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A generative model for rank data based on an
Insertion sorting algorithm

Christophe BERNACKI 2 Julien ACQUES?

Abstract

An original and meaningful probabilistic generative moémi full rank data
modelling is proposed. Rank data arise from a sorting mastwhich is gen-
erally unobservable for statisticians. Assuming that finscess relies on paired
comparisons, the insertion sort algorithm is known as bdegbest candidate in
order to minimize the number of potential paired misclasaifons for a moder-
ate number of objects to be ordered. Combining this optignaligument with a
Bernoulli event during paired comparison step, a modelpbasesses desirable the-
oretical properties, among which are unimodality, symgneind identifiability is
obtained. Maximum likelihood estimation can also be penked easily through an
EM or a SEM-Gibbs algorithm (depending on the number of dbjéx be ordered)
by involving the latent initial presentation order of thgeatis. Finally, the practical
relevance of the proposal is illustrated through its adeguweith several real data
sets and a comparison with a standard rank data model.

Key words and phrasesFull rank data, sorting process, insertion sort algoritiiv
algorithm, quiz data.

1 Introduction

Ranking data is of great interest in human activities inwavpreferences, attitudes or
choices like Web Page ranking, Sport, Politics, Econontidsicational Testing, Biology,
Psychology, Sociology, Marketingtc Ranks are so meaningful that it is not unusual
for them to be found as the result of a transformation of okineis of data. In this paper
only full rankings will be considered but possible extensitor partial, tied or incomplete
rankings are being considered as future prospects of thmpeal model.

The rank datum results from a rankingrafobjects?y, . .., Oy by a judge (human or
not). Two representations of these data are commonly usetting and ordering. The
ranking representatiox 1 = (xl‘l,...,x;]l) contains the ranks assigned to the objects,
and means thatj is in x(lth position (= 1,...,m). Aranking is then an element ¢Py,
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the set of permutations of the firstintegers. Therderingrepresentatior = (x1,...,Xm)

is also an element of’,, and means that Objeéty, is in theith position { = 1,...,m).
Let us consider the following example to illustrate bothati@ns: a judge, which has to
rank three holidays destinations according to its prefe¥syy; = Countryside, 0> =
Mountain andd3 = Sea, ranks first Sea, second Countryside, and last Mountdia.
ordering result of the judge is= (3,1, 2) whereas the ranking resultis* = (2,3,1). In
the sequel both ordering and ranking notations will be usedank data.

Rank data are multivariate but highly structured data. 8gohd standard but general
data analysis methods (means, factor analdts), some specific descriptive methods
that respect this structure have been proposed. For iresstaegermutation polytope to
plot the rank vectors in the Euclidean space (see [30, 31harekample in Figure 1) and
suitable distances to define the centre and spread of a dgi8s26, 10].

From an inference point of view, distances are useful tottestistribution of these
data (uniformity, populations comparison, see [9, 27])comiodel the distribution itself
(for instance the MallowsP model relies on the Kendall distance, see [18, 6]). More
generally, parametric probabilistic models, if relevamd @llowing easy parameter inter-
pretation, are useful to summarize and understand suchlerrdata and are basic tool
for density estimation, prediction or clustering. Majonkalata models date from the mid
20th century and most of the current works on the topic ussetheodels.

The two most popular classes of models for rank data consistadelling directly
the hypothetical ranking process followed by the judge. &oomplete review, refer to
[27, Chap. 5 to 10]. The first class is derived from a pairedgamson process [19]: the
judge constructs a rank by first comparing each pair of objextd second ensuring the
consistency of these paired comparisongiifis prefered tao, and 0, to 03, 01 must
be prefered ta3). It leads to theBabington Smith mod¢R7, p. 116]. The number of
parameters of this model is very large especially wimagrows, therefore some simplifi-
cations have been considered. [4] associate to each @bjecscore indicating an overall
degree of preference of this object, and connect these storthe Babington Smith
model’s parameters, which defines Bradley—Terry—Mallows mod¢27, p. 117]. [26]
goes forward into the simplification by imposing that therssoconly depend on the sign
of /ng — ugl, wherey is a “reference” rank. It leads to the famadusllows ® model

POG 1A ) =F(A) Texp ANH),
whereK is the Kendall distance between two ranks [18, 6] and where

- m11exp(—(m— |+ 1)A)
)= Jll 1—exp(—A)

is a normalization constant [10] with € R a precision parameter. For instance, a hgh
value leads to strong unimodality aroupd In the last decade, some extensions of this
model have been proposed: [22] use a generalization of Mal® model to combine
multiple input rankings, and [23] model partially rankedalaa semi-parametric model
using Mallows kernel.




The second popular class of rank data models is multistageisiowhich consider
the following iterative ranking process: the judge seléicssly the best object among the
m ones, then the best among time- 1 remaining ones, and so on. TRéackett-Luce
model[25, 29] is then based on the probability that eagh is ranked first among the
m objects [27, p. 119]. It could be noticed that this model esponds to Thurstonian
model [32, 3] with a Gumbel density. [1] proposed a varianirtigoducing a dampening
parameter and [14] combined the Plackett-Luce model witlient space model in order
to spatially model the ranked nature of the data. [11] intcedan alternative multistage
model by considering another form of probability at eaclp si€the ranking process.
It leads to the Fligner and Verduccitrongly unimodal moddP7, p. 120]. Assuming
specific forms of this model could lead to Mallowsmodel or to a generalization of this
latter namedp component-model [27, p. 121].

Thus, the ranking processes that have motivated these aseed of rank data mod-
els can be interpreted as two different sorting processeshich stochastic errors are
introduced to define a probability distribution on the whadek data space. The natu-
ral question involved by this interpretation is whether tised sorting algorithms are the
most appropriate. For instance, in paired comparison rspdek not optimal to do so
many comparisons since it leads to a sorting algorithm wittessively high computa-
tional complexity. Here, we propose a generative modeldaokmata based on (straight)
insertionsort algorithm. This is one of the most powerful sorting aipons among the
usual ones whem < 10 [21, Chap. 5], the situation expected to be the most freique
particularly in case of “human ranking”. However, the prepd model can be applied in
practice to any number of objects. This new kind of geneeatiodel enjoys good theo-
retical properties and has originality to involve the (patally latent) initial presentation
order of the objects.

The paper is organized as followed. Section 2 introducessetslup the proposed
model which is based on insertion sort algorithm, and itotégcal properties (uni-
modality, symmetry, identifiability) are also detailed. Maum likelihood estimation
is considered in Section 3 by means of an EM or a SEM-Gibbgi#thgo (depending on
the number of objects to be ordered) since a missing datgnetation of the proposed
model can be exhibited. Numerical illustrations are presgbim Section 4 to evaluate
the relevance of the proposed model on real data sets baothefidistributional adequacy
and comparison to the usual Mallowsmodel point of view. Since this work sheds a
new light on rank data modelling, numerous related perspecare discussed in the last
section (Section 5).

2 A generative model for rank data based on insertion
sort

2.1 Motivation to adopt insertion sort algorithm

We assume it exists an orderipg= (L, ..., 4m) On them objects, so that a judge who
perfectly sorts these objects returns tfegerencerank . Making also the natural as-



Table 1: An example to illustrate the standard insertiohg@cess withu = (1,2, 3) and
y=(1372)
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sumption that a rank= (X, ..., Xm) is the result of a sorting process relying on successive
object paired comparisons, any difference between the famx and u is necessarily
attributed to some incorrect paired comparisons. As a guesee, reducing the gap
betweenx and u is strongly correlated to minimize the number of paired cangons
involved in the sorting process. For instance, for a moe@anamber of objectanf < 10),
an “optimal judge” should adopt thasertionsort algorithm which is optimal in this case
[21, Chap. 5]. Arguing thatn < 10 is a frequent situation in practice (in particular for
“human rankings”), we propose to keep this sorting algamitithough in practice our
model will not impose any upper bound om

We briefly sketch how the standard insertion sort algoritrerfggms. More details
can be found in [21, Chap. 5] for instance. We npte(y1,...,ym) the initial order of the
objects presented to the judge. First, the current objegtanbe sorted is placed before
the already sorted objects, and is compared to the first bdfjes. If the relative position
of both objects in this pair is correct (accordingit® this pair order is unchanged and
this process is restarted with the next object.i®therwise, the pair order is reversed and
a new pair comparison is performed with the next object ftérexists). And so forth,
until obtaining the final ranking. An example is also displayed in Table 1 with= 3 to
give step by step an overview of standard insertion sortralgo.

2.2 Modédling a stochastic insertion sort algorithm

Our idea is to merge the previous deterministic process thi¢hfollowing stochastic
paired comparisons process. We assume that each pairecagsompis the result of
a Bernoulli experiment whose outcome is a correct compar{gocording tou) with
probability T [0, 1) and an incorrect comparison with probability-It. The parameter
models the reliability of the judge about the “true” rgmkWe also assume that each pair
ranking operation is independent from others and that tbbatility 7 is constant along
the sorting process. Thus, at the end of the proposed stoxzpascess, the final rank
can differ from the reference rank From these simple ideas, we obtain a meaningful
generative model for rank data that is presented at length no

Based on this stochastic modelling of the insertion sorortigm, the probability



p(X|y; 4, 1) to obtain a rank from an initial presentation order with a reference rank
U, is given by:
P(Xy; K, 7T) = UV H) (1 — m)ALY) = Cvi), (2.1)

wherert is the probability ofgood paired comparison (according t9, G(x,y, 1) is the
number of good paired comparisons in the sorting processA@qy) is the overall num-
ber of paired comparisons. In addition, denoting loy)ghe presentation order distribu-
tion, the marginal distribution of is given by:

p(X; u, 1) = ; P(X]y; 1, TOP(Y). (2.2)
YEPm

In this paper, we assume the presentation orders are unkadvaniformly distributed,
thus gy) = m~1 for all y € & In the sequel the rank data model defined by distribu-
tion (2.2) will be quoted assR(u, 1) for Insertion Sort Rank data model associated to
parametersy(, m).

The proof of (2.1) is given in B. At the beginning of this apgeq notationsA(x,y)
andG(x,y, 1) are also mathematically defined and illustrated throughxamele in Ta-
ble 5. Note that Tables 1 (deterministic insertion algonjland 5 (stochastic insertion
algorithm) are different because they lead to a diffexerdlue.

Remark The fact thatrr remains constant along the sorting process makes sense as th
judge’s knowledge does not changeroas well as the tiredness of the judge is negligible.
However, this hypothesis could be weakened. This issuescudsed in Section 5.

2.3 Properties of ISR model

In this section, the main properties of tisr model are stated. Precise statement of each
property as a mathematical proposition and related praefaailable in C at the end of
this paper. Proofs rely on applying permutation propeuie$€oth ranking and ordering
notations on%,.

 Uniformity for m= % In the case where paired comparison is performed at random
(m= %), theisr is the uniform distribution o, In this case, the reference rank
u can be arbitrarily chosen. See Proposition 3 in C.

* Modepu. One of the most important properties which can be expected thelsr
distribution is that the reference ranpkis the unique mode of the distribution if
11> 1. See Proposition 4 in C.

 Anti-modeu. Let u be defined bys = poewheree= (m,.. ., 1) is the permutation
of total inversion. This ranku is the farthest fromu for the Kendall distance.
Then the unique anti-mode (the rank of smallest probabilgyu if 77> % See
Corollary 1in C.

* Link betweernu and 1. The modeu is also uniformly more pronounced when
grows. See Proposition 5in C.



« SymmetryDistributionsisr(u, ) andisrR(u, 1 — m) are equivalent. This property
will be especially useful to exhibit the identifiability cditions of thelsr distribu-
tion below. See Proposition 6 in C.

* Identifiability. The uniformity for m = % of the ISR distribution and its symme-
try lead to imposert > % as a necessary condition for identifiability. In fact this
condition is also sufficient to have identifiability. See pwsition 7 in C.

3 Estimation of the model parameters

Thelsr model for rank data has two parameters: the probabizli@[%, 1] and the refer-
ence rank, or modal ranki, which can take its values i\,. Note that the casg = % is
kept, although this is a non-identifiability situation basa it leads to the uniformity of the
ISR distribution, that can be of interest for practical apgiimas. Consideringx?, ..., x")

as an independent samplerofanks fromisr(, 71), we present in this section estimation
of (u, 1) by maximizing the log-likelihood of thesr model given by

|,,1,...,”:n| 1 Ny, ) .
(U, X, X i;n<m! yeémp(x Yl ﬂ))

We assume in the following that pai(s',y') arise independentlyi & 1,....n), where
(y},...,y") denote all the latent presentation orders.

3.1 Using an EM algorithm for a small number of objects(m<7)

As (y%,...,y") are unknown, we use an EM algorithm [7] to maximize thservedata
log-likelihood. Denoting by, rr){o}, the parameter starting values for the EM algorithm
and by (u, m)19 the value of the parameters at the stefy € N), the two steps (E and
M) of this algorithm are described as follows. This algamtis computationally feasible
for a small number of objects, typicallm < 7. However, it could lead to computational
difficulties for largerm values because of the sum ov&t,, involved in both E and M
steps (see discussion at the beginning of Section 3.3).

Note that since the conditional probability (2.1) is ineant to an inversion of the first
two elements of the presentation order (Lemma 1 of D), thebmxmm! of presentation
ordersy to be considered in the calculation of the probability (218)y be reduced by
half. This remark can be used in order to accelerate the Ebtighgn.

TheE step Thecomplete-datdog-likelihood is given by
n : 1 .
le(p, Xt Xy YY) = {y=y}In <—p(><'|y;u, n)) :
¢ |;y€;m m!
The E step consists of computing the conditional expectatiof | expressed by:

n 1 .
2. (1. ) =5 1P (P ).
I=lye Zm ’
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where the conditional probabilil)@‘” thaty' = y is given by:

dor_ PRy (umt®)
Y TrewnPXIT (1, M)

The M step The M step consists of choosing the valye )14+ which maximizes
the conditional expectatia® computed at the E step:
(“7”){q+1} = argmax Q((“?n)a(“7n){q};xl7“'7xn)'
(.)€ Pmx (3.1
For the modal ranku, it is however numerically expensive to explore all the dise
spaceZy even for relatively small values ah. To overcome this difficulty, a specific

strategy will be proposed in Section 3.4. The value of prditglor, maximizing< leads
to following update:

7T{q+1} _ Zinzl Zye@m tiilq}G(Xi )Y, H{q})
Y13y tiy}A(Xi Y)

Note that this value oft!®} can be interpreted as the proportion of good manipulations
(switching to right or stop) in the insertion sort algorithm

The algorithm stops when the difference of the log-liketildbetween two succes-
sive iterations is less than a given threshold. We discusshmv to efficiently start the
algorithm.

3.2 Initialization strategy for min EM

We propose here a straightforward asymptotic bound ém initialize EM. We will dis-
cuss in Section 3.4 how to also restrict the possible valoies f

Proposition 1. Denoting by § the empirical modal relative frequency, the inter{al , 7r' |
asymptotically containgr where
1 _2
e =1f8" and " = f" Y. (3.1)
Proof. Using Lemma 6 (see D) and also the fact that, for gngndy, p(u|y; 4, m) =
(1Y) (see the proof in Lemma 5), it leads to the following boundstie probability of
U
D2 < p(p;p,m) < n L
Sincefy is a consistent estimator of p; u, 1), it ends the proof. O

As soon ast and7rt are greater thaé, this result is useful to initializetr in EM
by choosing uniformlyri® in the interval given by (3.1). If onlyT™ > 1, the interval
becomeg3, fr*]. If both bounds are lower tha, then the interval3, 1] must be used.
In Table 4 of Section 4, bounds associated with all the datae greater tha%u and

the retained intervals are quite narrow in compariso[r% t@], so the strategy seems to be
efficient.



3.3 UsingaSEM-Gibbsalgorithm for alargenumber of objects(m>
8)

As discussed at the beginning of Section 3.1, the EM algorithnot appropriate as soon
asm > 8 because of the factorial term present in both E and M stepsn{ 8 orm= 9,
EM could be still feasible although it would be extremelwsl@espectively about.40*
and 410° sums involve in E and M steps); fon > 10, this computational times would
become definitively inaccessible (more thah® sums involve in E and M steps).

A so-called SEM-Gibbs algorithm may provide an efficient atebant solution. The
fundamental idea of this algorithm is to reduce the computat complexity that was
present in both E and M steps of EM by removing all explicit &xtensive use of the
conditional probabilitieﬁi,q}. It relies on the SEM algorithm [12, 5] which generates the
latent variabley' at a so-called stochastic step (S step) from the conditimnaddabilities
ti{y‘” computed at the E step. Then these latent variables aretlgitesed during the
M step. However, the advantage with SEM-Gibbs algorithriresebn the fact that the
latent variables are generated without calculating camtad probabilities thanks to Gibbs
algorithm. The proposed SEM-Gibbs algorithm proceedserfahowing steps:

The SE-Gibbsstep It consists of generating a sampl& fromté,q} (forallie{1,...,n})
like in a SE step of the standard SEM algorithm but withouteeadgulation of conditional

probabilitiesti{f} since it invokes instead the following Gibbs algorithm.r8iey from an

arbitrary samplg'{4%, generate < {1,...,R} sequenceg (%'} (Rbeing a given number)
where

(yij{q’r—i_l}a ) ~p (yij7yij+1‘(y17 cee 7yjfl)i{q’r+l}7 (yj+27 s aYm)i{q’r}aX17 .. '7Xn; (“7 n){q})

for j € {1,...,m—2} and where

-2,V 4 b (Vi Yl -y 2) o (1, ()

Note that both previous expressions do not involve any coatbrial calculation. IR is
large enoughy (4R arises frorrti{y‘”, thus we retairy {4 = y{aR} (i =1 ... n).

The M step The M step consists of choosing the valye p){41 which maximizes
the completed log-likelihood computed at the SE-Gibbs:step

(u, 0 = argmax  le(u, mxt,. . x yHa o yrlahy,
(.)€ Pmx[3.1]

For the modal rank, it is however numerically expensive to explore all the thse space

P even for relatively small values of. To overcome this difficulty, a specific strategy

will be proposed in Section 3.4. For the probabilitymaximizingle(u, 7 xt, ..., x7, yHah . yniah
leads to the following update, removing any combinatoriffiicdiity:

o) S1L4G0LY @ @)
S AKX, yHah)
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Unlike EM, the random sequence of parame(q,rsn){Q} generated by SEM-Gibbs
does not converge pointwise. Consequently its stoppirgcah not rely on difference
of the likelihood between two successive iterations. Thepgest alternative solution is
to stop the SEM-Gibbs algorithm after a given num@Qesf iterations. After removing a
burn in period corresponding to the fistterations, we retain a point estimate(pf, 77) in
the following manner: for each distinatvalues in the sequengeé? (q=B, ..., Q), take
the mearvy, of the associated(% values and then retain the cougle, 77,) leading to
the highest log-likelihoodl( i, ﬁ“;xl, ...,X"). Since the log-likelihood calculation suffers
from combinatorial issues, we use in addition the followapgproximation:

(X Z'”(ye;ﬁw"“’) Z'”( x'wlun>>

where ally'S arise independently frop(y|x'; u, 1) (s=1,...,S). Section 3.5 will validate
on some real and artificial data sets that our SEM-Gibbsegjydeads to very accurate
estimates despite its lower computational cost compar#tetstandard EM algorithm.

3.4 Reducing the number of reference ranks u for EM and SEM-
Gibbs

We propose a strategy to reduce (often drastically) the mumipossible values fqu in
the step M of both EM and SEM-Gibbs. This result relies on Bsifon 1 and also on
the following proposition.

Proposition 2. Let N be the number of individuals equal to=x#;, among a random
sample fromsRr(u, i) of size n. Denoting by

hg (11) = #{X: p(Nx > Ny; 1, 1) > o}

the number of ranks for which the empirical frequency canreatgr than or equal (with
probability at leasta € [0, 1]) to the empirical frequency associated with the theorética
modal rankyu, the following inequality asymptotically holds for apye &, and i1 €
3,10

he (1) < hg (777).

Proof. We know from Proposition 1 that asymptoticalfy < . Proposition 5 in C
allows to conclude the proof. ]

The idea is to browse the empirical modal rank in associatitm some other ranks
having high empirical relative frequency. The followingadegy can be used only if
T > % Firstly, hq (717) is estimated with a parametric bootstrap [8]Mfreplications
from ISR(u, 7). The key point is that it is independent frqm so anyu € &7y, can be
used. Then th, (777) most frequent distinct ranks in the sampié, ..., x") are retained
as possibler values among the potentiad /2 possibilities and are used both as potential
initial valuesu 1% and also as values to browse during the M step.

8



The proposed strategy is aimed to significantly reduce timelbew of candidates for
K. The number of candidates farreduces when the size of the observed sampgl®ws
sincehy (777) % 1 whenn — . So, the browsed ranks are asymptotically reduced to the
empirical modal rank which is known to be a consistent estomaf L.

Table 4 (Column “#”) of Section 4 illustrates through numerical examples that
procedure effectively reduces the number of possible rémkgs in comparison to the
m! /2 possible values.

Remarks

» Proposition 2 gives asymptotic guaranties on the propssedegy to reduce the
number of candidates for moge of the distribution. The practical efficiency of
this strategy is illustrated in the next section throughudaton studies.

* On the real data sets used in Section 4, we noticed that tpoped strategy to
preselectu is less time-consuming since it takes less than 1% of the ntiece
process composed of preselection and of estimation (whatey the estimation
algorithm: EM or SEM-Gibbs).

* Note that the selection of the possible ranks should béecbout only once before
the start of the EM or the SEM-Gibbs algorithms. This will be tstrategy we
follow in experiments throughout this paper.

3.5 Validation of the SEM-Gibbs algorithm based on simulations

In order to illustrate the estimation accuracy of the SENM§Siapproach, we propose to
evaluate it both on simulated and real data sets. We inteodece thenormalizedKendall

distanceK (-,-) = K(-,-)2[m(m— 1)]~* because its value is between 0 and 1, indicating
respectively minimum and maximum disagreement.

» Simulated data.20 samples of siza = 100 are simulated according i8R with
three values oft (11 € {0.6,0.75,0.9}) and two values ofn (m € {5,10}). These
parameters are then estimated by SEM-Gibbs approach wifiollbwing settings:
Q = 100 SEM iterationsB = 10 burn in iterations an®R = 10 Gibbs iterations
inside the SE step. Results are displayed in Table 2. Wevrigchigher values for
Q, BandR, but the results were essentially unchanged. Despite th# somber of
both Gibbs and SEM iterations, it appears that the accuraestimated parameters
is very satisfactory, both with low and larger valuenaf Note also that estimation
of u is a harder task wherr is low, as expected (recall that information anis
weak for smallm).

» Real data. For all data sets considered below in Section 4 we have run &M a
SEM-Gibbs, except the Election data set where- 14 (EM is not numerically
available in this case). Tuning parameters of EM and SEMb&dre also the same
as in Section 4. However, SEM-Gibbs is run here 10 times atalanto evaluate
stability of its results fou, rrandl (herel is exact likelihood, not the approximated



Table 2: Simulated data to validate SEM-Gibbs algorithmrélicates of sizen = 100):
rrandK ({1, ) indicate respectively the mean of threstimate (in parenthesis its standard
deviation) and the mean of tls¢andardized&endall distance between theestimate and
the true one (in parenthesis its standard deviation).
m=>5 m=10
m T OK(pp) o K@)
06 0.572 0.210 0.566  0.180
" (0.032) (0.141) (0.250) (0.063)
0.75 0.759 0.000 0.700 0.056
' (0.021) (0.000) (0.022) (0.036)
0.9 0.895 0.000 0.884 0.002

(0.015) (0.000) (0.008) (0.007)

Table 3: Real data to validate SEM-Gibbs algorithm (10 ireaeent runs of SEM-
Gibbs): [iev, sevgons Tevy Teengnos lews Isevcinns dENOtE respectively, mandl estimated
by EM and by SEM-Gibbs. Column “mean” displays the mean ohesatistics oru, ™
andl given at top of the table, over 10 runs of SEM-Gibbs. Colunbest’” and “worst”
give the value of these statistics with parameters obtaieggectively with the best and
the worst likelihood over the 10 runs of SEM-Gibbs.
K(ﬁEM? i:lSEM-gibbs) ‘ﬁéM - ﬁ'SEM-gibbJ IEM - |SEM-Gibbs

data set mean best worst mean best worst mean best worst

Football 0.00 0.00 0.00 0.004 0.001 0.007 0.02 0.00 0.04

Cinema 0.00 0.00 0.00 0.003 0.000 0.006 0.01 0.00 0.02

Rugby 0.05 0.00 0.17 0.007 0.000 0.013 0.35 0.00 1.15

Words 0.00 0.00 0.00 0.001 0.000 0.002 0.02 0.01 0.02

Sports 0.01 0.00 0.05 0.002 0.000 0.005 0.09 0.00 0.40

one since itis numerically available for< 7). Results are displayed in Table 3: in
column “best”, the best SEM-Gibbs (according Y@and EM coincide; in columns
“means” and “worst” SEM-Gibbs is very close to EM. Thus, inioms the good
behaviour of SEM-Gibbs we validated previously with sintethdata.

4 Numerical illustration

4.1 Presentation of thesix real data sets

The ISR distribution is now compared to Mallon® model on six real data sets: two
general knowledge quizzes (the answers of the 40 studeimg baestioned are in E),
four nations rugby league rankings, Fligner and Verduacgsds associations rankings
[10], Louis Roussos’s sports rankings [27] and 2002 Gerigsdl Election data set [14].
Mallows ® model has been chosen as the reference model since, inoadditbeing one
of the model based on paired comparison which has been thestoolsed [26, 10, 11,

10



28, 23], itis also linked with some multistage models (se&tiSe 1).

» Football quiz. This quiz consists of ranking four national footb&ams accord-
ing to increasing number of wins in the football World Cugj = France, 0> =
Germany/’s = Brasil, 04 = Italy. The correct answer ig* = (1,2,4,3).

» Cinemagquiz. This quiz consists of ranking chronologically thedaling Quentin
Tarantino movies?’; = Inglourious Basterds)> = Pulp Fiction,03 = Reservoir
Dogs, 04 = Jackie Brown. The correct answers = (3,2,4,1).

* Rugby This data set is the result of four nations rugby leaguenft®83 to 1909
(except years 1888 and 1889 because only three nations wéhne tournament,
and except years 1886, 1890, 1897, 1898 and 1906 due to teghwncludes
01 = England,0» = Scotland 03 = Ireland and?o, = Wales.

» Words [10] examined the data collected under the auspices of thduate Record
Examination Board. A sample of 98 college students werecatgkeank five words
according to strength of association (least to most assaiavith the target word
“ldea”: 01 = Thought,0» = Play, 03 = Theory,0, = Dream ands = Attention.

» Sports This data set is due to Louis Roussos [27] who asked 130 rstsidé the
University of lllinois to rank seven sports according toitlpeeference in participat-
ing: 01 = Baseball 0> = Football,03 = Basketball,, = Tennis,0s = Cycling,
Us = Swimming, 0’7 = Jogging.

» Election The general election system for the Irish House of Parlidngebased
on ranking of the candidates in order of preference. [14f@méed and studied
the 2002 General Election data set, consisting of the 64r@8kings of the 14
candidates among which 2,490 are full rankings. Only the$@®full rankings are
used here. Refer to [14] for more details on this data set.

The empirical distribution of the first three data sets (fdvichh the number of objects to
rank is 4) is graphically displayed on tleft column of Figure 1 in the ranking space
(orderings are displayed on each node).

4.2 Estimation results

For each data set, ther distribution and the Mallow® model are estimated. Ampack-
age is available on the authors websitEor theisrR model, the estimation is carried out
using EM algorithm whem < 7, and SEM-Gibbs algorithm is used wher> 7 (Elec-
tion data set). Forsr the convergence threshold for the growth of log-likelihao@&M
algorithm was fixed to 10° and only one initialization oft in [7r, 7r"] has been used
(no change on the results have been observed with severalizations), andB = 30,

Q =100,R= 10 for SEM-Gibbs algorithm is used. For Mallowsmodel, the numeri-
cal optimization has been carried out with a quasi-Newtothogtand the convergence
threshold ofisr (1079).

'http://math.univ-lillel.fr/~jacques/soft.html
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3124 3124

(c) Rugby quiz data set

Figure 1: Empirical (left) and estimatsr (right) distributions for the three data sets
wherem= 4. The area of the dots is proportional to the correspondiagability.
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The ISR distribution of the first three data sets is graphically tigpd on theright
column of Figure 1 for a visual comparison with the empiriskribution. In addition, a
x? adequacy test, where the distribution under the null assomfs estimated by boot-
strap [8] based on 1,000 replications, is performed for batkdels and for all data sets and
the results are displayed in Table 4 (Colunpn/vame”). Depending on selected threshold
on the p-value (typically models with p-value greater thadbQare not rejected) we no-
tice that both models can be suitable for some data sets btdmadl of them. Moreover,
when comparing maximum log-likelihood values (Colunif ‘the highest likelihoods
are in bold), SR leads to a greater maximum likelihood than Mallowsnodel for 4 data
sets among 6. Consequentigr could be a natural competitor to be considered beside
other classical models in any rank data analysis.

Table 4:1sr and Mallows® models estimation results: estimate parameiera (ISR)
andA (Mallows), maximum log-likelihood, estimated p-value of the? adequacy test,
number of possibl@ explored (#; ForISR it corresponds tb (77~) with a = 0.05 and
M = 100 replications), lower and upper bourfniSAandfT+ for n(|SR/01Iy)

A

data set model 0 frorA I p-value #1 T rt

Football ISR (1,2,4,3) 0.834 -8853 0.001 1 0.794 0.891
Mallows (1,2,4,3) 1.106  -89.17 0001 1 - -
Cinema ISR (4,3,2,1) 0.723 -111.94 0042 14 0630 0.794
Mallows (4,3,2,1) 0.628 -112.12 0.029 2 - -
Rugby ISR (2,4,1,3) 0681 -58.68 0538 12 0585 0.765
Mallows (2,4,1,3) 0528 -5833 0395 2 - -
Words ISR (2,5,4,3,1) 0.879 -27543 0.001 1 0.762 0.897
Mallows  (2,5,4,3,1) 1.431 -25127 0019 1 - -
Sports ISR (1,3,2,4,5,7,6) 0564 -110212 0999 2 0534 0.836
Mallows (1,3,4,2,5,6,7) 0.083 -1102.84 1 11 - -
Election ISR (134,1,2,356 0682 -48329.76 0999 6 * T

7,8,9,10,11,12 14)

Mallows (4,132,5,1,147 0.164 -60157.38 0.999 38 - -
6,10,8,9,12 3,11)

T a = 0.1 for the Sports data set to avoid to manylue to the smalitvalue * Useless for SEM-Gibbs

We note that the strategy selecting the number of possitdeargce ranks to explore
(Section 3.4) is effective. Indeed, only one candidateifdnas been selected by this
strategy for the three data sets Football, Words and Spodisifnn “#u”) and for other
data sets the number of candidates is relatively small inpegi®on withm!. Concerning
Mallows ® model, the estimation gi is carried out by an empirical iterative local search
(in the sense of the Kendall distance) around the modal rabkwhich appears to be
effective.

We discuss now the meaningful interpretations# parameters by further analysing
Table 4.

» Footballquiz. The estimation of the reference rgmkcoincides with the real rank.
In addition, the accuracy level of students knowledge irtdab is quite high since
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it is reflected by a high probabilityr (0.834) of well paired comparison. This un-
derlines that the right answer is, on the whole, known witthHevel of confidence
by this population of students.

Cinemaquiz. The estimation of the reference rgmkioes not coincide with the real
rank even if the chronological order is correct for three $ilof four. However, the

accuracy level of students knowledge in cinema is equal+a0.723. The students
seem to have better knowledge in football than in cinema.

Rugby Theisr model estimation on the Rugby data set suggests a rankingéet
these four nations: during this time Scotland were the likef) Wales, England
and finally Ireland. But the low value of the probabiliy(0.681) means that the
confidence in this ranking is not very high.

Words The high value ofrt (0.879) for the Fligner and Verducci’s Word data set
shows that the questioned students overall share the samerofor the association
with the word Idea: Thought is the most associated followgd beory, Dream,
Attention and finally Play which is the least associated.

Sports The reference rankl, 3,2,4,5,7,6) estimated for thesr model reflects a
preference of the students at the University of lllinoisdollective sports: Baseball,
Basketball and Football are at the top three places whileiohehl sports are at the
end of the ranking: Cycling, Jogging and Swimming. Tennisicl is intermediate
between a collective sport and an individual sport, is reily ranked between
these two groups.

Election This last data set calls for an interesting remark: exdegtfirst two
candidates, it suggests that all other candidates tends éodered similar to their
initial order in the list. Note that we considered only 4% loé¢ tvoters in our study,
those who “bothered” to rank every one of the 14 candidatesbdbly most of
them have the common trait that they did not care who is ramieat the first
two candidates since, in the Irish voting system, two-thimélvoters see their first
choice elected. They may express such an indifference bley@nsecond rank by
choosing the initial order in the list of candidates wheréreesremaining 96% of
voters prefer not to complete the rest of the list. Notice &t about 45% of these
remaining 96% of voters select only one or two candidates.aofercomprehensive
study including partial ranks would be obviously require@halyse more precisely
the results of these elections.

From the Mallowsb parameters point of view, most results are highly consistéh

ISR: main modal ranks are identical and the dispersion parametealso well correlated
with T, thoughA is more abstract and could be less easy to understand by t#ipress.
Only the modal rank of the last two data sets (Sports and iBreddiffers: for the Sports
data set, MallowsP model classifies Tennis inside the collective sports codaanstead
of being put at the borderline of collective and individupbds, asiSr does; For the
Election data set, Mallow® model provides the same first two candidatessa&sbut in
the reverse order and, in addition, all other candidatesrang different between both
methods.
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5 Discussion

In this paper we propose that rank data could be consideréetassult of a paired com-
parisons sort algorithm, where the possibility of wrong gamsons exists and occurs
randomly according to a Bernoulli model. It opens a new wagrtpose many distribu-
tions on rankings, all of them benefiting from very meanihgfarameters (the reference
rank u and the probabilityt of good paired comparison). In order to minimize the num-
ber of paired comparisons, and consequently number of patamong comparisons, the
insertion sort algorithm has been kept in this paper for ptsnoality whenm < 10 since

it is expected to be a frequent limit in “human rankings”. Theulting distribution, the
so-calledsR, has been established and many desirable properties waggdmnted out.

In addition, the latent variable interpretation of modébak the derivation of specific
EM and SEM-Gibbs algorithms which can be easily accelerbyedrastically reducing
the number of potential reference rankso consider. Although our approach is not able
to deal with very large data sets like web pages rankingsraedonds of biological data,
these computational gains allow to deal with usual datafetsoderate size typically
provided by a “human ranking” process.

In fact, theiskR model can be considered as the precursor to a wider familgrdd-r
ing models. The insertion sort algorithm was kept in this kvfsom some optimality
arguments. However, it is possible to easily set up a new himdehanging it. For in-
stance, we can use a selection sort algorithm instead, avtary standard algorithm8,[
see]]Knul973. Obviously, properties of the new model atadiin this way would need
to be established again. In each case, it could also be pessiveaken the assumption
that 7t remains constant all along the sorting process, for instémenodel the tiredness
of the judge during the sorting process.

Another interesting prospect initialized by the presentlwis the possibility to in-
clude some information about the initial rankiggn the model and its corresponding
estimation. Indeed, in questionnaires this initial ordepften known and it is useful
information which can be naturally used by our class of m&dd is also possible to
consider some more diffuse information abgufor instance to ignore the exagtalue
but to know that all are the same for all questionnaires (realistic situatiomfany ranks
coming from quiz studies), or other realistic variants [[B]the same spirit, the model is
also flexible enough to take into account the usual behavi@trsome individuals may
rank the items from the beginning to the end and others to elopiposite.

Although theisr is unimodal (as many other distributions for ranks), mudtcality
can be easily taken into account through mixturesef distributions after leading a spe-
cific identifiability study. For instance, we can think thataur football quiz, girls and
boys responses will probably not follow the same distritnutias it is suggested by very
low estimated p-value [17]. This extension is natural sis@eeral mixtures of rank data
models have already been considered with success to tresbgeneity of rank popu-
lation: mixture of Mallows® models [28], mixture of Plackett-Luce or Benter models
[13, 15, 16] and more recently mixtures of weighted distalpased models [24].

Finally, there is also a need to adapt our models to otheatsotos than full rank data.
This approach needs to be extended to other types of ramgjently encountered in
practice, as partially or incomplete ranked data [22, 20, ®Bich would be very useful
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to further analyse the Irish election data set, tied dataem eanks resulting from multiple
preference responses.
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A. Additional notationsuseful for the proofs

Additional notations are needed in the proofs displayetesippendices below. All these
notations are illustrated in detail through an example ibld%. In addition, to clarify
them, the calculation for step= 2 (for instance) is detailed at the end of the present
appendix.

In the following, j = 1,...,mdenotes the step in the sorting algorithm consisting in
ranking the objecty;.

A(X,Y) = z'j“:lAj (x,y) andAj(x,y) = A (X,Y) +Aj+(x,y) designate the total number
of all paired comparisons respectively for the whole process anthé stepj. In this
definition,Aj‘(x,y) is the number ofll comparisons of the current obje¢t,; with the
objects already ranked (accordingddoefore it (if they exist) anekjfr (x,y) indicates if the
current objecty,; is compared, at thestep of the sorting, with the object rankedijust
after it. Formally,Aj (x,y) corresponds to the cardinal of™ (x,y) = {i : x;* <x, 1,1 <
i < j} which is the set of the indices of the presentation osdéar which the already
sorted object®y,, ..., 0y, , are ranked irx before the current objeaty,. In a similar
way, Al (x,y) is the cardinal of the se#/" (x,y) = {i : i = argmin<i-{i’" : %" > x,'}}
which corresponds to the index of the rankesignating the object sorted xrjust after
Oy; among the already sorted objectg,, ..., Oy, ,, if it exists. This set has at most one
element.

G(X,y,1) = z'j“:lG,-(x,y,u) andGj(x,y, 1) = Gj (XY, 1) +Gj+(x,y,u) are the total
number ofgood paired comparisons respectively for the whole process anthé step
j. Formally, Gy (x,y, ) = Ziedj_(xjy) dyy; (1) is the number ofjood comparisons (ac-
cording tou) of the current objecty; with the objects already ranked before it (if they
exist), wheredy (u) = 1{p~* < '} is equal to 1 if6; is correctly ranked before,
(according tou), 0 otherwise(i,i’ = 1,....,m,i #i’). In a similar Way,GJ*(x,y,u) =
Zie,gfﬁ(x,y) dy,y; (1) is the indicator ofgood comparison (according ta) of the current
objectdy,; with the object already ranked just after it (if it exists).

Detail of step j = 2to beread in conjunction with Table 5

» o/, ={}: the new object 3 (to be sorted) has been compared to thelplseated
object 1 but 1 is not sortegefore3 in the final ordering;
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Table 5: An example to illustrate the notations wjth= (1,2,3), y = (1,3,2) andx =

(3,1,2). The notatiorx)), defined in B, means the ranking of thérst objects iny in the
order imposed by

stepj  unsorted sorted o o A A A Gy G G
start y=|1[3[2] - - - - - A i
1 13]2 x() 4 {0 0o 0 o0 0 0 0

?
3|41
2 (H{}{1}011ooo

A=3 G=1

5" = {1}: the new object 3 (to be sorted) has been compared to thelgplseated
object 1 and 1 is sortedfter 3 in the final ordering;

A, =0 andA] = 1: number of comparisons listed respectivelyif and.az,;

A, = 1: total number of comparisons to sort the new object 3.

G, =0 anng = 1: number ofgoodcomparisons listed respectively.iif,” and
Ay’

G, = 1: total number ofjoodcomparisons to sort the new object 3.

B. Buildingtheisrdistribution

The goal of this appendix is to prove that (2.1) correspoadisé stochastic insertion sort

algorithm with probabilityrt of good paired comparison, and independence between the
paired comparisons.

Proof. Letx()) be the ordering of the firgt(1 < j < m) objects iny in the order imposed

by x (sox™ = x). An example of this notation is in Table 5. Thus, there exisowing
relationship betweer!) andx(i—1):

() — (=1 (-1 . -1 (i
XV = (xy ,...,xAj,(ij),y,, Ay 170X

Equation (2.1) is now proved by induction ¢nlt is true for j = 1 while there is only one
objecty; to sort: {xY|y; u, m) = 1. Since the result of the rankingy) from xU=Y is the
result ofAj(x,y) independent Bernoulli experiments of parametethen, conditionally
to xU=1 | the probability ofx(l) is

p(x(]) |X(j_1)7y; u, n') — nGj(X,y,[J)(l_ n)Aj(XvY)_Gj (vavl'l)_
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We conclude the proof by noticing that

p(x(])|y, U, T[) — p(x(])|x(]*1),y, U, n)p(x(]*1)|y, u, T[),

from the following implied relationship between events? = x(i-1), O

C. Mathematical statement of the ISR propertiesand re-
lated proofs

In the following, compositior o x will be noted shortlyrx for any t andx in #y,.

Proposition 3. (Uniformity for m= %.) For all x, 4 € Zm, p(x; U, %) =m1

Proof. Let e be the identity permutation o#’y,. Firstly using Lemma 3 of D and then
using the fact that p|e; 1, %) is a probability distribution o, we have

PcK3) 0 S Py 3) = 5 Py Xy i 3) = 5 ply Mew,3) =1

YEPm YEPm YEPm

Proposition 4. (Modepu.) Forall x # u € Zynand > % p(H; 1, 1) > p(X; U, T7).

Proof. Using the fact thaf > % < > 1—m}, x# p and then Lemma 2, we obtain:

ml p(X, U, T[) < nA(X,y) — nA((IJX‘l)Xa(IJX‘l)y) — Z nA(U7)/) =m p(u’ U, n')_
YEPm YEPm YE€Pm
The last equality comes from the fact tdi,y') = G(u, Y, U). O

Corollary 1. (Anti-modejr.)For all X £ [ € Pand > 3, p(i; 4, ) < p(X; W, 10).
The proof is symmetrical to that of Proposition 4.

Proposition 5. (Link betweeru and ) For all x, 4 € P, p(U; U, M) — p(X; 4, 1) is an
increasing function oft > 3.

Proof. Noting A(11) = p(u; 4, 1) — p(X; W, 1), dA(11) /9 11, Wwe can written

or(m _ 1 S Ay AL Gl y, )11 -Gl | ¢

m
o ml v

wherec is a non-negative term independent fremSincert > % we deduce that
G(X, Y, IJ) nG(XM“)*l(l — n)A(XN)*G(Xayu“) < G(X, Y, IJ) nA(X7y)*1_
Using the fact thaf\(u,y) > G(x,y, 1), we deduce thadA(r) /d> 0. ]

Proposition 6. (Symmetry.) Forallxu € #ynandallmre [0,1], p(x; 4, 1— 1) = p(X; U, 10).
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Proof. Using Lemma 4, we can write:
p(X, ﬁ? 1— T[) 0 nA(va)*(A(va)*G(Xayal'l))(1 _ T[)A(Xuy)*G(va#) O p(X, U, T[)

YEPm

Proposition 7. (Identifiability.) Theisr distribution is identifiable sincer > %
Proof. The identifiability problem can concern parameterasnd/oru.
« First, there exists no coupl@u, u’) € 222 with u # u’ such that px; u, m) =
p(x; 1, m) for anyx € &, and anyr > % Indeed, choosing = u, from Lemma 5
we have u; i, 1) # p(u; W', 10).
 Second, for a givemu € &, assume there exists# 17 such that px; u, m) =
p(x; 4, ) for anyx € P In particular, forx = p, in the proof of Lemma 5 we
obtained thaG(x,y,x) = A(x,Y), thusy e 5, T*HY) =5 5, AHY) The strictly
increasing functiorp — 11" on the interva[%, 1] for all n € N* ensures thatr = 17’

« Assume finally there existg, i) € 222 with u # ' andr < 1 such that px; u, 1) =
p(x; ', ) for any x € Zn. In the proof of Lemma 5, it is also obtained that
G(x,y, 1) < A(x,y) whenx # u, thus

p(Xly: 1, 1) < 1OV < ™Y = p(xjy;x, 1),
and then by averaging over allin &y, gives gx; 1, M) < p(x;x, ). Choosing
x = ' ensures the identifiability of thesr model.
L]

D. Lemmas

Lemmal. Leté=(2,1,3,...,m) be the permutation inverting the first two elements. For
allx,y,p € Zmandme [0,1], p(Xly; 4, ) = p(X|y& 4, 11).

Proof. We use notationg!)) that have already been introduced in B. The key point of
the proof is to notice that the first two objectsyilead to the same paired comparison
at the second step of the sorting process whatever is thdgr amy, so gx?|yé ) =
p(x@) |y, 7). Combining this result with the fact thatdx(?, y&, m) = p(x|x?),y, ), since
€ only affects the first two objects, this concludes the proof. O

Lemma2. Forall X,y, T € Pm, AX,Y) = A(TX, TY).

Proof. First we prove tha#\; (x,y) = Aj (1x,Ty). Foranyj =1,....m, we have (notice
thati is always such that i < j)

AL (txTy) = #it (X)), < (rx)(‘%,)j} =#{i: (x 't try)i < (x Tt try) )
= #{i: (i< (XChy) = #0 g <t = AT (xY).

Using the fact thaf\[" (x,y) = 1{A] (x,y) +1 < j — 1} we also deduce tha{ (x,y) =

Aj+(rx, Ty). Consequentlydj(x,y) = Aj(Tx, Ty) and, SOA(X,Yy) = A(TX, Ty). ]
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Lemma3. Forall Xy, 4, T € Pm, p(Xly; H, 3) = p(Tx|TY; 1, 3).
Proof. Whenm= % we obtain by using Lemma 2

p(exTy;, ) = ()N = ()Y

= = p(X|y; M 3)-

Lemmad4. Forall X,y, 4 € Zm G(x,y, 1) = AX,y) — G(X,Y, H).

Proof. Let e be the permutation of total inversion previously introdiiée Section 2.3
andi,i’=1,....m,i #i’. We first prove thaG; (x.Y, H) = A (XY) = Gj (XY, {). Using
successively the fact that= pe, e=¢€1, {i <i’ & g > &/} andi #i’, we have

(k) = (k)" < (ug;"} =Ue <&} =1{8,1<§ 1}
= Y t>p Y =1-1pu <t =1-8(p),
and then

Gyxy.u)= 5 (1=8y () =A](Xy) =G (XY,H).
e/ (xy)

In a similar manner, we can prove trﬁr(x,y,ﬁ) = Aj+(x,y) - GT(x,y,u). The proof
follows immediately from these two results. ]

Lemmas. Forall x,u € Py, X# pandm> % p(x; U, ) < p(X; X, 11).

Proof. First note thatG(x,y, 4) < A(x,y) for u # x. Since{m> 3 & 1- < m}, we
deduce foru # x that px|y; u, m) < Y. Also note thatG(x,y,x) = A(x,y), thus
p(x|y;x, m) = *Y). Consequently, we have(yly; i, 1) < p(x|y; x, 1) and the proof is
concluded by averaging over all possible presentationregd@ . O

Lemma6. Forall u,y € Zm, m—1<A(u,y) <m(m-1)/2.

Proof. Left bound: there is no comparison when the first elemenesi@nd at least one
comparison for each of the— 1 other elements. Right bound: there is still no comparison
when the first element arises and at mpstl comparisons when for thgh new object

to rank, sOAA(i,Y) < ¥4 (j — 1) =m(m-1)/2. W

E. Quizdata sets
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