +

(
θ

2

)2

. (6.49)

Finally, in the commutative limit θ → 0 we recover the well known expression of the
first Symanzik polynomial as a sum over spanning trees.

Corollary 6.6

lim
θ→0

UG(α, θ) =
∑

A⊂E(G)
(A,V (G)) tree

{∏

e/∈A
αe

}
. (6.50)

Proof. In this limit, only the subsets A such that |A| − |V | + 1 = 0 contribute to (6.30).
This condition characterizes spanning trees. �

6.4 The commutative Mehler kernel limit θ → 0

In this section, we derive a combinatorial formula for the first hyperbolic polynomial in
the commutative limit θ → 0 in terms of trees and unicyclic graphs. First of all, to
recover a commutative quantum field theory with the Mehler kernel corresponding to an
harmonic oscillator of frequency Ω instead of Ω̃ = 2Ω

θ
we have to substitute Ω → θΩ

2
in

(4.25).
In order to simplify the analysis, we restrict ourselves to graphs without flagse. For

such a graph, the commutative limit of the amplitude reads (see proposition 4.3)

lim
θ→0

AG(
θΩ
2
) = lim

θ→0

∫ ∏

e

dαe

[ ∏
e Ωe(1− t2e)

(4π)e(G)(2πθ)−v(G)HUG

(
θΩ
2
, t
)
]D

2

= Acommutative

G (Ω). (6.51)

In the limit θ → 0, the only terms that survive in θ−v(G)HUG(
Ωθ
2
, t) are associated with

subgraphs of G having at most one cycle per connected component.

Proposition 6.7 For a ribbon graph G without flag,

lim
θ→0

θ−v(G)HUG

(θΩ
2
, t
)
=

∑

A′⊂E(G) s.t. (A′,V (G))
commutative admissible

{ ∏

e∈E(G)−A′

te
∏

K connected components
of (A′,V (G))

WK(Ω, t)
}
, (6.52)

where a spanning subgraph is commutative admissible if its connected components are trees
(with a least one edge) and unicyclic graphs (i.e. connected graphs with a single cycle).
If K is a tree T , its weight is

WT (Ω, t) = 21−|T |
∑

t∈T

{
Ω2

ete
∏

e′∈T−{e}
Ωe′(1 + t2e′)

}
(6.53)

eOtherwise there are extra powers of θ on the external corners that arise from Dirac distribution on
the flags, as we have seen on the examples in section 5.3.
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and if K is a unicylic graph U with cycle edges C, its weight is

WU(Ω, t) = 22−|U |
∑

C′⊂C
|C′| odd

{ ∏

e∈C′

Ωet
2
e

∏

e′∈U−C
Ωe′(1 + t2e′)

}
. (6.54)

Proof. First recall that

HUG(Ω, t) =
∑

A,B⊂E(G)
admissible

2V (GA)
( ∏

e∈Ac∩Bc

te

)( ∏

e∈Ac∩B
teΩ

2
e

)( ∏

e∈A∩Bc

Ωe

)( ∏

e∈A∩B
Ωet

2
e

)
, (6.55)

with (A,B) admissible if each vertex of the graph obtained from GA by cutting the edges
in B and removing those in Bc has an even number of flags. After the rescaling Ω → Ωθ

2
,

only those graphs for which

|A|+ 2|Ac ∩ B| ≤ v(G) (6.56)

contribute to the commutative limit (6.52). Let A′ = A ∪ (Ac ∩ B) and let {Kn} be the
connected components of (A′, V (G)). We first show that each Kn is either a unicyclic
graph with no edge in B or a tree with one edge in B and then compute its weight.

Let A′n denote the edge set of Kn, Vn its vertex set and Bn = A′n∩Ac∩B. Thus (6.56)
can be written as a sum over connected components

∑

n

|A′n| − |Vn|+ |Bn| ≤ 0. (6.57)

With (A,B) admissible, this implies that for each n

|A′n| − |Vn|+ |Bn| = 0. (6.58)

Indeed, if this is not the case, then there is n0 such that |A′n0
|−|Vn0 |+ |Bn0 | 6= 0. Without

loss of generality, we may assume that |A′n0
|−|Vn0 |+|Bn0 | < 0, since if it is strictly positive

in one connected component, it has to be strictly negative in another one to obey (6.57).
Then |A′n0

| − |Vn0 | + 1 + |Bn0 | ≤ 0, but since |A′n0
| − |Vn0 | + 1 (the dimension of the

cycle space of Kn0) and |Bn0 | are positive, this implies that |A′n0
| − |Vn0 |+ 1 = |Bn0 | = 0.

Therefore, Kn0 is a tree and A′n ∩ B ⊂ A, which means that all the edges of Kn0 belong
to A and no edge in B ∩ Ac is incident to a vertex of Kn0 . In the partial dual GA, Kn0

gives rise to a single vertex with loops and the cuts of the edges in B always yields an
even number of flags since there is no edge in B ∩ Ac incident to this vertex. This is in
contradiction with the fact that (A,B) is admissible, so that (6.58) holds.

Let us rewrite (6.58) as

|A′n| − |Vn|+ 1 + |Bn| − 1 = 0. (6.59)

Because |A′n|−|Vn|+1 ≥ 0, |Bn| ≥ 2 is impossible. With |Bn| = 1, we have |A′n|−|Vn|+1 =
0 so that Kn is a tree with a single edge in B. For |Bn| = 0, we obtain |A′n|− |Vn|+1 = 1,
so that Kn is a unicyclic graph with no edge in B.

To compute the weights, let us first note that E−A′ = Ac∩Bc, so that the contributions
of the connected components Kn factorize and each e ∈ E − A′ yields a factor of te. If
Kn0 is a tree, then the partial duality with respect to A yields two vertices with loops
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attached joined by the edge in B. Each loop contributes a factor of Ωe(1+t2e)
2

, the edge in

B teΩ2

4
and there is an additional factor of 4 since kn0 yields two vertices in GA. Summing

terms that only differ by the position of the edge in B on the tree, we obtain (6.53). If Kn

is a unicyclic graph, then in the partial dual it becomes two vertices with loops, joined

by the cycle edges. Each loop contributes a factor of Ωe(1+t2e)
2

and we cut an odd number
of cycle edges for (A,B) to be admissible. Finally, this yields two vertices in GA so that
we have an additional factor of 4. This proves (6.54). �

Example 6.6 (Dumbbell) For the dumbbell graph (see 5.7), the commutative limit is

lim
θ→0

θ−2HUdumbbell(
θΩ

2
, t) = 4t1Ω2t

2
2Ω3t

2
3 + 4t1Ω

2
1t2t3

+4Ω2t
2
2Ω1(1 + t21)t3 + 4Ω3t

2
3Ω1(1 + t21)t2, (6.60)

which corresponds to the covering by two disjoint cycles, one tree and the two unicycles.

Example 6.7 (Planar banana and non planar banana) For the planar and non pla-
nar bananas (see examples 5.4 and 6.3) bananas , we have

lim
θ→0

HU planar
3-banana

(
2Ω

θ
, t) = lim

θ→0
HU non planar

3-banana

(
2Ω

θ
, t) =

t1t2t3
[
Ω2

1 + Ω2
2 + Ω2

3

]

+t1Ω2Ω3

[
t22 + t23

]
+ t2Ω1Ω3

[
t21 + t23

]
+ t3Ω1Ω2

[
t21 + t22

]]
. (6.61)

The first term corresponds to the contribution of the three spanning trees and the last one
to the three cycles with two edges. As expected, there is no difference between the two
polynomial since the two graphs only differ by a non cyclic permutation of the half-lines
at one of the vertices.

Conclusion and outlooks

Motivated by the quest of an explicit combinatorial expression of the polynomial appearing
in the parametric expression of the Feynman graph amplitudes of the Grosse-Wulkenhaar
model, we have introduced a new topological polynomial for ribbon graphs with flags.
This polynomial is a natural extension of the multivariate Bollobás-Riordan polynomial,
with a reduction relation that involves two additional operations and that preserves the
invariance under partial duality. This work raises the following questions.

From a purely mathematical point of view, the Bollobás-Riordan polynomial is inti-
mately tied with knot theory. This relation relies on its invariance under partial duality
so that it is natural to inquire whether our newly introduced polynomial could also be
related to knot invariants.

Moreover, graph theoretical techniques have proven instrumental in the evaluation of
some of the Feynman amplitude as multiple zêta functions [5, 6]. This may also be the
case for Grosse-Wulkenhaar model with special properties expected to occur in the critical
case Ω = 1. A first step towards a study of the Grosse-Wulkenhaar amplitudes from the
point of view of algebraic geometry has already been taken in [2].

Finally, attempts at a quantum theory of gravity based on generalized matrix models
yield new graph polynomials, as pioneered in [11].
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