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Abstract. According to recent works, introduced by Y.Meyer [1] the
decomposition models based on Total Variation (TV) appear as a very
good way to extract texture from image sequences. Indeed, videos show
up characteristic variations along the temporal dimension which can
be catched in the decomposition framework. However, there are very
few works in literature which deal with spatio-temporal decompositions.
Thus, we devote this paper to spatio-temporal extension of the spatial
color decomposition model. We provide a relevant method to accurately
catch Dynamic Textures (DT) present in videos. Moreover, we obtain the
spatio-temporal regularized part (the geometrical component), and we
distinctly separate the highly oscillatory variations, (the noise). Further-
more, we present some elements of comparison between several models
in denoising purpose.

1 Introduction

Decomposing an image into meaningful components appears as one of major aims
in recent development in image processing. The first goal was image restoration
and denoising; but following the ideas of Yes Meyer [1], in the Total Variation
minimization framework of L. Rudin, S. Osher and E. Fatemi [2], image de-
composition into geometrical and oscillatory components grants access to the
textured part of an image, rejected by the previous model. We only cite, among
many others, most recent works which we appear like most relevant and useful
papers. In this way, reader can refer to the work of Aujol et al. [3] [4], Aujol
and Chambolle [5], Aujol and Kang [6], Vese and Osher [7], Gilles [8] and more
recently Bresson and Chan [9], Duval et al. [10] and Aubert et al. [11].

We are aiming to decompose videos into three components, regular one, the
geometry u, oscillating one v, representative of texture and highly oscillating
one, the noise w (see Fig.1 for a grayscale image decomposition example). So,
we deal with color image sequences in extending to time existing reliable mod-
els. Moreover, through the texture component, we attempt to determinate the
dynamics present in sequences, which will be suited for future work on Dynamic
Texture (DT).

After have introduced different minimization functionals and a DT definition,
we present the color spatio-temporal decomposition framework and subsequently
their implementation. Then, we show some significant results, in particular the
dynamicity of DT and comparing the denoising ability of the different models.



1.1 Decomposition models

In 2001, Y. Meyer in [1] has proposed an extension of the famous image restora-
tion model proposed by Rudin, Osher and Fatemi [2], based on the BV 3 space:

inf
u∈BV

FROF (u)
(
J(u) +

1
2λ
‖f − u‖2L2

)
(1)

where f is the original image and the parameter λ controls the L2-norm of the
residual part f − (u+ v + w).

He has suggested an appropriate space (G4) to model oscillating signals (i.e
texture and noise), close to the dual space of BV . Aujol et al. in [3] solve the
Meyer algorithm, and propose the following minimization functional:

inf
(u,v)∈BV×G/f=u+v

FA2BC(u, v)
(
J(u) + J∗(u) +

1
2λ
‖f − u− v‖2L2

)
(2)

where J∗ is the Legendre-Fenchel transform5of J , so J is the indicator function
on Gη = v ∈ G/‖v‖G ≤ η6.

To decompose image sequences in suitable components we propose to extend
the Aujol-Chambolle [5] decomposition model. It rely on dual norms derived
fromBV ,G and E7spaces. Authors propose to minimize the following discretized
functional:

inf
(u,v,w)∈X3/f=u+v+w

FAC(u, v, w) = J(u)︸︷︷︸
Regularization:

TV

+ J∗
(
v

η

)
︸ ︷︷ ︸
Texture

extraction

+ B∗
(w
δ

)
︸ ︷︷ ︸

Noise extraction by
wavelet shrinkage

+
1

2λ
‖f − u− v − w‖2X︸ ︷︷ ︸

Residual part

(3)

where X is the Euclidian space RN×N . J∗ and B∗, are the Legendre-Fenchel
transform of respectively J and B. See Fig.1 for an image decomposition example
through FAC .

3
BV (Ω) is the subspace function u ∈ L1(Ω) such that the following quantity, the total variation
of u, is finite: J(u) = sup

{∫
Ω
u(x)div(ξ(x))dx

}
such that ξ ∈ C1

c (Ω,R2), ||ξ||L∞(Ω) ≤ 1
4
G, is a Banach space, composed of all distributions v: v = ∂1g1 + ∂2g2 = div(g) with g1 and
g2 ∈ L∞(R2) endowed with the following norm ‖v‖G = inf{‖g‖L∞(Ω,R2)/v = div(g), g =

(g1, g2), |g(x)| =
√

(|g1|2 + |g2|2)(x)}
5
F∗(v) = supu(〈u, v〉L2 − F (u)), where 〈., .〉L2 stands for the L2 inner product.

6
i.e: J∗( vη ) = 0 if v ∈ Gη , +∞ elsewhere

7
E is a Banach space to model very oscillating patterns: E =

.
B
∞
−1,∞dual space of

.
B

1
1,1.



Fig. 1. Grayscale image decomposition with AC functional. From top to bottom and
left to right: Texture component (vAC), original noisy image, noise component (wAC)
and regular or geometrical part (uAC).

1.2 Repetitivity in video and Dynamic Texture (DT)

A new issue in texture analysis is its extension to the temporal dimension, a
field known as Dynamic Texture Analysis. In DTA, the notion of self-similarity
central to conventional image textures is extended to the spatio-temporal do-
main. DT typically results from processes such as water flows, smoke, fire, flag
blowing in the wind or moving escalator. Important tasks are thus detection [12],
segmentation [13], synthesization and perceptual characterization [14] of DT.

Image sequences present variations along time dimension. These variations
could be, purely temporal (led blinking), spatial in movement (a leaf waving into
wind like as shown in Fig.2:(1)), periodic or pseudo-periodic (like an escalator
or the low frequencies dues to quasi periodic anemone contractions as shown in
Fig.2:(3)) or spatio-temporal (flowing water and wavelets as shown in Fig.2:(2)).
To properly catch all this spatio-temporal variation (i.e DT) and effectively sep-
arate them from spatio-temporal structures we consider a video as an pseudo
3-D image, i.e a volume, so that we can apply 2-D image algorithms correctly
extended to the 2-D+t case. Indeed, straight spatial (i.e frame by frame) point
of view is not sufficient to rightly discern patterns presenting dynamic process
or movement. Moreover since static informations are redundant in a sequence,
and since we take into account temporal variations, we grant to decomposition
process to be more accurate and efficient for discerning the geometry and texture.

2 Spatio-temporal extension

2.1 Spatio-temporal structure and discretization

We assume that we have a given image sequence f ∈ L2(Ω), where Ω is an open
and bounded domain on R3, with Lipschitz boundary. In order to recover u, v
and w from f, we propose:



Fig. 2. 2D+t block of two dynamic textures. Here, a dynamic texture is seen as a data
cube. One can clearly see at (1) leaves blowing in wind: a spatial texture in movement,
at (2) flowing water and wavelets: spatio-temporal texture and at (3) spatio-temporal
low frequencies dues to periodic anemone contractions.

- an extended discrete version of gradient vector: |∇u|xyt given by:

(∇u)i,j,k =
(
(∇u)x

i,j,k, (∇u)y
i,j,k, (∇u)t

i,j,k

)
(4)

where,

(∇u)t
i,j,k =

{
ui,j,k+1 − ui,j,k−1 if k < N

0 if k = 1 or N

- an extended discrete total variation definition:

J(u) =
∫
Ω

√ ∑
c=R,G,B

|((∇u)xi,j,k)c|2 + |((∇u)yi,j,k)c|2 + α|((∇u)ti,j,k)c|2dxdydt

(5)

We introduce the constant α to maintain homogeneity between space and time
components. The quantization steps can be different along space and time di-
mensions. In practice, we often set it to one, but user can tune it.

- an adapted definition of G: inspired by [7] for the vectorial RGB case,
extended to the third dimension:

Definition 1. Let G denote the Banach space consisting of all generalized vector-
valued functions ~v(x, y, t) = (vR(x, y, t), vG(x, y, t), vB(x, y, t)) which can be writ-
ten as:

~v(x, y, t) = (div ~gR, div ~gG, div ~gB) (6)

gx,c, gy,c, gt,c ∈ L
∞(R3), c = R,G,B ,



induced by the norm ‖v‖∗ defined as the lower bound of all L∞ norms of functions
|~g|, where |~g| =

√
| ~gR|2 + | ~gG|2 + | ~gB |2 =

√∑
c=R,G,B ((gx,c)2 + (gy,c)2 + (gt,c)2),

and where the infinitum is computed over all decompositions (6) of ~v.

- an adapted shrinkage scheme: In [15], authors use a connection given
by Weickert in [16] between wavelet shrinkage and non linear diffusion filtering
to introduce the noise component in color image decomposition model. Indeed,
by considering an explicit discretization and relating it to wavelet shrinkage,
Weickert gives shrinkage rules where all channels are coupled. The formula states
a general correspondence between a shrinkage function WST (Sθ(wij , δ)) and the
total variation diffusivity of an explicit nonlinear diffusion scheme. So, in order to
steer the evolution of all three channels in spatio-temporal domain, the following
shrinkage function WST , relying on weight of Sθ for the wavelet coefficient wji ,
is proposed:

Sθ(w
j
i ) = wji

1− 39θ

√∑
i

c ∗ (wjR,i)2 + c ∗ (wjGi)2 + c ∗ (wjBi)2

−1
 (7)

where wij is the wavelet coefficient, j the resolution and c = 1 if i ∈ {x, y, t},
c = 2 if i ∈ {xy, xt, yt} and c = 4 if i = xyt. The soft wavelet thresholding
functional WST for a given wavelet coefficient, with threshold δ is given by:

WST (Sθ(w
j
i ), δ) =


Sθ(w

j
i )− δ if Sθ(w

j
i ) ≥ δ

0 if |Sθ(wji )| ≤ δ
Sθ(w

j
i ) + δ if Sθ(w

j
i ) ≤ −δ

(8)

2.2 Numerical implementation

Thanks to recent advances in color image processing ([10] and [9]), motivating by
the well known Chambolle’s projection [17], we are able now to use a projected
gradient algorithm computing the solution of this dual formulation problem ex-
tended to time. So we dispose of an efficient way to numerically solve the different
minimization problem induced by the extended functional (3), using fixed point
method: P0 = 0, and

Pn+1
i,j,k =

Pn
i,j,k + τ(∇(div(Pn)− f

λ ))i,j,k
max(1,

∣∣Pn + τ(∇(div(Pn)− f
λ ))i,j,k

∣∣
2
)

(9)

with τ < λ
η to ensure the convergence of the algorithm [9].

In order to compute the solution of problem (1) we propose the following
numerical scheme adapted to the vectorial formulation (Eq.(4) - (9)) according
to spatio-temporal point of view:

uROF = f− PGλ(f)
vROF = PGλ(f)



To solve the problem (2), following Aujol et al. [3], we adapted the solution to
the vectorial and spatio-temporal (Eq.(4) - (9)) case and propose the following
algorithm:

1. Initialization: u0 = 0, v0 = 0
2. Iterations:

ṽA2BC = PGη (f− uA2BC)
ũA2BC = f− uA2BC − ṽA2BC − PGλ(f− ṽA2BC)

3. Repeated until:

max(|ũA2BC − uA2BC|, |ṽA2BC − vA2BC|) ≤ ε

So, to resolve the minimization problem (3) we propose to follow the numer-
ical scheme of Aujol and Chambolle [5] adapted to vectorial formulation (Eq.(4)
- (9)):

1. Initialization: u0 = 0, v0 = 0, w0 = 0
2. Iterations:

w̃AC = PδBE (f− uAC − vAC)
= f− uAC − vAC −WST (f− uAC − vAC, δ)

ṽAC = PGη (f− uAC − w̃AC)
ũAC = f− uAC − ṽAC − w̃AC − PGλ(f− ṽAC − w̃AC)

3. Repeated until:

max(|ũAC − uAC|, |ṽAC − vAC|, |w̃AC −wAC|) ≤ ε

3 Numerical Results: Static versus Dynamic
Decomposition (SD vs DD)

All images and results are computed from DynTex [18], a dynamic texture
database which provides a diverse high-quality DT. DynTex sequences come
from natural scenes presenting a wide variety of moving process. Such diversity
grants user to identify and emphasize a lot of aspects in testing purpose.

3.1 Dynamic Texture Extraction

To analyze the influence of the dynamic property of the texture we present a
comparison between the two methods of decomposition, SD versus DD, (both
computed with same parameters). We can easily see that time impact in result:
water in Fig.3 is well regularized and fluid aspect is well represent into the vAC

component. The regularization is more robust to illumination and movement
constraints.



Fig. 3. Left: the geometrical component, uAC, in SD (top) and its texture component
vAC (bottom). Center and top: the original image, bottom: Difference between the
static and dynamic vAC components. Right: the geometrical component in DD (top)
and its dynamic texture vAC (bottom).

Moreover, if user tunes parameters to obtain a stronger regularization, our
algorithm is able to catch wider waves into spatio-temporal texture component:
see around the circumference of fountain in Fig.3, small wavelets are well catched
in vAC than wider waves. It’s a matter of deep in spatio-temporal texture ex-
traction, which our algorithm is able to deal with, like shown in Fig.4.

We present, in Fig.5, a part of a decomposed sequence of flowing water under
wood bridge. We can see the static aspect of uAC component, regularized in space
and in time. It seems to be freezed, although texture component, vAC , present
a real dynamic. Only moving things or objects presenting dynamicity are taken
in account in the temporal divergence part of vAC component.

The third part of texture component play a key role in our process, movement
information is well captured. In this way we obtain the dynamicity present in
video through oscillations along time dimension. These results will be useful for
future work on dynamic texture characterization.



Fig. 4. First row: original image from sequence 6487310 of DynTex, the ROI and a
visualization of ROI. Second row: SD of ROI with λ = 140, η = 140 from left to right
uAC component and its visualization, since vAC component and its visualization. Third
row, DD of the ROI with λ = 10 and η = 10 (weak regularization and texture extrac-
tion). Fourth row, DD of the ROI with λ = 140 and η = 140 (strong regularization and
texture extraction). We can see than SD is not able to deal with dynamicity, moreover,
in DD user can catch different scales of waves in the decomposition process.

Fig. 5. From left to right, the geometrical component, uAC, in classic color decompo-
sition (top) and its texture and noise component vAC (bottom). The original image
(center and top), the time influence in calculus of divergence of vAC component (center
and bottom). Then our new dynamic decomposition components (right).



3.2 Video denoising

We present in this section some elements of comparison between the different
models in denoising purpose. Fig.6 to 9 present the decomposition of one image,
pick up from a sequence of eight images, noised separately (and decomposed
conjointly in the DD process). We present the result of denoising process of the
different models. One can easily see that DD clearly outperform SD whatever
the model. Moreover the AC functional give the better results even if the texture
component catch a part of noise in the decomposition process.

Fig. 6. From left to right, an original image from the sequence 64cc610 of DynTex, the
noised version (gaussian noise with void mean and σ = 20, SNR=14.53, PSNR=21.18),
and a visualization of ROI.

Fig. 7. ROF decomposition with λ = 25. Top: SD, bottom: DD. Left the vROF compo-
nent, center uROF and right a visualization of ROI. We have a SNR equal to 23.03 and
a PSNR equal to 29.54 with SD and respectively 29.09 and 35.59 with DD.

In the case of very noisy sequence, (σ = 50, SNR=10.85 and PSNR=17.49),
computed with exactly the same parameters and the same sequence, we have:



Fig. 8. A2BC decomposition with λ = 10 and η = 25. Top: SD, bottom: DD. Left the
vA2BC component, center uA2BC and right a visualization of ROI. We have a SNR equal
to 24.56 and a PSNR equal to 31.12 with SD and respectively 29.57 and 36.08 with
DD.

Fig. 9. AC decomposition with λ = 10, η = 15 and δ = 45. Top: SD, bottom: DD.
Left the vAC component, center uAC and right a visualization of ROI. We have a SNR
equal to 25.10 and a PSNR equal to 31.60 with SD and respectively 30.24 and 36.74
with DD.

– ROF: for SD we obtain a SNR=16.40 a PSNR=22.90 and for DD we have
respectively 21.04 and 27.55.

– A2BC: for SD we obtain a SNR=18.32 a PSNR=24.83 and for DD we have
respectively 25.23 and 31.73.

– AC: for SD we obtain a SNR=20.58 a PSNR=27.12 and for DD we have
respectively 26.91 and 33.42.



4 Discussion

We have investigate in the present paper the spatio-temporal extension of color
decomposition models through projection approach. One can see that taking into
account variations along the temporal axe appears as a useful and innovative way
to catch the dynamic texture present in videos. Moreover this extension provide
a useful tool for video denoising, indeed dynamic model clearly outperform clas-
sical decomposition, reinforcing the denoising ability of TV based models. So,
we provide an efficient tool to separate dynamic texture, structure and noise in
image sequence.

References

1. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equa-
tions. The fifteenth dean jacqueline B. Lewis Memorial Lectures (2001)

2. L.Rudin, S.Osher, E.Fatemi: Nonlinear total variation based noise removal. Physica
D 60 (1992) 259–269
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18. Péteri, R., Huiskes, M., Fazekas, S.: (Dyntex : A comprehensive database of dy-
namic textures) http://www.cwi.nl/projects/dyntex/.


