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Abstract

We consider a diffusion process (Xt),,, with drift b(x) and diffusion coefficient o(z).
At discrete times t;, = kd for k from 1 to M, we observe noisy data of the sample path,
Yis = Xks + €x. The random variables () are i.i.d, centred and independent of (X;). The
process (X¢),, is assumed to be strictly stationary, S-mixing and ergodic. In order to reduce
the noise effect, we split data into groups of equal size p and build empirical means. The
group size p is chosen such that A = pd is small whereas M is large. Then, the diffusion
coefficient o2 is estimated in a compact set A in a non-parametric way by a penalized
least squares approach and the risk of the resulting adaptive estimator is bounded. We
provide several examples of diffusions satisfying our assumptions and we carry out various
simulations. Our simulation results illustrate the theoretical properties of our estimators.

Running title : Estimation for noisy diffusions

Keywords: diffusion coefficient; model selection; noisy data; non-parametric estimation; sta-
tionary distribution.

Subject Classification: primary 62G08, secondary 62M05

1 Introduction
We consider the stochastic differential equation
dXt = b(Xt)dt + O'(Xt)th, XO =n (].)

where b,0 : R — R are two unknown functions, (W;) is a Brownian motion and 7 a random
variable independent of (W;). It is assumed that the process (X),- is stationary and (-mixing.
At discrete times ¢t = 0,6..., MJ, we have at our disposal noisy data of the sample path, i.e, we
observe

Yis = Xis + €k, (2)

where the variables (e, k > 0) are independent, identically distributed, centred and independent
of the process (X;). Our aim is to estimate the diffusion coefficient o(z) by a non-parametric
way over a compact interval A = [ag, a1] (A = [0, 1] for instance) with the asymptotic framework
M — 00,0 =dp — 0 and My — oo.

In practice, the process (Xys) often cannot be observed. This may be due to either measure-
ment devices or to what is called micro-structure noise for financial data. Several articles deal
with the estimation of the diffusion coefficient for noisy data. Zhang et al. (2005), Rosenbaum



(2007) and Jacod et al. (2009) study the estimation of the integrated volatility fol o2dt in a fixed
time interval (here, Mdy; = 1). In the same context, Gloter and Jacod (2001) study the esti-
mation of unknown parameters in the diffusion coefficient for high frequency noisy data. Comte
et al. (2007) study non-parametric estimation of the diffusion coefficient for non noisy data with
the same asymptotic framework as ours, and Schmisser (2009b) estimates in a non-parametric
way the drift of a noisy process.

In order to reduce noise effects, data is split into groups of equal size p and empirical means are
built as follows. Let us assume that M = (n+2)p, set N =np, A =pd and for k =0,...,n+1,

Yia = Xga + &
where

. 1S . 1< 1
Xea == Xeatjs,  Yea=- Yiayjs and &=—-> expij. (3)
p = P = p =
J J J
The group size p is chosen such that A = pé is small whereas p is large. Then, based on
the mean sample (YkA, k=0,...,n+ 1), the method of Comte et al. (2007) is applied to the
variables (Y;m). First, an adequate regression-type equation is found :

_ — N2
3 (Y, -Y; -
= ( (k+1)AA kA) = g2 (y(kflm) + noise + remainder.

(The index lag in the right hand side of the previous equation is here to avoid cumbersome cor-
relations). Then, a penalised least-squares approach is used to build a non-parametric adaptive
estimator of o?(z). A family of finite-dimensional subspaces (S,,) of L?(A) is introduced and a
collection (62,) of estimators of 04 = 0214 is defined. Finally, after introducing a penalty, an
adaptive estimator 62, is selected through a data-driven procedure among this collection.

In Section 2, the model and the assumptions are specified. In Section 3, the regression-type
equation and the construction of the collection (63,1) of estimators are precise. Theorem 1 gives
the risk bound of an estimator 62, for fixed m. Theorems 2 and 3 give the risk bound for the
adaptive estimator 62 . In Section 4, some examples of models with different noises are proposed
and the estimation method is implemented on simulated data. Proofs are gathered in Section 5

and in the Appendix.

2 Model and assumptions

2.1 Assumptions

Recall that A = [ag, a1] is the compact set where o

assumptions:

is estimated and consider the following

Assumption 1.
Functions o(x) and b(x) are globally Lipschitz.

Assumption 2.
There exist constants r > 0 and «« > 1 such that

IMy € RT, Va,|z| > My, ab(x) < —rlz|”.

Assumption 3.
Diffusion coefficient o is bounded from below and above:

Jo?, 08>0, VreR, o?<o?*(z)<op.



Under Assumptions 1-3, there exists a unique invariant density w associated to the stochastic
differential equation (1).

Assumption 4.
The process (X¢),~, is stationary:
n~m

O (2 / :2% d“) |

Moreover, m has moments of any order.

Under Assumptions 2-3, according to Pardoux and Veretennikov (2001) (Proposition 1 p.1063),
the process (X;) is exponentially S-mixing: there exist positive constants C, 8 such that, for any
positive t,

where

m(x)

/BX(t) S Ce_eta

where Ox(t) is the S—mixing coefficient of (X;). Moreover, Gloter (2000), Proposition A p.226,
gives the following result:

Proposition 1.
Under Assumptions 1-4, for any integer k > 1, there exists a positive constant c(k) such that,
Vt>0,Vh,0<h<1,

E( sup |XS—Xt|k> < c(k)h*/2,

sE[t,t+h]

According to Assumption 3, the diffusion coefficient o is bounded and Lipschitz, so the function
x — o2(x) is Lipschitz and

E{ sup |03(X,)—o2(X,)|") < c(k)nb/.
sE[t,t+h]

Assumption 5.

The random variables ey, have density f, are centred and have moments of order 8. Let us denote
2 2

T =E (81).

For (p,d) fixed, processes (XkA) and (Y}m) defined in (3) are strictly stationary. Their
invariant density are respectively denoted 7, s and 7, s. An additional assumption on 7, is
needed:

Assumption 6.
There exists positive constants 7o and 71 independent of p and § such that:

Ve e R,7p5(x) <71 and Vo e A 7, s(x) > To.

Sufficient conditions for Assumption 6 can be found in Schmisser (2009b) (Propositions 1 and
2).



2.2 Approximation spaces

Our aim is to estimate the diffusion coefficient o over a compact set A = [ag,a1] of R. For
simplicity, let us set A = [0,1]. Below, a family of nested linear subspaces (Sm.),,c 4 )

depending on an integer r included in L?(A) and of finite dimension is constructed. The integer
My (r) is the index set of the collection:

M (1) = {m, Dy, :=dim (Sp,) < Dn(r)}

where the maximal dimension 2, (r) will be specified later. For any m € ., (r), an estimator
62, of 0% := 0?1 4 belonging to Sy, , is computed. Then the “best” possible estimator is chosen
by introducing a penalty function pen(m,r).

Spline functions are used in order to construct the spaces Sy, . The spline function of degree
r, denoted g,., is the convolution 7+ 1 times of the indicator function of [0, 1]. It is C"~1, piecewise
C", and supported on [0, 7 + 1]. For a fixed r, the linear subspaces (S, -, m > 0) are generated by
translating/dilating g, and restriction to [0, 1]. We set S, , := Vect {(frm k) . k= —r,...,2™ — 1}
where

Frmn(@) =272g, (2™ — k) Lo 1) ().

Proposition 2.

(1) Functions (frm.x)
2M + r.

k=—r,.. om_1 OT€ linearly independent. As a consequence, Dy, , 1= dim(Sy, ) =

(ii) The infinite norm and the L? norm are connected: there exists a constant ¢1 > 0 such that,
for any functiont € S, ,:
2 2 2
[tll5 < &1 Dm.r ||| 2

where |[t||7. = [, t*(z)dz.
(iii) There ezists an orthonormal basis ¥y of Sy, such that
VA, card(N, |[vadn ]l o # 0) < 3(r —1).
(iv) For any function t € BS . such that a <, there exists a constant C > 0 such that
[t = tll e < 277
where t,, is the orthogonal projection (L?) of t14 over the space Sy, ..

Points (i) and (iii) are demonstrated in Schmisser (2009b) (Propositions 3 and 4), point
(ii) is proved in Schmisser (2009a) section 6.2. Point (iv) is demonstrated in Meyer (1990),
Proposition 4p.50.

From now on, r is fixed and omitted in the notations (S,,, = S, pen(m,r) = pen(m),
Diny = Dy,

3 Estimation

3.1 Notations

Consider the normalised increment

(Yornya — YkA)Q —272/p
A

3
TkAzi



where

1 & 2
7%= N (Y(k-s-l)é - Yké) : (4)
k=1
We have that
_ 3
Tin = 02 (Yi—1)a) + 5 (Aka + Bra + Cra + Zia + Ria + Ska) (5)

where 02 (Y{;_1)a) is the main term, Zya, Ria and Sia are centred:

B 1 (k+2)A i 2 B (k+2)A o (2 ds
Zn = N (/}CAH Hf (S)dWs> /kAM (H(s))"ds|, (6)
Ris = x [ &) = 2r%1) (7
Ska =2 (Ery1 — k) Jki0)~ (8)

where

12 B 1 Pu [UHD)A+GS
() = 23" Bajsiuenarn(s)o(X) and T =3 [ HX )W, (9)

j=1 p =1/ kA+S

We have then that Ji(0) = ISZJ:?A H7(s)dWs. Terms Aga = A,(;A) + A,(fA) + A,(C?Z, Bipa =

B,(;A) + B,(fA) + B,SX and Cja are negligible. With

) 12 (k+1)A+j6
Iu(t) = / t(X,)ds,
k

p j=1/kA+jE
there are equal to

1 - 2 - -

AR = RRO), AR = 1) (o) (10)
s 1 (k+1)A+(inj)8 .

AI(CA) = —Sx / (0*(Xs) — *(X(k-1)a)) ds,

p?A o Jkatvis

1.
Bl(slA) =2 (8k+1 — &k) ka(b)a (11)

9 _ _
B = 3 (@ (Xe-1a) = 0* (Yis-1)a))

3)

( ) 1 (k+1)A+(iAf)S 9
By X =0 (X(1_ —_ / ds — =
kA ( (k 1)A) p2A — Jkatvi)s 3
and
Coa = 2T ="
kA = A



The index lag in equation (5) avoids cumbersome correlations (Ripa and Sga are independent of
Y(i—1)a, not of Yza). Let us consider the contrast

1 n

Tlt) == (Tha —t (Yis-1a))’

and define the estimator

Gy = arg min ,(t).

Remark 1. A function minimising v, can always be found, but it may be not unique. The
transpose of the vector v is denoted v*. Setting T'= (Ta, ..., Tna)*, the random vector

(b (Yo), - - ., lA)m(Y(n_l)A))* = I1,,(T), where II,, is the Euclidean projection over the subspace
of R™ defined by {(t(YO), e ,t(Y(n_l)A), te Sm}, is always uniquely defined.

This is why, as in Comte et al. (2007), the risk function is chosen as the expectation of an
empirical norm:
~2 2 (|2
Om — UAHn)

where Ht||i =230 2 (Yk—1)a) is an empirical norm and ¢4 := t14.

9?(&2)215(

m

3.2 Estimation with fixed m

Let us specify the asymptotic framework.

Assumption 7.
It is assumed that

N—-o0o, n—oo, 6—0, p—oo, A—0 np’A?—- 0

and )
In“(n) o, 9, < c;zA
nA In®(n)

Remark 2. Here, the last two inequalities imply that nA = N§ — oo.

Theorem 1.
Under Assumptions 1-7,

EA22<3~222CA11112DmQT?2
(O'm—O'AHn)_ 7T1H0'm—O'AHL2+ +5+E +]E +T JO+E

where o2, is the orthogonal projection (L?) of 0?14 over Sy,.

Corollary 1.
The previous inequality reaches its minimum for p = A~' = §~1/2. In that case, the estimator
risk satisfies:

B(

1 D,,
2= dl) <37 ot~ oAl + 0 (4 L4 (47 ).



3.3 Convergence rate

Assume that 0% belongs to a Besov space Bf . and that HJE\ ||2Bz < 1. According to Proposition
2 (iv), if o <r, the bias term is bounded by

Hafn — 0%”?2 < 09 2me,

2
. ~ . . 2 2 D,, : .. _ lo g2
Then, the bias-variance compromise Hom o AH 2 T 52 is minimum when m = 5 +2a , and the
risk satisfies:
E(

Remark 3. Let us set § ~ N~5. As N§ — o0, it is needed that 0 < 3 < 1. We have the following
convergence rates:

6%, — 3[) < Cn2e/0H2) 4 o,

1] main term convergence speed

—B72
O<ﬂ<(4a+1) 2A2 T 1N22 2aF1
(4a+1)<ﬁ<1 n—20/QCa+T) | Ny—(10-5/2)2a/(2a+1)

The convergence rate of the risk is always larger than N~1/2. Tt is maximal if § ~ N —4¢/(4a+1)

3.4 Adaptive estimation

Our aim is to choose 7 in order to minimise the bias-variance compromise. A penalty function
pen(m) depending on n and D,, is introduced, 1 is chosen such that

A . ~92
= arg min {y, (6,) +pen(m)},
and the resulting estimator is denoted by 62 .

3.4.1 Additional assumption on the noise
To construct an adaptive estimator, an additional assumption on the law of ¢ is needed:

Assumption 8.
Assume that there exists some constant v such that, for anyl > 0:

E(E%l) <12 and E( 2”1) 0

Remark 4. If variables (ej) satisfy Assumption 8, then there are sub-Gaussian, i.e. for any A,
E (e*¥) < exp (v2A\?) . Hence, one can apply Theorem 2 of (Schmisser, 2009b) which gives a
bound of the risk of the drift estimator. The Laplace law does not satisfy Assumption 8, contrary
to Gaussian laws and bounded laws.

Theorem 2.
Under Assumptions 1-8, there exists a constant k such that, setting

kD 2\?
> m,r
pen(in) = 0 (g3 4 )

we have that, for p ~ 6~1/2:

B(

Parameters o3 and v? are unknown, but they can be replaced by rough estimators.

. . . C
62 — ai“i) < leeg/f/ln (Hafn - JZ\HZLQ +pen(m)) + C'o1/2,




3.4.2 Without Assumption (8)

If variables (1) do not satisfy Assumption 8, the inequality obtained in Theorem 1 can not be
generalised to the adaptive case. However, we can obtain a weaker result.

Theorem 3.
Under Assumptions 1-7, if p ~ 6~2/3, there exists a constant k such that, if

D
pen(m) > rop—"=,

then

N . C
E(lo3 - o3l) <€ it ([0 - o35+ pentm) + = + €512,

4 Simulations

Simulation algorithm

1. Simulate a trajectory (XkA) using a Euler scheme of step 4. Figures 1 and 2 are drawn
for n = 10, A = 1072 and p = 100 (so N = 10 and § = 10~%). This may seem very
large, but Jacod et al. (2009), Rosenbaum (2007) and Zhang et al. (2005) use approximately
20000 data to estimate the integrated volatility with a microstructure noise (one data every
second for one day). Here, we estimate o2 in a non-parametric way, so we need more data.

2. Simulate the random variables (&).
3. Construct Yya = XA + &5 and

(Yirsna = Yia)® — 272
A

Tin =

(as the noise variance is known, it is not necessary to estimate it).
4. To plot the figures, eliminate the 5% extreme values.
5. For any m € .#,, compute 6,1 € Sy1 and 6,2 € S 2.

6. Compute the penalty function
_ KDy [ 4 vt
) 02 (5

The parameter v is defined in Assumption 8. It is chosen such that v? > 272. In fact,
for Gaussian variables of law .#°(0,72), the parameter v? is such that v? = 272. The
parameter « is chosen equal to 13 by numerical calibration (see Comte and Rozenholc
(2002) for more explanations). The parameter o2 is replaced with a rough estimator. We
don’t want to under-estimate o3, so we replace it by something much larger, for instance
265 0+ 2sup,c 4 65 1 () (the estimator 63  is a constant, whereas 63 ; is a linear function).

7. Compute the estimators over (S,,,1, m > 0) and (Sy,2, m > 0) respectively denoted by
0,1 and Gy, 2. The two estimators are plotted on the figures, but only 6y, 1 is used in the
tables.



The following table presents, for each model, the drift and the diffusion coefficient functions, the
estimation interval and some remarks.

Model | b(xz) | o(xz) | Estimation interval Remarks
Model 1 | —2z 1 [—1,1] Ornstein Uhlenbeck
o €Sy
Model 2 | —2z | /42 -1,1]
Model 3 | —2x ﬁ [—1,1] o not bounded from below
Model 4 | —2z | 1+ |z] [—2,2] o not bounded from above

We use three different noises, which are presented here.

law 72 V2 satisfies Assumption 8
Gaussian .47(0,1) 1 2 yes
Uniform over [—1, 1] 1/3 1 yes
Laplace: f(z) =1/2exp(—|z|) | 2 | 5 (arbitrary) no

In order to construct the tables, 50 trajectories are simulated for each noise and each model.
The mean of the error between the estimated and the true diffusion coefficient is estimated by
the empirical norm

. ~ 2
ris = mean (|6, — o42)

Moreover, in order to check whether the algorithm is adaptive, an oracle is computed:

& — oAl

oracle = mean 5
min,, (H&mﬂ“ - 0124””)

The minima of the empirical risk ris and of the oracle or are in bold.

Results:  The greater n is, the better the estimators. In particular, Tables 1-4 show that the
smallest empirical risks are obtained for n = 10* and A = 1072 or A = 3.1072 (so N larger than
10%). The oracle is better for small values of n: actually, the penalty function is larger so it is
easier to choose the appropriate estimator. The empirical risks are smaller for the uniform noise
and larger for the noise with Laplace law. This is partly because the parameter v is smaller for
the uniform noise (=1) and larger for the noise with Laplace law (~ 5). The Laplace noise does
not satisfy Assumption 5, nevertheless, the empirical risk for this noise is comparable with the
others. The estimation results are very dependent of the choice of v? and k. So, it is better
to add negligible correcting terms (see Comte and Rozenholc (2004)). Such terms avoid under-
penalisation and are in accordance with the fact that the theorems provide lower bounds for the
penalty. The correcting terms are negligible so they do not affect the rate of convergence.



5 Proofs

5.1 Preliminary results

In the proofs, r is fixed and we denote S, , = S, and D, , = D,,. We have

n

0 = l0?) = 1t = 012 = 23 (Tis = % (Vi) (¢ (V2 = 0% (Vimpa)))

Let us recall that o2, denotes the orthogonal projection (L?) of 0% over S,,,. As 7,(62,)—yn(0?) <
Yn(02,) — Yn(0?), we have:

1 — _ _ _
62, = o|[2 < [lo%, - o?|I% + ~ > (Tia = 0® (Yiu-1)a)) (07 (Viemnya) = o (Ya-1a)) -

k=1
Let us set
1 & _ 1 — _
vn(t) = -~ ; Zeat(Ye—1a), pu(t) = - ; Riat(Y-1)a), (12)
1 & _ 1 & _
En(t) = - Z Skat(Yk—1)a), En(t) = - (Aga + Bra + Cea) t(Yp—1)a)- (13)
k=1 k=1

(see 6-11). We can write:

167, = oI, < o = oI, + 2 + pu+ &u + Ba) (65, — 07)

and, as 02, and 62, are A-supported:

52— A2 < (o2 — 04| + 2 + po+ & + Bn) (63 — 02 (14)

Lemma 1.
Consider the following filtrations:

yt:o—(na WsaSSt) and gt:(j(nv W975§t7 5j7j§§t)at20~ (15)
Under Assumptions 1-5, we have:

i) The random variables Z2 , are Gy, 1o a-measurable and E ( Zua| %n) = 0. Moreover,
kA (k+2)
E(Zin|%a) < coy and E(Zja) < cop.

ii) The random variables Ripa are 9,10 a-measurable. Moreover,
(k+2)

4
T and E(RiA)

< cr® cTg
= p2AZ | pBA2

E (R{a) < Jiat AT

(iii) The random variables Jy,(0) are 9y 12)n-measurable, and
E(jk(0)|gkA) =0 and E[j,f(a)‘gkA] SCAO’S.
Besides, the random variables Sya are Gy, 12)a-measurable and

E (S,%A) < CTQO'S/(pA) and E (S,‘iA) < 07'203‘/(]32A2).

10



iv) E(A2,) < cA and E (A% ) < cA?
kA kA

(v) E(Bfa) < ¢/p and E (Bys) < ¢/p?

where 7, = E (6‘11) and g =E (5?).

(see (6)-(11)).

The term Cpa = 2;;;72 is studied thanks to the following lemma:

Lemma 2.
We have

() [E (72 — 72)| < 6%E [b*(X0)] + OE (0%(Xy))-
(i) E ((7’ - 7'2)2) < (t* +74)/N + 62

(iii) E ((’7’ -7 )4) < ¢/N? + 5%,

If the noise law is known, 72 is replaced by 72 and Cya = 0. Thanks to the Cauchy-Schwartz
inequality, we obtain (see (13) and (14)):

. 1
En (UTQYL - U?n) = Tn - nLH Z AkA + BkA + CkA)Z
k=1
1. 36
S 3 oo mH +7Z(A2A+BI%A+C£A)'
k=1
Let us consider the norm |t|| = [, t*(#)7(x)dx where & = 7,5 is the density of Ya. As
the random variables Y;a have dens1ty 7, we have E (HtHn) = ||tH7~T Let us set %, =
{t € S, ||t||§r < 1}. We have
(o + o+ &) (07, —0n,) < [|om, — o] sup (a(t) + pu(t) + &n(1))
teR
1
< ok —ols+36 sup (v2(1) + P2 (1) + E2(H)) -
12 teB,,

Let us introduce the set

2
[1£]]5,

2
(i3]

Q=S wvte |J Sm+ Sm,

m,m’

in which norms ||.||,, and ||.||; are equivalent: on (2, we have

2 2 2
1817 < 212l < 31Itl1%

5.2 Proof of Theorem 1

First, we study the risk on €,. As; on Q,, ||t||f~r <2 ||t||i 52

<2

52— a2’ e

2|02, — U%Hi, we obtain:

n

2
6% = Al <310k, = oAl +72 sup () + A1) + €20 + + 25 (434 Bia+ CRa).
m k=1

11



We have: E (Ho,zn — 0?4||i> =02, - Ji”i <7 o2, — JiHQLQ. According to Lemma 1 (iv) and

(v) and Lemma 2 (ii),

B(

with ¢ € RT.

It remains to bound E (sup,cg, v2(t)), E (sup,cqp,, p2(t)) and E (sup,eqp €2(1)). Let us
consider an orthonormal (for the L2-norm) basis (¢y) rea,, Of Sm. Any function t € S,,, can be
written ¢ = Y7, ) axpx. Moreover, t € By, < >\ cp a3 < 1. As the function ¢ — v, (t) is
linear, we have

c
NpA

62, = 0312 1, ) <37 |02, — o4|[5. + T2E ( sup v2(1) + p2(t) + gg@)) +CA+I§+
tEBm

HOE ( ) awnm))Q < (Z A) (Z (w)) .

AEA, AEA, AEA,,
So
E(sup uzu)) < SR (p). (16)
tEBm AEA,

One prove analogously that E (sup,c p2(t)) < > oren,, E (P2 (¢x)) and E (sup,e £2(1)) <
>nen,, E (€2 (#x)). According to (12), we have

2 2
E (v; (¢x)) < 2E <711 Z ‘PA(Y(k—l)A)ZkA> +2E (Tll Z SDA(Y(k—l)A)ZkA>

k even k odd

where the random variables Zya are defined in (6). The splitting into odd and even indices
has the following advantage: each sum is composed of uncorrelated variables with identical
distributions. We can write:

2
1 - 1 _
E (n > %\(Y(kmA)ZkA> = = > E(@RYVie-1a)Zkn)

k even k even

2 _ _
+ > E[e(Vu—1)a)e(Yi—1)a) ZeaE (Zia| %a)] -

k<l even

The second term is null, and, thanks to Lemma 1 (ii), we have:

2
1 _ 1 _
E <n Z @A(Y(knA)ZkA) = = Z E [03 (Yr—1)a)E (Zia| %a)]

k even

k even
4
CUO 2
< ZOE(jeal?)-

As the functions (px),c,, are orthonormal (for the L2 norm), for any A € A, E (”WAHZ) =
H‘PA”f} = 1. It follows that:

IS

2
1 - co

E||= Z Y =9,
(n Z kAPA( (k 1)A)> =,

k even

12



A similar result is obtained for E [(% Yk odd ZkAcpA(Y(k_l)A))ﬂ. Hence

4
E (Vfl (%0/\)) S ]
and, according to (16),
4D
E ( sup ug(t)> < S007m (17)
teRBm

In the same way:

2 2
E (p2(¢x)) < 2E (; > RkA‘PA(Y(k—l)A)> +2E (1 > RkASOA(Y(k—I)A>>

k even k odd

where the random variables Rya are defined in (7). Let us consider £ < [ — 2. Thanks to the
lag, R is independent of Ria, Yx—1)a, Yi—1)a and Y(;_1)a is independent of Rya. Hence:

2
1 _ 2 _ _
E (n Z Rm%\(Y(knA)) = Z E(ox(Yr-—1a)oa(Yu—1)a)Rrea)E(Ria)
k even k<l even
1 _
t oz Z E(X (Yr-1)a)) E(R}A)
k even
1 _
= - Z E(@i(y(k—l)A))E(R%A)

2
n
k even

We know that E (¢3(Y(x-1)a)) = 1. According to Lemma 1 (i), E (R7,) < 7oAz + ;;—A‘?Q. So
et ety

[ _|_ —5

np?A2  np3A2

ip
E 204)) < e Em
<t§;€pm P )) S CoPA?

E (p;(px)) <

and

Similarly, we have

2 2
E (&2(pr)) <2E (711 > SkA‘P/\(Y(k—l)A)> +2E (711 > SkA‘PA(Y(k—l)A)>

k even k odd

The term Spa = 25’”2\775’“@ (o) is the product of two independent terms. Moreover, for k < 1+2,

(€141 — &1) is independent of Y{;_1)a, Y(x—1)a and Spa. We have

2
1 - 1 _ -
E (n Z SkA%\(Y(/c—l)A)> = oAz Z E [@X(Yk—1)a)E (Ji(0)| %a) | E [(E_z+1 —51)2}
k even k even
CT20—8
npA

13



So 5
205D
><com.

B (s &20)) < 008

tEBm

Hence:

B(

It remains to bound the risk on Q.

. 2 B 2 ¢cDp, 72\? 1 1
#ollta,) s3mleh — il + T (o T ) 0 (L4 s +A)

Lemma 3.

If nA/In*(n) — oo and 2,, < enA/In*(n), then

The proof is done in Schmisser (2009b) section A.2.
Let us set exa = Tpa — 02(Y(;€,1)A), e = (eA,. .. ,enA)* and IL,, T = II,, (TA,. .. ,TnA)*,
where v* is the transpose of v and II,, is the orthogonal projection of (Ta,...,T,a)" on

{(t(ffo), ot (YVimoya)) t € Sm}. We have

[T = ) < 2]J0% ~ T2+ 2 e — 10,7

1

IN

2|02 + 2 [Tl < 2|03 + 2 ell?

Strict stationarity and the Cauchy-Schwartz inequality imply that

E (|04 105 ) < /P(@5)E (05(%) <

E (Jlells 1a; ) < /P(Q2)E(4),

where e} < ¢ (A% + BA + RA + ZA + SA). Thanks to Lemma 1 and Lemma 2 (iii), we have

) c 1\* 1
E(ai—ai\}i19%)<n<<1+w) +p+A>. (18)

Collecting terms, we obtain (as np?A2 — co):
. 2 N 2 CDn, 72\ 11 1)?
E (|62 - a3ll}) <37 [lo2, — o3 7+ = (“MA) el <A+p+n (HpA) .

5.3 Proof of Theorem 2

Cc
n

and

The bound of the risk on €2, is obtained exactly as for m fixed, so we only bound the risk on
Q,. Let us consider the ball %, ,v = {t € Sy + Si, ||t]|z < 1}. By definition of 7, for any
m € My,

62 — cri”i + pen(im) < ||62, — Ji”i + pen(m).

14



Using Lemmas 1 and 2, we obtain

B(

52 — O‘AH ]].Q”) < 37 ||, — UE‘H; + 2E (pen(m) — pen(1n))

2
+ 72E< sup  (V2(t) + p2(1) + €2(1)) nﬂn> +c<A+;+; (1+p1A) )

tEB .,

It remains to bound the terms E (suptegmﬁl uﬁ(t)) ,E (supte@m N pi(t)) and E (supte@m N §n(t)) :
Let us introduce the functions

maé (Dm + Dm/) H2U4 (Dm + Dm/)

N _ N —
pl(mam ) - n ) p2(m7m) anAQ )
2 .2
n_ K30°0¢ (D + D)
pa(m, ') = T

and the associated penalties

36&10§Dm n 36k90%D,, 3653U20'8Dm

pen(m) := - P A2 A := peny(m) + peng(m) + pens(m).
We have
E: = E <36 sup v2(t) + (peny(m) — peny (1)) ]].Qn>
tG.@mym
< E <36 sup (va(t) = pr(m,m)1q, ) + (peni(m) — peny (1) + 36py (m, 1)) 1s2n> :
tEZ m,m
As
2 A 2 /
[ sup v (t) — pl(m,m)] < Z l sup vi(t) —pi(m,m )] ,
tEBm,m + m' €M, t€EB  m 4
we obtain
E<E|36 Z sup v2(t) —pi(m,m’)| 1q, + 2peni(m)lq, | . (19)
m' ey, te@m m! 4
Likewise,

F: = E sup po(t) + (Pem(m)P@nz(m))lQn)

tevgvn m

IN

E (36 w0 = palmm)| e, + 2pena(mLa, (20)
mie, teR,, I

-
and (
<
x

G: = E|[36 sup &(t)+ (P6n3(m)p€n3(m))]lﬂn>
teQVYL m
< E|36 Sup Sn() p3(m,m’)| Lo, + 2pensz(m)la, (21)
ey, 162, N

15



Lemma 4.
There exists a universal constant ci such that, if Assumption 3 is satisfied:

E (1Zcal'|%ha ) < (o0e0)™ 1

where Gy is defined in (15). The variables Zya are 9j12)a-measurable.
Proof. By definition,

1 1 (k+1)A+(iA))6
/ o?(X,)ds |,

Zpn =~ | Jialo) = =
A p? i Y EAF(VH)6

SO

. 21
2[ 1 p (k+1)A+j6
E(|ZkA|l) < 3 5ZIE (/k o(X)dWs | +

=1 A+j6
L l
1 (k+1)A+(in5)8
+ 5> E / 0% (X,) | | ds
p i kA+(iVj5)d

According to the Burkholder-Davis-Gundy inequality with optimal constant, (Proposition 4.2 of
Barlow and Yor (1982)), we have:

21 (15 21
F 5 Z(2Z)ICQZUglAl S 2 (2000) ll. O

j=1

E(1Zual') <

Lemma 5.
If Assumptions 5 and 8 are satisfied, there exists a constant co such that

E(\R |l’g )<(U02>21ll

The variables Rpa are 9, 0)a-measurable.
Proof. The variables Rya are independent of %, so E (|RkA\l‘ %kA) =K (|RkA|l). We have

1

(i) = g -a -2

2! 241y (=21 272
< N<2 E () + p
¥ X . 21
< Fpl oI+l ﬁ ngpﬂ 42

j=1

According to Assumption 8, 72 < v2. Moreover, as E (5%213) = 0 for any [, we can write:

21

P
_ 2 2
E E Ekp+j = E E (€kpty - - Ekprir)
Jj=1 1<g1,--01<p
_ 2a; 2ap
= g E(akp+1...5kp+p).
Za]‘:l

16



According to Assumption 8,
2l

p
E Zskpﬂ- < 2 Z ait coeagh < v Z I < plito?.
j:1 Zaj:l Zaj=l

So
. llU2l
Alpl

E(|Rial’) <c

where c is a constant.

Lemma 6.
If Assumptions 8, 5 and 8 are satisfied:

l2l

Alpl

E (S,fM Gin) < (2¢1cov00)?

and
E (524 %) = 0

The random variables Sya are 9(j4.2)a-measurable.

Proof. By definition,

2
Ska = A (Ers1 — k) Ji (o).

d ’ (SilAl| kA) ZHATE [(gkﬂfgk)ﬂ 1} [(jk (0))2l l‘gkﬂ} = 0. Moreover, by in-
ependence:
E (SI%ZA’%ICA) = 22ZA 2t R |:(§k L — Ek)2l:| E [(jk( ))2l‘gk }

and, thanks to Lemmas 4 and 5, we deduce:

20 a1 (vog)™ 12

E (SkA) < (2c1¢9) A

Lemma 7.

Let us consider f, : Sy m = Sm + Sy — R such that, for any function t € Sy, 1,

Fult) = 3" Usat (Vienya)
k=1

where Uya are centred random variables and 9, 42)a-measurable. If there exists a constant y
such that
E (Uia|%a) <A1,
then there exists a constant k > 0 such that
2(D D. . 2,—(Dm+D,,’)
E Sup fﬁ(t)*ﬁry ( m+ m) gﬁ’ye

tEB s m " 4 "

17



According to Lemmas 4-6, the processes v, (t), pn(t) and &, (t) satisfy the assumptions of
Lemma 7 with respectively v = 03c?, v = v?c3/(pA) and v = 2c1c2v00/+/pA. Then, there exist
constants k1, ko and k3 such that

4(p D.., 4,—~(Dm+D,,)
E| sup wvi(t)— £190 (D & Di) < %C ;
tERB,, n n
: +
4 4 —(Dm~+D,, s
kov* (D D, kovte=(DPm+Dpn)
B| s (- 2 Dn L D))
tEB,, np?A? n np?A?

and

tEB,, npA npA

o] e

k30202 (D + Dm,)] P
+

As > e Pm <1, according to (12), (13), (20) and (21), we have

4 2 2
F <3622 and GSSG&AUO.

n R A np

4
E < 362190

So

. . R c 02\ 2 C
7 - dAE) < i (62 - oAl + pen(m)) + & (72 n p) roa+ S,

E(
5.3.1 Proof of Lemma 7
First, we prove the lemma

Lemma 8.
There exist constants oy and oo such that, if ||t]| < c(,

2 2 n”°n
P (fn(t) >, ||t||n <( ) < 2exp <_ (Oél’YQCQ + 20042'7770) :

Proof. We can write

+00 7

_ A
h:=E (exp(At (Ye—1)a) Ura| %ea) =1+ Z T,tl (Ye—1)a) E (Upa| %a)
=2

SO

+o0 1
[
h S 1 —+ ;Cllelﬁtl (}/(k:—l)A) .

—+oo

h<l+e! Z (eyhe) ! (Yi—1)a) -
1=2

So, for any A < Ay = 1/(eve|t]|)s

_ (erxe)* 82 (Yim1ya)

h
T— el

IN

l1+e

)

18



and, setting a = (cy)%e, we obtain

ONE (Fya) _ 0N (Fopa)
<l4+ ————=< —_ . 22
e S v W G e vy (22)
Let us set . B ) ~
) = Z Urat (Yi—1)a) 20 = Z Urat (Yi—1)a) -
k<l even k<l odd
According to the Tchebitchev inequality, for any i € {1,2} and 0 < X < A;:
= (@) (p) > 1 2 <2
Fo= P00 = T < )
, A2n ann ad?Pn
< P @) — AT 2 > ANt 2L P
< Plow (M0 - 72575 1012) e (F0 - 22T
ann ad?(®n . al’n 9
< AR 2SR () — 21 . 2
< o (<20 P ) B e (M0 - 2 (23)

If n is a multiple of 2, we have, as U(,_2)a est ¥, a-measurable,
ar’n
F, = E [GXP <)\fr(L1)(t) YN ||t|i)]
a)\2 n—1
1 _
= E {eXP (Afr(l)z(t) TTo N > (Y(k—l)A)>
k=1
_ al? 9 /o
E [exp [ AUpat (Y (n—1)a) — 1—7>\/>\1t (Yin—1ya) )| %
So, according to (22):
2 2 n—2
1) QAT 2 1) A 9 1
E [exp (/\fn O e viW |t||n)} <E [exp (/\fn_z(t) T ;t (Ys-na) | |-
By induction, we obtain
al’n
E [exp (Afg)(t) T t||i>} <1.

We can prove in the same way that E [exp (Af,(f)(t) - 1@\2}’;1 ||tHi)} < 1. Moreover, as

2
> 2 2 @y > 1 2 2
P(fal®) Zn 3 <¢?) < ;P(fn ()= 3.1t < ¢2).
we obtain, thanks to (23),
Ann ar?(3n
2 / n
> < < IR S T R
P (falt) 2 en, 2 < ¢) < Qexp( T _A/M)
Let us set A =1/ (4a¢? +n/A1). In that case, A < A; and
2
P(f,t)>n |t <) <2 )

Substituting a and A1, we obtain the predicted result.
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We complete the proof of Lemma 7. In this proof, C' is a constant which may vary from one
line to another. The dimension of S, ,,,y is D = max(D,, D,,’). Let us consider an orthonormal
(for the L2 norm) basis (¥2)xen,, Of Sm,m: such that

VA, card({N,  [[oagn | # 0}) < g2 =3(r — 1).
(see Proposition 2). Let us set

1 HZAﬂA%Hm'

Tm,m! = sup
T VDsr o 1Bl

It can easily be proved that

Z Baa
X

<30 = 1) 1Bl sup [l and - fln] < VD [[ihal| 2 < F1VD [[all; -

oo

So

P < T = 3(r — 1)71.
The following result is exactly Lemma 9 in Barron et al. (1999).

Result 1. There exist d-lattices T) of L2 N (S, + Sm) such that
k D
[T N By | < (5/(5 )

where §; = 27%/5 . Let us denote by pi(u) the projection of u over Ty. For any u € Sp, s,
l[u = pr(u)llz < 0x and

sup Jlu —t|| o < PO < 3(r — 1)71 0k
1
u€p, ~(t)

Let us set Hy = In(|T, N A,|). We have
For any function u € %, ./, there exists a series (ux)x>o such that, for any k, uy € T N\ B,
lu — uglls < 6k and [Ju — uy||, < 76,. Then, u can be written as u = ug + > _poy (ur — ug—1)-

Let us set

&, :{uk GTkﬂ,@m)m/, ||7.L7uk||7~r <, and H’LL7’u,k||OO §C5k}

Of course, |&;| < Hy. Let us set P,(.) = P(.NQ,) and consider a series (n)r>0 such that
M0+ > peq M < 1. We have

Py ( sup  fn(u) > n) < Py (3(%), Fuwo) + D fulur — ug—1) > 1m0 + Zm)
UERB,, m! k=1 k=1
< Y Pu(faluo) >m0) + Y D P (fulux — ux—1) > o)
ug €& k=1up€sy
<

o0
Py + ) Py
k=1

20



As ug € Ty, ||uoll; <1 and |Jug||, < 7. The norms ||.||,, and ||.||. are equivalent and Hu0||i <
3/2||uo||2 < 300/2. Then

B (fa(uo) > 1m0) = Bu (£uluo) > mo. [Juolly, < 360/2).

According to Lemma 8, there exist constants ¢j and ¢ such that

(fn(ug) > m9) < ( nn? )
P, (fn(u exp| ————->—"7—1-
0/ = 1o P chy? + 2chymo

Let us fix zq such that ny =~ (\/c’lxo + céxo). We have

m
o < ———
°- 4y + 25710
and
Py, (fn (o) > 1) < exp (—nao) .
Hence,

Py < exp (Ho — nao) -

Likewise, [[ur — wp_1]lx < lu — wp_1 || o +]Ju — ug|. < (2-FD427F)55 = 27538, 50 |lux — up_1 > <
1463 272k, Moreover, ||ug — ug—1||, < (Sg—1 + 0k) 7 = 3.27%8y7. According to Lemma 7, there
exist constants c3 and ¢4 such that:

P, (fo(uk —uk—1) >mx) = Py (fn(uk —up_1) > M, JJun — upa]? < 02‘2’“)

2
nny
< — .
= xp < c3y22—2k 4 20472—’“)

Fix z;, such that n, = 27" (\/c3xy, + caw). We have

2
< Un
T 372272k 4 242k

and

Py (fn(uk - ukfl) > 77k) < exp (—TL{Ek) .
Hence, Psz < exp (Hk—l + Hy, — nxk) and Py = 21;“;1 P27k < 21;“;1 exp (Hk—l + Hy, — TL:Z?k) .
Let us fix 7 > 0 and the series (z)) (so the series (7)) such that

nro=Ho+ D+ 71
nep =Hr1+H, +(k+1)D+7

We have

e~ D D
—— < 16e “e .
1—e D —

P, ( sup  fn(u) > 17) <e’ Zexp (—(k+1)D)<e™ "

ueR —1

m,m’

It remains to compute n?. Here, C' denotes a constant which can vary from one line to another
but which is independent of v. We have

oo

n=y m < Cy (izk“ (\/Ek+xk)>.

k=0
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We recall that Hy = C'(k+ 1)D. Then, nzy, = C(3k +2)D + 7 and

>, _ 1 > D+r
PR = C(3k+2)D <C :
> 27y <~ kX:: +2)D+7) SO
Moreover,
22 L < O\F}f
k=0
As D/n <1:
D 2
n? < Oy? <+2T+T2>.
n non
So
D 2
P, < sup  f2(u) > Cy? < +2l 4 7—2>> < 1.6e7 P77, (24)
ue@m m/ n n n
Besides,

E = E ([ sup  f2(u) — cw?ﬂ m)
UERB,, ! n
~ +
- 2 2 D
= P, sup fi(u)>Cvy*— 471 |dr
0 UERB,, ! n

Substituting T = C~v? (2y/n + y?/n?), we find that

" D 2 2 2
E= C’fyz/ P, ( sup  f2(u) > Cv? ( 1274 y2)> ( + Z) dy.
0 UEB y n noon noon

According to (24),
pf1 [T _ o[>~
E = 2C~v%e — e Vdy + — ye Ydy
nJo n=Jo

C 2
Y ,-p
n

<
which ends the proof of Lemma 7.

5.4 Proof of theorem 3

It is now assumed that pA — oo. Let us set e, = B, (62, — 02,) + pn (62, — 02,). One can
easily obtain that

Afn — UE‘Hi < Hofn — of‘Hi + 2v,, (&,2” — a,Qn) + 2ep,m-

We obtain, on €,,,

n

. . 96
Ufn*UiHi §3H‘712n*012n“i+24 Sl;p Z/Z(t)+;Z(A A+ Bia+Rin+5iA).

om k=1
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According to Lemma 1 and inequality (17),
4D 1 1 1
E(ﬁm—giHQﬂm)gwo +C( +++A>.
" p

n
Thanks to (18), and, as pA — oo, we have, on QF,

B(

¢
n

6 — o4 10y ) <

Collecting terms, we find that

B(

4
~2 2 2 Ca'oDm 1 1 1 1
am—aAHnllQn)S - +C(}72A2+I)A+p+A+n :

Let us set
Ko§

p(mvml) = pl(mam/) = T (Dm + Dm’)a pen(m) -

and

E' =E l<24 sup v2(t) + (pen(m) —pen(ﬁz))) IQn] .

tEBm,m

According to the previous proof, there exists x such that:

ol

E' <24k 4 2pen(m),

n

then
E(

This inequality is minimum when p% = A, (or when p = A2 = §~2/3), and in this case:

B(

A  Proofs of Lemmas 2 and 1

A 2 . 2 1 1 1 1
O—rQn - 0?4”7;) < Cmg'l/f/‘!n (||072n - 0—,24HL2 +pen(m)) +C <n + ]W + piA + ]; + A) .

. . 1
st -c4l2) <€ int, (o= oAl + pen() + € (% +5).

We recall here the Rosenthal inequality (see Hall and Heyde (1980) theorem 2.12 p.23).

The Rosenthal inequality

Let (01, ...,m,) be centred and independent variables such that E (|n;]”) < oo. Then, there exists
a positive constant r, such that

()

n
Z Ua
=1

p/2

) <7p _Zn:EImI”+ (ZRZE(W?)>
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A.1 Proof of Lemma 1
(i) According to the Burkholder inequality and equations (6) and (9):

) ] 1& (k+1)A+45 4
E(Zia| %) < AQE ];Z /IcA+'6 o(Xs)dW, | +
=1 i
o 2

1 (k+1)A+(ing)6

+ 72/ o*(X,)ds /N
p i EA+(iVj)6

< cag.

and E (Z¢,) < cof.
(ii) According to the Rosenthal inequality and equation (7),

CT4 CT, f

1 _ _
E (Ria) < 3E ((5k+1 - €k)4) < Azt osAr

and E (R}A) < 78 /p* A% + 78 /(p"AY).

(iii) As the random variables (&) are independent of (X),5 .

B (k4+2)A 2
E[J{(0)|%a] =E [(/k H;g(s)dWS> Gn

< CAO’S.
A+6

and
E [(SkAﬂ - é]E {(a‘k - gk—l)Q] E [J3(0)]

where Sia is defined by (8) and Ji(t) by (9). As E [(ék - 5]@—1)2} =72/p,
E [(Ska)’] < er?ad/(0A).

We can prove in the same way that E [(SkA)ﬂ < crio}/(p?A?).

(iv) By the Cauchy-Schwartz inequality, stationarity and (10)

4
2 1 & (k+1)A+j0
E((aX ) < / b(X,)ds
(< kA) pAQj; EA+56 (o)

p k+1)A+368
é /( +1)A+j .
p k

AN

<
o3 katis

< A’E (b* (Xo)).

Likewise, E ((A(l))4> < A'E (b*(Xp)) . Moreover
) EA = 0/)) - )

B ((42)") < qev/E (k) VE (L) < 108 VETTRDIA
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4 _
and E ( (A,S‘Z) ) < 160¢+/E (05(Xo))A2. According to Proposition 1, E [(02 (X,) — 02 (XkA)ﬂ <
cAif s € [kA, (k+2)A]. So

2

2 1 1 (k+1)A+(ing)d _
E( A®) ) < Lgl(L / 0?(X,) — 0*(X (- 1)a)ds
( kA) A2 ng kAL (V)5 (k—1)
1 (k+)A+6 . 2
< - E Xs) — Xip— d
= pzAziZj: /Mﬂ5 0°(Xs) — 0" (X(k-1)a)ds
1 (k+1)A+(iNG)d ) - 5
< o / E (02(X,) — 0*(X(p_1ya)) ds
p i Y kAF(VH)E
< cA.

Teowi 3\ 2
Likewise, E (AkA) < cA“.
(v) According to (11), and as random variables (£) are independent of (X¢),,
E( (B = L (e 5)2) E(I2,) < er?
kA T A2 (Ek+1 — Ek) ( m) <cr/p.
4
In the same way, it can be proved that E ((B,EX) ) < er*/p?. Moreover, and o is

Lipschitz,

CO’LO'0T4

. ((Bg)?> <E ((UQ(XkA) —o*(Xa+ f))2) < o100 () < P

4
According to the Rosenthal inequality, E ((B,(CQA)) ) < coLosE (54) < copod78/p®. More-

over,
(k+1)A+(iAj)6
/ ds = D iNj+p—ivi)=2) itp—j+ Y p
i,j Y RA+@VH)S i i<j i
2
= §p2 +O(p).

So according to (11), we have

4 4
®)%) < €% ON
E((Bm) ) <73 and E((BkA> ) v
A.2 Proof of Lemma 2
(1) According to (4) and the It6 formula,
. 1 & 2
E (T2 — 7'2) = ﬁ ’;E [((X(k-Jrl)(; - ng) + (5k+1 — Ek)) } — 7’2. (25)
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The process (X;) is stationary, the random variables (¢j) have same law and are indepen-
dent of (X), so

OF (#2 — 72) = [(X(; - XO)Q} +E [(s,ﬁ1 - 5k)2] — 972,

Moreover, E |:(5k+1 - é‘k)ﬂ = 272 and, by stationarity:

5 2 5 2
E {(X(; —XO)Q] <E [(/0 b(Xs)ds> + (/0 J(XS)dWS> ] < 6°E (b(Xo))+0E (0%(Xo)) .

(ii) According to (25),

n’

Z (k1 — ek + X(p1)s — Xk§)2 - 277
k=1

= C1+Cy+4+Cs5+Cy+ C5 + Cs.

E[(#-7)] = E ﬁ

where
N 2

¢, = ﬁ (I; (Ekt1 — Ek)Q - 272)
1 ol 2 2 ol

G = N2 (Z (Ek41 —er)” — 27 > (Z (k1 — &) (X(hr1s — XW))
1 k;l 2 ]7371

Cs = N2 (Z (X195 = Xs) ) (Z (41 — k) (X(r1)s — Xk5)>

k=1 k=1

N 2
1
Cy = 2 (Z (Ekt+1 — €k) (X(k+1)§ _ Xk5)>
k=1
1 n 2
2
% = v I;(X(kJrl)é*Xka) )
1 n ) n
Ce = IN2 (; (X(kt1)s — Xns) ) <kz=:1 (ehst — ) — 72> .

We recall that the random variables (ej) are independent of (X;) and, for |k —1| > 2,
€x+1 — €k is independent of ;41 —&;. As E [(Ek-',-l — 5k)2 — 272} =0, we find that

1
E(Cy) = Ve Z [(Ekﬂ —er)’ - 272} [(€z+1 —e)’ - 272}
k1<t
3¢ 4
S W (’7’4 + 7 ) .
As the random variables &5, are independent of (X¢),, E (C2) = E (C3) = 0. Moreover,
1
E(Cy) = 55 > (a1 — k) (Xernys — Xio) (01 — 1) (Xs1)s — Xis)

[k—1|<1
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and

1
[E(Cy)| < N2 Z E [(5k+1 - 5k>2} E [(X(k+1)6 - Xka)Q]
k—1]<1
< 350(2)7'2.
- N

According to proposition 1,
E (05) < 2C(52.

Moreover, by independence, E (Cs) = 0.

(iii) We can prove in the same way that
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Table 1: Model 1: Ornstein-Uhlenbeck

o(z) =1
Estimation over [—1, 1].
ris: empirical mean, oracle: oracle
Gaussian noise Uniform noise Laplace noise
A n risk | oracle risk | oracle || risk | oracle

3.10°3 [ 10* ][] 0.022 | 2.78 0.0029 | 1.72 0.062 1.98
1072 [ 10* ][] 0.022 | 2.79 || 0.0030 | 1.26 || 0.043 | 1.44
3.1072 [ 10 || 0.027 | 2.33 0.0060 | 1.29 0.075 | 1.68
10T [10* ][ 0.032 | 1.23 0.023 1.20 0.064 | 1.33
3.10°3 [ 10 || 0.16 1.84 0.032 1.73 0.58 1.80
1072 | 10° 0.22 3.52 0.034 1.46 0.51 2.08
3.1072 | 103 || 0.32 3.35 0.026 1.71 1.03 2.59
10T | 10° 0.11 1.56 0.015 1.09 0.52 1.86
1072 | 102 || 0.85 1.25 0.22 1.49 3.01 1.20
3.1072 | 102 1.43 1.32 0.35 1.70 4.31 1.82
10—t | 102 1.03 1.94 0.17 1.50 4.44 1.67
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Gaussian noise
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Figure 1: Model 3
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Uniform noise

08 -06 -04 -02 0 02 04 06 08

@ true drift

: estimated drift for r =1
: estimated drift for r =

Figure 2: Model 4

o*(z) = (1 +|a|)*

Uniform noise

@ true drift
: estimated drift for r = 1
: estimated drift for r = 2
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Table 2: Model 2

2,y 1+a?
o°(x) = G
Estimation over [—1, 1].
ris: empirical error, oracle: oracle
Gaussian noise Uniform noise Exponential noise
A n risk | oracle risk | oracle || risk | oracle
3.1073 [ 10 [ 0.018 2.17 || 0.0026 | 1.39 || 0.029 1.43
102 10% || 0.0099 1.44 0.0027 1.37 0.032 1.29
3.1072 | 107 0.014 1.65 0.0028 1.40 0.038 1.29
1071 10% 0.016 1.18 0.0065 1.13 0.035 1.09
3.1073 | 103 0.10 1.60 0.015 1.33 0.41 1.28
1072 | 10° 0.14 1.69 0.015 1.39 0.38 1.91
3.1072 | 103 0.21 2.37 0.016 1.04 0.59 2.04
10°F | 103 0.14 1.97 0.019 1.07 0.32 1.21
1072 102 0.87 1.25 0.16 1.18 2.29 1.04
3.1072 | 102 0.96 1.53 0.11 1.12 4.94 1.62
101 102 1.82 2.26 0.12 1.087 5.43 1.85

Table 3: Model 3

2 o 1 + l‘2
a (JJ) - 2
2+
Estimation over [—1,1].
ris: empirical error, oracle: oracle
Gaussian noise Uniform noise Laplace noise
A n risk | oracle risk | oracle || risk | oracle

3.10~2 [ 10* ][ 0.027 | 1.96 [ 0.0032 [ 1.11 0.070 | 1.68
10=2 | 10* || 0.020 | 1.44 0.0041 | 1.10 || 0.058 | 1.48
3.10~2 | 10 || 0.031 1.57 0.011 1.27 0.068 | 1.47
10T [ 10% || 0.044 | 1.23 0.033 1.10 0.080 | 1.41
3.1073 | 103 0.14 1.19 0.029 1.20 0.42 1.42
1072 [ 10° || 0.18 1.89 0.027 1.56 0.39 1.26
3.1072 [ 103 || 0.17 1.62 0.035 1.23 0.46 1.24
10-1 | 108 0.14 1.40 0.047 1.28 0.41 1.81
1072 [ 102 || 0.90 1.43 0.18 1.09 2.61 1.15
3.1072 | 10? 1.77 2.07 0.29 1.29 5.78 1.86
1071 [ 102 || 2.50 2.69 0.21 1.11 3.93 1.59
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Estimation over [—1,1].
ris: empirical error, or: oracle

Table 4: Model 4

o(x) =1+ |z|.

Gaussian noise

Uniform noise

Laplace noise

A n risk \ oracle risk \ oracle || risk \ oracle
31073 [ 10% [[ 0.23 2.96 0.07 | 1.62 025 | 2.12
10=2 | 10* || 0.12 1.58 0.08 | 1.97 0.18 | 1.67
3.1072 | 10 || 0.22 1.41 0.13 1.33 042 | 1.38
101 | 10* || 0.82 1.36 0.34 | 1.08 1.43 | 1.19
3.1073 | 103 || 0.42 1.20 0.22 1.70 1.05 | 1.46
10=2 | 10° || 0.96 2.68 0.27 | 1.62 1.23 | 1.81
3.1072 [ 10% || 0.79 1.76 067 | 141 2.53 | 2.55
10°1 [ 10 || 1.74 2.15 0.79 1.51 2.89 1.70
10=2 [ 10%2 || 1.49 | 1.18 0.85 | 1.27 4.01 | 1.06
31072 | 10% || 4.85 1.98 1.61 1.39 474 | 1.19
10~ | 102 || 4.07 1.78 10.6 | 3.78 12.5 | 2.06
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