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Back-action amplification and quantum limits in optomechanical measurements

P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon, and A. Heidmann
Laboratoire Kastler Brossel, ENS, UPMC, CNRS; case 74, 4 place Jussieu, 75005 Paris, France

Optical interferometry is by far the most sensitive displacement measurement technique available,
with sensitivities at the 10−20 m/

√
Hz level in the large-scale gravitational-wave interferometers

currently in operation. Second generation interferometers will experience a 10-fold improvement in
sensitivity and be mainly limited by quantum noise, close to the Standard Quantum Limit (SQL),
once considered as the ultimate displacement sensitivity achievable by interferometry. In this Letter,
we experimentally demonstrate one of the techniques envisioned to go beyond the SQL: amplification
of a signal by radiation-pressure back-action in a detuned cavity.

PACS numbers: 42.50.Wk, 04.80.Nn, 03.65.Ta

Gravitational-wave (GW) astronomy [1, 2] is no longer
the sole field of application of high-sensitivity interfer-
ometric displacement measurements, now at work as
well in condensed-matter experiments such as single-
spin magnetic resonance force microscopy [3], persistent-
current detection in superconductors [4], or the quest to
quantum effects in mesoscopic mechanical systems [5, 6].
Recent developments have led both future advanced GW
interferometers [7, 8] and current micro-optomechanical
systems [9, 10, 11] close to the Standard Quantum Limit
(SQL) [12, 13, 14], where quantum fluctuations of radi-
ation pressure have observable back-action effects upon
the moving mirror and the measurement sensitivity.

Quantum effects of radiation pressure are so weak
that they haven’t been experimentally demonstrated yet,
though a number of dedicated experiments are getting
closer, either by a combination of high optical power and
ultra low-mass mirrors [15] or by a careful examination
of optomechanical correlations between two light beams
sent into the same moving mirror cavity [16]. As future
experiments will be confronted with the SQL, a num-
ber of schemes have been devised to go beyond it, either
by sending squeezed light into the moving mirror cavity
[13, 17] or by performing a back-action evading measure-
ment [18] with a two-tone drive of the optomechanical
cavity.

Another approach takes advantage of the radiation-
pressure back-action in a moving mirror cavity: for a
non-zero cavity detuning, a small cavity-length varia-
tion induces an intracavity radiation-pressure modula-
tion which drives the mirror into motion. This may am-
plify the signal and lead to a sensitivity beyond the SQL,
either in signal-recycled GW interferometers [19, 20] or
in a single detuned optical cavity [21]. In this Letter,
we report the observation of such an amplification effect
by radiation-pressure back-action and we demonstrate its
ability to improve the sensitivity beyond the SQL.

We consider a single-port cavity of length L with a
fixed, partially transmitting front mirror, and a moving,
perfectly reflecting end mirror (see fig. 1). The signal
Xsig is a cavity-length modulation which is superimposed
to the mirror displacement noise Xm, leading to a vari-

FIG. 1: Optical measurement of a cavity length variation Xsig

through the phase of the reflected beam. Displacements Xm

of the moving mirror limit the sensitivity.

able cavity detuning ψ ≡ 2kL[2π] given by

ψ(t) = ψ + 2k (Xm(t) +Xsig(t)) , (1)

where k is the field wavevector and ψ the mean detuning.
Incident, intracavity and reflected fields obey the usual
Fabry-Perot cavity relations except for the time depen-
dence of the cavity detuning ψ. In Fourier space, one then
gets linearized input-output relations for the respective
annihilation operators ain[Ω], a[Ω], aout[Ω] of these fields
at frequency Ω,

(γ − iψ − iΩτ)a[Ω] =
√

2γain[Ω] + iaψ[Ω], (2)

aout[Ω] = −ain[Ω] +
√

2γa[Ω], (3)

where γ is the damping rate of the cavity, assumed to
be small compared to unity, and τ is the cavity storage
time.

According to (1) and (2) the dynamics of the intracav-
ity field are equally sensitive to the signal Xsig[Ω] and to
the mirror displacements Xm[Ω]. The outgoing field [eq.
(3)] then reflects both the signal and mirror displacement
noise, including radiation-pressure noise.

The radiation-pressure force Frad = 2~kI is propor-
tional to the intracavity intensity I = a†a. From (1) and
(2), it can be written as the sum of three terms [21]: the
first one related to the incident field fluctuations ain[Ω]
corresponds to radiation-pressure quantum noise, the two
others related to Xm and Xsig are given by

F
(m)
rad [Ω] = −8~k2I

ψ

∆
Xm [Ω] , (4)

F
(sig)
rad [Ω] = −8~k2I

ψ

∆
Xsig [Ω] , (5)
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where ∆ = (γ − iΩτ)
2

+ ψ
2

and I = |a|2 is the mean

intensity. The force F
(m)
rad corresponds to the dynamical

back-action which changes the mechanical response of the
mirror, its mechanical susceptibility χ being modified to
an effective susceptibility χeff given by

χ−1
eff [Ω] = χ−1 [Ω] + 8~k2I

ψ

∆
. (6)

This force thus leads to additional optical spring and
damping on the mirror in a detuned cavity (ψ 6= 0),
and is responsible for the radiation-pressure cooling of
the mirror in a red-detuned cavity [22, 23, 24, 25].

The force of interest in this paper is F
(sig)
rad : according

to (5) and (6), it induces a mirror displacement X
(sig)
m =

χeffF
(sig)
rad proportional to the signal Xsig, leading to a

total length variation,

X(sig)
m [Ω] +Xsig[Ω] =

χeff [Ω]

χ[Ω]
Xsig[Ω]. (7)

Depending on the ratio between the initial and effective
susceptibilities, one then gets either an amplification or
a deamplification of the signal by the mirror motion.

We now derive the phase of the field reflected by the
cavity, using the usual definition of the phase quadrature
q[Ω] for any field operator a,

|a| q[Ω] = i
(

aa†[Ω] − a⋆a[Ω]
)

. (8)

Assuming for simplicity that frequencies Ω of interest are
much smaller than the cavity bandwidth Ωcav = γ/τ ,
equations (2) and (3) show that the phase qout of the
reflected field simply reproduces the cavity length varia-
tionsXm+Xsig (including radiation-pressure noise), with
an additional noise term related to the incident phase
fluctuations qin,

qout[Ω] = qin[Ω] + 2ξ (Xm[Ω] +Xsig[Ω]) , (9)

where ξ = 4kγ
∣

∣ain
∣

∣ /
(

γ2 + ψ
2
)

. One finally gets the

spectrum Sout
q [Ω] of the measured phase quadrature as

Sout
q

4ξ2
=

1

4ξ2
+ ~

2ξ2 |χeff |
2
+

∣

∣

∣

∣

χeff

χ

∣

∣

∣

∣

2

Ssig
x , (10)

where Ssig
x [Ω] is the spectrum of the signal Xsig. First

two terms in eq. (10) are the usual quantum shot and
radiation-pressure noises: they exactly correspond to the
ones obtained for a resonant cavity with a mirror hav-
ing a mechanical susceptibility χeff . Their sum can be

rewritten as |~χeff |
ζ−1+ζ

2 , which only depends on the di-

mensionless optomechanical parameter ζ = 2~ξ2 |χeff |.
At any frequency Ω, the sum is minimal and equal to the
standard quantum limit |~χeff [Ω]| when ζ[Ω] = 1.

Last term in eq. (10) reflects the signal, but with an

amplification factor |χeff/χ|
2

similar to the one already

FIG. 2: Experimental setup. A laser source provides two
beams, a locking beam used to set the laser frequency at the
optical resonance of the cavity via a Pound-Drever-Hall tech-
nique, and a probe beam which can be detuned by an acousto-
optic modulator (AO). The measured signal is provided by a
network analyzer which modulates the laser frequency to in-
duce an optical length modulation of the cavity. The phase
of the reflected probe beam is monitored with a homodyne
detection and the result is sent both to the network analyzer
and to a spectrum analyzer. For simplicity, most polarizing
elements are not shown.

found in eq. (7). In absence of dynamical radiation-

pressure effects (X
(sig)
m = 0) as in the case of a reso-

nant cavity, this factor simply disappears and the second
term in eq. (10) reduces to Ssig

x . It is then clear that dy-
namical back-action not only does change the mechanical
behavior of the moving mirror from χ to χeff , but also
enables an amplification of the signal proportional to the
factor |χeff/χ|

2
. Equation (10) therefore shows that a

high amplification factor together with an optomechani-
cal parameter ζ ≃ 1 may afford a significant increase of
the measurement sensitivity beyond the SQL |~χeff |.

Our experimental setup (figure 2) is based on a single-
ended optical cavity, with a 1-inch fused silica cylindrical
input mirror. The end mirror is coated on a plano-convex
34-mm diameter and 2.5-mm thick substrate, which ex-
hibits gaussian internal vibration modes [26]. In the fol-
lowing we only consider frequencies Ω close to a single
mechanical resonance of this moving mirror, so that its
motion can be considered as the one of a harmonic oscil-
lator characterized by a lorentzian susceptibility,

χ [Ω] =
1

M (Ω2
M − Ω2 − iΩMΩ/Q)

, (11)

with the following characteristics, deduced from the ther-
mal noise spectrum observed at room temperature: reso-
nance frequency ΩM/2π ≃ 1128.5 kHz, mass M = 72 mg,
and quality factor Q = 760 000.

The cavity finesse is F = π/γ = 110 000, mainly lim-
ited by the losses and transmission of the input mirror.
We use a 500-µm long cavity in order to keep a sufficient
cavity bandwidth (Ωcav/2π = 1.4 MHz) and to prevent
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laser frequency noise from limiting the displacement sen-
sitivity. The cavity is operated in vacuum to increase the
mechanical quality factor.

A Ti:Sa laser working at 810 nm provides two cross-
polarized beams used to lock and to probe the cavity.
Two acousto-optic modulators (AO in Fig. 2) enable to
detune one beam with respect to the other. The overall
resonance is controlled by locking the laser frequency via
a Pound-Drever-Hall technique: the low-power (200µW)
locking beam is phase-modulated at 20MHz by a reso-
nant electro-optical modulator (EO), and the resulting
intensity modulation of the reflected beam provides the
error signal. The more intense (P in ≃ 4 mW) probe beam
can then be arbitrarily detuned from the cavity resonance
by using the frequency shift of the AO modulator. A
mode cleaner filters the spatial profile of both beams,
while their intensities are stabilized by a servo-loop which
drives the amplitude control of the AO modulators.

The signal Xsig is a modulation of the optical cavity
length, obtained through a modulation of the laser fre-
quency [27] via an electro-optical modulator inserted in-
side the laser. The phase qout of the reflected probe beam
is monitored by a homodyne detection, with a local os-
cillator derived from the incident beam and phase-locked
in order to detect the phase quadrature.

We first select the detuning of the probe beam with re-
spect to the cavity resonance, and we monitor the mirror
thermal noise by sending the homodyne detection sig-
nal to a spectrum analyzer. This step allows one to de-
termine the effective mechanical response χeff induced
by dynamical back-action. Then, using a network ana-
lyzer, the modulation of the laser frequency is turned on
and swept around the mirror mechanical resonance. The
modulation power is set about 25 dB above the thermal
noise at the mechanical resonance so that thermal noise
can be neglected. The resulting phase modulation of the
reflected probe beam is monitored by the network ana-
lyzer. We finally turn the probe beam off, and we mea-
sure the mirror thermal noise immediately after, using
the Pound-Drever-Hall signal. This last step is essential
in order to accurately determine the intrinsic mechanical
response χ of the moving mirror (obtained with the lock-
ing beam at resonance), which may be slightly frequency
shifted from one measurement to the other due to slow
thermal drifts -typically 0.1 Hz per minute.

We present in fig. 3 the resulting phase modulation
power Sout

q measured by the network analyzer when the
signal modulation Xsig is swept around the mechanical
resonance frequency ΩM. Curves a to d, obtained for var-
ious negative detunings ψ, are normalized to the phase
modulation obtained far from the mechanical resonance
(measured 1 kHz above ΩM). They thus represent the
amplification factor |χeff/χ|

2 appearing in eq. (10), as
can be seen from the inset which compares the exper-
imental result to the expected amplification factor de-
duced from the measured susceptibilities χeff and χ.

A clear amplification is observed near the effective me-
chanical resonance of χeff , which is down-shifted from ΩM
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FIG. 3: Phase modulation power Sout
q measured by the

network analyzer in response to a signal modulation swept
around the mechanical resonance frequency ΩM. Curves
a to d correspond to different negative detunings, ψ/γ =
−1.87, −2.03, −2.97, and −3.64, respectively. The inset
shows a fit of curve c by the amplification factor |χeff/χ|2
deduced from the measured susceptibilities χeff and χ.

as expected from eq. (6), whereas one gets an attenuation
at the mechanical resonance ΩM where χ is maximum.
Note that similar results are obtained for positive cavity
detunings, corresponding to the amplification regime of
the mirror-cavity system rather than to the cooling one,
but the proximity of the parametric instability [22] makes
the results less reproducible. Nevertheless, we have ob-
tained a very large signal amplification effect, with an
amplification factor larger than 6 for curve c: back-action

effects induce a motion X
(sig)
m of the mirror in phase with

the signal Xsig, with an amplitude larger than the signal
itself.

Such an amplification leads to an improvement of the
sensitivity beyond the standard quantum limit. Al-
though quantum noises are not directly observed in our
experiment for which the sensitivity is currently limited
by the mirror thermal noise, the sensitivity improvement
can be computed using eq. (10) and the experimental
radiation-pressure amplification results. Since the reso-
nance frequency ΩM is on the same order as the cavity
bandwidth Ωcav, finite bandwidth effects have to be in-
cluded. This amounts to modify eq. (10) as follows,

|u|2Sout
q

4ξ2
= |~χeff |

(

ζ−1 + ζ

2
+ |v|2

ζ

2
+ Im

[

v⋆ χeff

|χeff |

])

+

∣

∣

∣

∣

χeff

χ

∣

∣

∣

∣

2

Ssig
x , (12)

where the optomechanical parameter now reads ζ =
2~ξ2|χeff |/|u|

2, and the dimensionless parameters u and
v only depend on optical parameters,

u =
∆

γ2 + ψ
2
− iγΩτ

, v =
Ω

Ωcav

γψ

∆
u. (13)

Radiation-pressure amplification is unaltered by finite-
bandwidth effects [second line in eq. (12)], and only
quantum noises are modified (first line), including in par-
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FIG. 4: Expected quantum-limited sensitivity of the measure-
ment expressed as the equivalent signal noise spectrum Ssig

x .
Curve a is deduced from the signal amplification observed at
a detuning ψ/γ = −2.97. Curves b correspond to a resonant
cavity with a resonator of susceptibility χeff , for increasing
powers. Curves c and d are the standard quantum limits for
a resonator of susceptibility χeff and χ, respectively.

ticular the possibility to squeeze the field by radiation-
pressure effects. In the conditions of our experiment,
corrections however do not exceed 1 dB at frequencies
for which the amplification factor is larger than 1. Large
sensitivity improvements can thus be fully attributed to
signal amplification.

Figure 4 shows the sensitivity of the measurement
defined as the equivalent signal noise spectrum Ssig

x [Ω]
that gives a signal-to-noise ratio equal to 1. Without
radiation-pressure amplification, that is for a resonant
cavity with a mirror of susceptibility χeff , it simply cor-
responds to the quantum noise spectrum given by the
first line in eq. (12). As shown by the series of curves

b, a flat sensitivity profile is obtained at low input power
where radiation-pressure effects are negligible over the
whole frequency band. As the input power increases, the
shot-noise limited sensitivity is improved away from the
mechanical resonance, at the expense of larger radiation-
pressure effects close to the resonance. Sensitivity is in
any case limited by the standard quantum limit |~χeff |
shown as curve c.

In contrast, the sensitivity in presence of signal am-
plification corresponds to the quantum noise spectrum
[first line in eq. (12)] divided by the amplification factor
|χeff/χ|

2: curve a shows the resulting sensitivity, each
parameter involved in eq. (12) being experimentally de-
termined. Sensitivity is improved beyond the SQL by
more than 9 dB for frequencies close to the effective me-
chanical resonance. It is also improved beyond the SQL
|~χ| of a resonator of susceptibility χ (curve d) by a factor
larger than 5 dB.

We have experimentally demonstrated how one can use
a detuned cavity to amplify an interferometric signal with
the intracavity radiation pressure, and possibly beat the
SQL. Using a fused silica moving mirror as end mirror
of a high-finesse cavity, we have achieved a 6-fold ampli-
fication of the signal by radiation-pressure back-action.
The corresponding quantum-limited sensitivity would be
lower than the SQL for frequencies around the effective
mechanical resonance frequency of the moving mirror. A
similar effect is expected in second-generation GW inter-
ferometers to create a dip in the sensitivity curve and will
be used to tune the sensitivity at a specific frequency.

This work was partially funded by the FP7 Specific
Targeted Research Project Minos.
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