A “reverse interrupter”: the novel molecular design of a fluorescent photochromic DTE-based bipyridine

Vincent Aubert, Elena Ishow, Fatima Ibersiene, Abdou Boucekkine, J. A. Gareth Williams, Loïc Toupet, Rémi Métivier, Keitaro Nakatani, Véronique Guerchais, Hubert Le Bozec

To cite this version:

HAL Id: hal-00442461
https://hal.archives-ouvertes.fr/hal-00442461
Submitted on 12 Sep 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A “reverse interrupter”: the novel molecular design of a fluorescent photochromic DTE-based bipyridine

Vincent Aubert,a Elena Ishow,b Fatima Ibersiene,a Abdou Boucekkine,a J. A. Gareth Williams,c Loic Toupet,d Rémi Métivier,b Keitaro Nakatani,b Véronique Guerchais*a and Hubert Le Bozec*a

Received (in Montpellier, France) 23rd December 2008, Accepted 30th January 2009
First published as an Advance Article on the web 12th February 2009
DOI: 10.1039/b823113c

An original design of a fluorescent dithienylethene (DTE)-based bipyridine, where donor (D) and acceptor (A) groups are located on the same thiophene ring of the DTE unit, is reported; in non-polar solvents, UV or visible excitation triggers a photochromic reaction, disrupting the conjugation and quenching the fluorescence.

Fluorescent switching systems containing photochromic molecules have attracted significant attention on account of their potential uses as optical memory media and photo-switchable devices.1 Most systems offering the photomodulation of luminescence involve a photochrome covalently linked to an organic2 or metal–organic3 fluorophore, wherein the luminescence is regulated by an intramolecular energy transfer from the excited fluorophore to the photochromic unit. In contrast, little attention has been devoted to luminescent photoswitches based on donor–bridge-acceptor (D–π–A) derivatives, in which the photochromic unit is a part of the π-conjugated bridge.4

We have previously shown that 2,2′-bipyridines featuring π-donor-conjugated substituents are good building blocks for the construction of metal complexes with very large non-linear optical responses and interesting luminescent properties, which are governed by strong intra-ligand charge transfer (ILCT) transitions.5 In the course of our continuing exploration of such systems and the search for the photomodulation of these properties, we have recently incorporated a dithienylethene (DTE) unit into a donor-substituted styrylbipyridine ligand, allowing the preparation of the first example of metal-containing photochromic bipyridine ligands displaying an efficient switching of the NLO responses (Scheme 1(a)).6

However, these free bipyridine ligands, in which the donor (D) and acceptor (A) groups are located at each end of the DTE unit, are not emissive under ambient conditions, neither in the open nor closed forms. Thus, as an alternative way to obtain a fluorescent photoswitch, we sought to design a push–pull chromophore featuring D and A moieties located at the 2- and 5-positions of the same thiophene ring of the DTE unit (Scheme 1(b)), rather than them being located on two different thiophene rings.4,7 In this so-called “reverse interrupter”, π-conjugation between A and D is efficient only when the DTE unit is in its open form (“ON” state), whereas in the closed ring isomer (“OFF” state), the formation of a tetrahedral sp3 center at the C2 carbon disconnects the D and A parts of the molecule. In these systems, it was anticipated that the rupture of the intramolecular charge transfer accompanying the photoisomerization process would allow modulation of the emission properties of the chromophore.

As a first approach, we wish to disclose our preliminary results in the synthesis, and photochromic and photophysical studies of reverse interrupter 1, containing dimethylaminophenyl and vinylbipyridine moieties as the D and A end groups, respectively (Scheme 2). We show that the photochromic reaction can be triggered upon excitation with UV and visible light. In addition, this process, which can itself be switched on or off according to the polarity of the solvent, allows an efficient modulation of the fluorescence.

Substituted 4,4′-vinyl-2,2′-bipyridine derivatives are accessible via a Wadsworth–Emmons reaction of bipyridine-bis (phosphonate) 7 and the appropriate aldehyde in the presence of a base. We have used this approach to prepare compound 1 (Scheme 3). The two distinct thiienyl fragments, 3 and 4, were first prepared independently. The p-dimethylaminophenyl

Scheme 1 Schematic representation of normal (a) and “reverse” (b) push–pull interrupters.

[Scheme 1 image]

[References]
group was introduced onto 3,5-dibromothiophene-2-dimethylacetal 2 through a Suzuki cross-coupling reaction to give 3. The second thienyl derivative, 4, bearing a protecting trimethylsilyl group, was reacted with octafluorocyclopentene (C₈F₈) using a common procedure to yield 5. Thielen derivative 3 was treated with n-BuLi, and then coupled with 5 to afford 6. Eventually, the reaction of 6 with 7 in the presence of t-BuOK in refluxing THF afforded 1(o,o) as its E,E isomer in a 50% yield.

Single crystals of 1(o,o) were grown upon slow evaporation of a CH₂Cl₂ solution. The X-ray structure (Fig. 1) reveals an antiparallel conformation, in which the vinylbipyridine at the 2'-position of one thiophene ring and the methyl group at the 2'-position are pointing in opposite directions. In addition, the distance between the two reactive carbon atoms (C–C 3.587 Å) is appropriate for a cyclization process. The geometry optimization performed using Gaussian 03 was in good agreement with the experimental structure (see ESI, Fig. S1).

The UV-vis absorption spectrum of 1(o,o) in cyclohexane (Fig. 2, Table 1) displays an intense band at \(\lambda = 326\) nm attributed to the \(^1\text{IL} (\pi \rightarrow \pi^*)\) transition of the DTE unit. In addition, 1(o,o) also shows another broad band at \(\lambda = 435\) nm that can be ascribed to an intramolecular charge transfer (ICT) transition, which compares well with that of related 4,4'-bis(dibutylaminothienvinyl)-2,2'-bipyridine \((\lambda_{\text{max}} = 443\) nm in CH₂Cl₂). The assignments of these two bands were also supported by theoretical calculations. The contour plots depicted in Fig. 3 show that the HOMO is predominantly localized on the dimethylaminophenylthiophene, while the LUMO is delocalized over the Vinylbipyridine and the C₈F₈ fragments, and the LUMO + 1 mainly corresponds to the \(\pi^*\) orbital of the C₈F₈ fragment. In addition, the electronic absorption spectrum calculated by TD-DFT nicely matches the observed experimentally, indicating that the two lowest transitions are dominated by excitations from the HOMO to the LUMO and the LUMO + 1, respectively (see ESI†).

Compound 1(o,o) displays strong fluorescence in solution at 298 K \((\lambda_{\text{em}} = 535\) nm in cyclohexane) when excited at 430 or 313 nm. It is interesting to note that the emission quantum yield \((\phi_I = 0.22)\) is independent of the excitation wavelength. Increasing the polarity of the solvent leads to a very pronounced red shift of the emission band \((\lambda_{\text{em}} (\text{CH}_2\text{Cl}_2) = 640\) nm; \(\lambda_{\text{em}} (\text{EPA}) = 664\) nm), consistent with charge-transfer character for the fluorescent singlet excited state. (Fig. 4, Table 1).

The photochromic behaviour of 1(o,o) was followed by \(^1\text{H}\) NMR and UV-visible absorption spectroscopy in cyclohexane and CH₂Cl₂ solutions. The photosomerization was found to be highly solvent-dependent. In cyclohexane, 1(o,o) undergoes a photocyclization process upon irradiation in either of the two main absorption bands at \(\lambda = 313\) or 436 nm. On the basis of \(^1\text{H}\) NMR spectroscopy in \(d^2\)-cyclohexane (see ESI†), the photoproduction was assigned as closed-ring 1(c,o), in which one of the two DTE units is in its closed form (80% conversion). Fig. 2 displays a characteristic absorption band at 584 nm.

![Fig. 1](image1.png)

Fig. 1 An ORTEP plot for 1(o,o) drawn with thermal ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. The molecule lies about an inversion centre.

![Scheme 2](image2.png)

Scheme 2 The photochromic reaction of 1.

![Scheme 3](image3.png)

Scheme 3 The synthesis of 1(o,o).

![Table 1](image4.png)

Table 1 Absorption and emission data of 1.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>(\lambda_{\text{abs}}/\text{nm} (\text{e} \cdot \text{M}^{-1} \cdot \text{cm}^{-1}))</th>
<th>(\lambda_{\text{em}}/\text{nm}) (a)</th>
<th>(\Phi_I (\gamma/\text{ns}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>326 (37400), 433 (37000)</td>
<td>535</td>
<td>0.22</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>333 (37700), 446 (36500)</td>
<td>640</td>
<td>0.38 (4.2)</td>
</tr>
<tr>
<td>EPA</td>
<td>330 (34000), 440 (32000)</td>
<td>664</td>
<td>—</td>
</tr>
</tbody>
</table>

\(a\) After irradiation at 313 nm. \(^b\) \(\lambda_{\text{exc}} = 313\) or 430 nm. \(^c\) EPA = ether/pentane/isopropanol.
attributed to the closed DTE unit, along with another band at 414 nm. As shown in Fig. 3, the HOMO and LUMO of the closed pyridine fragment are mainly localized on the dimethylaminophenyl and vinylpyridine groups, respectively. The calculated electronic spectrum (see ESI) is in good agreement with the experimental spectrum, showing that the two bands essentially correspond to the HOMO → LUMO and HOMO − 1 → LUMO excitations, respectively. Irradiation of the absorption band of the closed form at 588 nm resulted in the quantitative regeneration of the open isomer. The cyclization and cycloreversion quantum yields were determined to be 0.081 irradiating at 436 nm and 0.016 irradiating at 588 nm, respectively. Strikingly, in contrast to its behaviour in cyclohexane, the irradiation of 1(o,o) in CH₂Cl₂ at 313 nm did not trigger the photo-cyclization process, while a strong emission at 640 nm was still observed. The excitation spectrum registered at this wavelength closely matched the absorption spectrum, confirming that absorbed light at any wavelength is efficiently transferred to the ICT state. Relaxation from the 1IL(DTE) state to the emissive ICT state leads to the inhibition of the DTE-based ring closure reaction. This behavior is driven by the lower-lying CT excited state, which is significantly stabilized in CH₂Cl₂, whereas in less polar solvents like cyclohexane, the fluorescence (Φf = 0.22, λexc = 313 or 430 nm) and photoisomerization processes appear to be competitive.

Upon conversion to the photostationary state (PSS) by irradiation of a cyclohexane solution of 1(o,o) at 430 nm, the “apparent” fluorescence quantum yield decreases to 0.03 (Fig. 4). The residual emission is attributed to the remaining open form 1(o,o) present in the PSS. The decrease in fluorescence intensity is photocontrolled by (i) the disruption of the D–π–A conjugation and (ii) an intramolecular energy transfer of the excited open pyridine fragment to the acceptor closed-ring DTE pyridine moiety of 1(c,o).

In conclusion, we have synthesized an original fluorescent photochromic bipyridine by functionalizing one thiophene ring of a DTE fragment. This novel chromophore will open up new perspectives for the elaboration of metal-based photoswitches.

This work was supported by The Agence National de la Recherche (ANR Blan08-1-30889), COST D035-0010-05 and Région Bretagne (SIE 211-B3-11). F. I. thanks the Université des Sciences et de la Technologie Houari Boumediene (Alger) for a sabbatical leave.

Experimental

Preparation of 6

To a solution of 3 (192 mg, 0.5 mmol) in 15 mL of THF that had been cooled to −78 °C was added, dropwise, n-BuLi (2.16 M in hexane, 0.25 mL, 0.54 mmol). After stirring at −78 °C for 1 h, a solution of 5 (196 mg, 0.54 mmol) in 10 mL of THF was added to the reaction mixture. After stirring at −78 °C for 1 h and at room temperature for 16 h, the reaction mixture was hydrolyzed with water (25 mL), and the solvent removed in vacuo. The residue was extracted with CH₂Cl₂ (2 × 30 mL) and then dried over MgSO₄. After evaporation of the solvent, the residual orange oil was dissolved in 20 mL of THF, then PTSA (p-toluenesulphonic acid) (20 mg, 0.1 mmol), and finally a few drops of water were added. After stirring at 40 °C for 16 h, the solvent was removed and the oil purified by column chromatography (SiO₂, pentane-CH₂Cl₂ 1:1) to give a red powder (179 mg, 60%). ¹H NMR (500 MHz, CDCl₃): δ 9.40 (s, 1H, CHO), 7.55 (d, J = 8.9 Hz, 2H, C₆H₄), 7.28 (s, 1H, thio), 7.10 (s, 1H, thio), 6.74 (d, J = 8.9 Hz, 2H, C₆H₄), 3.07 (s, 6H, NMe₂), 2.08 (s, 3H, Me) and 0.30 (s, 9H, TMS). ¹³C[¹H] NMR (125 MHz, CDCl₃): δ 180.5, 155.6, 151.5, 147.4, 140.1, 137.2, 133.7, 127.5, 124.7, 121.7, 119.7, 112.1, 40.2, 30.3, 14.4 and −0.3. Anal. calc. for C₂₆H₂₅F₃N₃S₂Si: 0.5CH₂Cl₂: C, 54.6; H, 4.44; N, 2.33.
Preparation of I(o,o)

To a THF solution of 6 (350 mg, 0.64 mmol) and 7 (126 mg, 0.28 mmol) was added -BuOK (77 mg, 0.70 mmol). After refluxing overnight, the reaction mixture was hydrolyzed with water, and the organic phase washed with a saturated solution of Na2CO3, dried over MgSO4 and evaporated in vacuo. The residue was recrystallized from a CH2Cl2/pentane mixture at −20 °C to give I(o,o) as a red powder (180 mg, 50%).

Spectroscopic characterization of I(c,o)

Compound I(c,o) was generated by the irradiation (λ = 436 nm) of a d2-2-cyclohexane solution of I(o,o) for 30 min. Selected data:

1H NMR (500 MHz, CDCl3): δ 8.63 (d, 3J = 5.1 Hz, 1H, Py6), 8.26 (s, 1H, Py1), 7.53 (d, 3J = 8.9 Hz, 2H, C5H42), 7.25 (s, 1H, thio), 7.23 (s, 1H, thio), 7.17 (dd, 3J = 5.1 Hz and 3J = 1.6 Hz, 1H, Py5), 6.94 (d, 3J = 15.9 Hz, 1H, =CH), 6.77 (d, 3J = 8.9 Hz, 2H, C5H42), 6.71 (d, 3J = 15.9 Hz, 1H, =CH), 3.05 (s, 6H, NMe2), 1.99 (s, 3H, Me) and 0.03 (s, 9H, TMS).

1Cl1H NMR (125 MHz, CDCl3): δ 156.4, 157.0, 149.4, 147.8, 147.5, 146.2, 144.7, 139.5, 138.5, 133.5, 128.4, 126.9, 126.5, 126.5, 123.5, 120.9, 120.7, 119.6, 119.0, 112.3, 40.3, 14.5 and −0.6. Anal. calc. for C50H58F12N5S12I2: C, 59.33; H, 4.51; N, 4.32. Found: C, 59.87; H, 4.86; N, 4.79%. HRMS: m/z = 1294.2875 [M]+ (calc. for C50H58F12N5S12I2 = 1294.2891).

Reference