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A generative model for rank data based on an
insertion sorting algorithm

Christophe BIERNACKI a, Julien JACQUESa

Abstract

An original and meaningful probabilistic generative modelfor full rank data
modelling is proposed. Rank data arise from a sorting mechanism which is gen-
erally unobservable for statisticians. Assuming that thisprocess relies on paired
comparisons, the insertion sort algorithm is known as beingthe best candidate in
order to minimize the number of potential paired misclassifications for a moder-
ate number of objects to be ordered. Combining this optimality argument with a
Bernoulli event during paired comparison step, a model thatpossesses desirable the-
oretical properties, among which are unimodality, symmetry and identifiability is
obtained. Maximum likelihood estimation can also be performed easily through an
EM or a SEM-Gibbs algorithm (depending on the number of objects to be ordered)
by involving the latent initial presentation order of the objects. Finally, the practical
relevance of the proposal is illustrated through its adequacy with several real data
sets and a comparison with a standard rank data model.

Key words and phrases. Full rank data, sorting process, insertion sort algorithm, EM
algorithm, quiz data.

1 Introduction

Ranking data is of great interest in human activities involving preferences, attitudes or
choices like Web Page ranking, Sport, Politics, Economics,Educational Testing, Biology,
Psychology, Sociology, Marketing,etc. Ranks are so meaningful that it is not unusual
for them to be found as the result of a transformation of otherkinds of data. In this paper
only full rankings will be considered but possible extensions for partial, tied or incomplete
rankings are being considered as future prospects of the proposed model.

The rank datum results from a ranking ofm objectsO1, . . . ,Om by a judge (human or
not). Two representations of these data are commonly used: ranking and ordering. The
ranking representationx−1 = (x−1

1 , . . . ,x−1
m ) contains the ranks assigned to the objects,

and means thatOi is in x−1
i th position (i = 1, . . . ,m). A ranking is then an element ofPm,

aLaboratoire P. Painlevé, UMR 8524 CNRS Université Lille I, Bât M2, Cité Scientifique, F-59655
Villeneuve d’Ascq Cedex, France.
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the set of permutations of the firstm integers. Theorderingrepresentationx= (x1, . . . ,xm)
is also an element ofPm and means that ObjectOxi is in theith position (i = 1, . . . ,m).
Let us consider the following example to illustrate both notations: a judge, which has to
rank three holidays destinations according to its preferences,O1 = Countryside,O2 =
Mountain andO3 = Sea, ranks first Sea, second Countryside, and last Mountain.The
ordering result of the judge isx= (3,1,2) whereas the ranking result isx−1 = (2,3,1). In
the sequel both ordering and ranking notations will be used for rank data.

Rank data are multivariate but highly structured data. So, beyond standard but general
data analysis methods (means, factor analysis,etc.), some specific descriptive methods
that respect this structure have been proposed. For instance the permutation polytope to
plot the rank vectors in the Euclidean space (see [30, 31] andan example in Figure 1) and
suitable distances to define the centre and spread of a data set [18, 26, 10].

From an inference point of view, distances are useful to testthe distribution of these
data (uniformity, populations comparison, see [9, 27]) or to model the distribution itself
(for instance the MallowsΦ model relies on the Kendall distance, see [18, 6]). More
generally, parametric probabilistic models, if relevant and allowing easy parameter inter-
pretation, are useful to summarize and understand such complex data and are basic tool
for density estimation, prediction or clustering. Major rank data models date from the mid
20th century and most of the current works on the topic use these models.

The two most popular classes of models for rank data consist on modelling directly
the hypothetical ranking process followed by the judge. Fora complete review, refer to
[27, Chap. 5 to 10]. The first class is derived from a paired comparison process [19]: the
judge constructs a rank by first comparing each pair of objects, and second ensuring the
consistency of these paired comparisons (ifO1 is prefered toO2 andO2 to O3, O1 must
be prefered toO3). It leads to theBabington Smith model[27, p. 116]. The number of
parameters of this model is very large especially whenm grows, therefore some simplifi-
cations have been considered. [4] associate to each objectO j a score indicating an overall
degree of preference of this object, and connect these scores to the Babington Smith
model’s parameters, which defines theBradley–Terry–Mallows model[27, p. 117]. [26]
goes forward into the simplification by imposing that the scores only depend on the sign
of µ−1

xi
−µ−1

x j
, whereµ is a “reference” rank. It leads to the famousMallowsΦ model:

p(x; µ,λ ) = C (λ )−1exp−λK(x,µ),

whereK is the Kendall distance between two ranks [18, 6] and where

C (λ ) =
m−1

∏
j=1

1−exp(−(m− j +1)λ )

1−exp(−λ )

is a normalization constant [10] withλ ∈ R a precision parameter. For instance, a highλ
value leads to strong unimodality aroundµ. In the last decade, some extensions of this
model have been proposed: [22] use a generalization of Mallows Φ model to combine
multiple input rankings, and [23] model partially ranked data via semi-parametric model
using Mallows kernel.
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The second popular class of rank data models is multistage models, which consider
the following iterative ranking process: the judge selectsfirstly the best object among the
m ones, then the best among them− 1 remaining ones, and so on. ThePlackett-Luce
model[25, 29] is then based on the probability that eachOxi is ranked first among the
m objects [27, p. 119]. It could be noticed that this model corresponds to Thurstonian
model [32, 3] with a Gumbel density. [1] proposed a variant byintroducing a dampening
parameter and [14] combined the Plackett-Luce model with a latent space model in order
to spatially model the ranked nature of the data. [11] introduce an alternative multistage
model by considering another form of probability at each step of the ranking process.
It leads to the Fligner and Verducci’sstrongly unimodal model[27, p. 120]. Assuming
specific forms of this model could lead to MallowsΦ model or to a generalization of this
latter namedΦ component-model [27, p. 121].

Thus, the ranking processes that have motivated these two classes of rank data mod-
els can be interpreted as two different sorting processes, in which stochastic errors are
introduced to define a probability distribution on the wholerank data space. The natu-
ral question involved by this interpretation is whether theused sorting algorithms are the
most appropriate. For instance, in paired comparison models, it is not optimal to do so
many comparisons since it leads to a sorting algorithm with excessively high computa-
tional complexity. Here, we propose a generative model for rank data based on (straight)
insertionsort algorithm. This is one of the most powerful sorting algorithms among the
usual ones whenm≤ 10 [21, Chap. 5], the situation expected to be the most frequent
particularly in case of “human ranking”. However, the proposed model can be applied in
practice to any number of objects. This new kind of generative model enjoys good theo-
retical properties and has originality to involve the (potentially latent) initial presentation
order of the objects.

The paper is organized as followed. Section 2 introduces andsets up the proposed
model which is based on insertion sort algorithm, and its theoretical properties (uni-
modality, symmetry, identifiability) are also detailed. Maximum likelihood estimation
is considered in Section 3 by means of an EM or a SEM-Gibbs algorithm (depending on
the number of objects to be ordered) since a missing data interpretation of the proposed
model can be exhibited. Numerical illustrations are presented in Section 4 to evaluate
the relevance of the proposed model on real data sets both from a distributional adequacy
and comparison to the usual MallowsΦ model point of view. Since this work sheds a
new light on rank data modelling, numerous related perspectives are discussed in the last
section (Section 5).

2 A generative model for rank data based on insertion
sort

2.1 Motivation to adopt insertion sort algorithm

We assume it exists an orderingµ = (µ1, . . . ,µm) on them objects, so that a judge who
perfectly sorts these objects returns thisreferencerank µ. Making also the natural as-
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Table 1: An example to illustrate the standard insertion sort process withµ = (1,2,3) and
y = (1,3,2)

step j unsorted sorted

start y = 1 3 2 -
1 3 2 1

2 2
3

?
↔ 1

1 3

3 -
2

?
↔ 1 3

1 2
?
↔ 3

x = 1 2 3

sumption that a rankx= (x1, . . . ,xm) is the result of a sorting process relying on successive
object paired comparisons, any difference between the finalrank x andµ is necessarily
attributed to some incorrect paired comparisons. As a consequence, reducing the gap
betweenx and µ is strongly correlated to minimize the number of paired comparisons
involved in the sorting process. For instance, for a moderate number of objects (m≤ 10),
an “optimal judge” should adopt theinsertionsort algorithm which is optimal in this case
[21, Chap. 5]. Arguing thatm≤ 10 is a frequent situation in practice (in particular for
“human rankings”), we propose to keep this sorting algorithm although in practice our
model will not impose any upper bound onm.

We briefly sketch how the standard insertion sort algorithm performs. More details
can be found in [21, Chap. 5] for instance. We notey= (y1, . . . ,ym) the initial order of the
objects presented to the judge. First, the current object iny to be sorted is placed before
the already sorted objects, and is compared to the first object after. If the relative position
of both objects in this pair is correct (according toµ), this pair order is unchanged and
this process is restarted with the next object iny. Otherwise, the pair order is reversed and
a new pair comparison is performed with the next object after(if it exists). And so forth,
until obtaining the final rankingx. An example is also displayed in Table 1 withm= 3 to
give step by step an overview of standard insertion sort algorithm.

2.2 Modelling a stochastic insertion sort algorithm

Our idea is to merge the previous deterministic process withthe following stochastic
paired comparisons process. We assume that each paired comparison is the result of
a Bernoulli experiment whose outcome is a correct comparison (according toµ) with
probabilityπ ∈ [0,1] and an incorrect comparison with probability 1−π . The parameterπ
models the reliability of the judge about the “true” rankµ. We also assume that each pair
ranking operation is independent from others and that the probabilityπ is constant along
the sorting process. Thus, at the end of the proposed stochastic process, the final rankx
can differ from the reference rankµ. From these simple ideas, we obtain a meaningful
generative model for rank data that is presented at length now.

Based on this stochastic modelling of the insertion sort algorithm, the probability
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p(x|y; µ,π) to obtain a rankx from an initial presentation ordery, with a reference rank
µ, is given by:

p(x|y; µ,π) = πG(x,y,µ)(1−π)A(x,y)−G(x,y,µ), (2.1)

whereπ is the probability ofgoodpaired comparison (according toµ), G(x,y,µ) is the
number of good paired comparisons in the sorting process, and A(x,y) is the overall num-
ber of paired comparisons. In addition, denoting by p(y) the presentation order distribu-
tion, the marginal distribution ofx is given by:

p(x; µ,π) = ∑
y∈Pm

p(x|y; µ,π)p(y). (2.2)

In this paper, we assume the presentation orders are unknownand uniformly distributed,
thus p(y) = m!−1 for all y∈ Pm. In the sequel the rank data model defined by distribu-
tion (2.2) will be quoted asISR(µ,π) for Insertion Sort Rank data model associated to
parameters (µ,π).

The proof of (2.1) is given in B. At the beginning of this appendix, notationsA(x,y)
andG(x,y,µ) are also mathematically defined and illustrated through an example in Ta-
ble 5. Note that Tables 1 (deterministic insertion algorithm) and 5 (stochastic insertion
algorithm) are different because they lead to a differentx value.

Remark The fact thatπ remains constant along the sorting process makes sense as the
judge’s knowledge does not change onµ as well as the tiredness of the judge is negligible.
However, this hypothesis could be weakened. This issue is discussed in Section 5.

2.3 Properties of ISR model

In this section, the main properties of theISR model are stated. Precise statement of each
property as a mathematical proposition and related proofs are available in C at the end of
this paper. Proofs rely on applying permutation propertieson both ranking and ordering
notations onPm.

• Uniformity forπ = 1
2. In the case where paired comparison is performed at random

(π = 1
2), the ISR is the uniform distribution onPm. In this case, the reference rank

µ can be arbitrarily chosen. See Proposition 3 in C.

• Modeµ. One of the most important properties which can be expected from theISR

distribution is that the reference rankµ is the unique mode of the distribution if
π > 1

2. See Proposition 4 in C.

• Anti-modeµ̄ . Let µ̄ be defined bȳµ = µ ◦ ēwhereē= (m, . . . ,1) is the permutation
of total inversion. This rank̄µ is the farthest fromµ for the Kendall distance.
Then the unique anti-mode (the rank of smallest probability) is µ̄ if π > 1

2. See
Corollary 1 in C.

• Link betweenµ and π . The modeµ is also uniformly more pronounced whenπ
grows. See Proposition 5 in C.
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• Symmetry.DistributionsISR(µ,π) andISR(µ̄ ,1−π) are equivalent. This property
will be especially useful to exhibit the identifiability conditions of theISR distribu-
tion below. See Proposition 6 in C.

• Identifiability. The uniformity for π = 1
2 of the ISR distribution and its symme-

try lead to imposeπ > 1
2 as a necessary condition for identifiability. In fact this

condition is also sufficient to have identifiability. See Proposition 7 in C.

3 Estimation of the model parameters

The ISR model for rank data has two parameters: the probabilityπ ∈ [1
2,1] and the refer-

ence rank, or modal rank,µ, which can take its values inPm. Note that the caseπ = 1
2 is

kept, although this is a non-identifiability situation because it leads to the uniformity of the
ISR distribution, that can be of interest for practical applications. Considering(x1, . . . ,xn)
as an independent sample ofn ranks fromISR(µ,π), we present in this section estimation
of (µ,π) by maximizing the log-likelihood of theISR model given by

l(µ,π ;x1, . . . ,xn) =
n

∑
i=1

ln

(

1
m! ∑

y∈Pm

p(xi |y; µ,π)

)

.

We assume in the following that pairs(xi ,yi) arise independently (i = 1, . . . ,n), where
(y1, . . . ,yn) denote all the latent presentation orders.

3.1 Using an EM algorithm for a small number of objects (m≤ 7)

As (y1, . . . ,yn) are unknown, we use an EM algorithm [7] to maximize theobserveddata
log-likelihood. Denoting by(µ,π){0}, the parameter starting values for the EM algorithm
and by(µ,π){q} the value of the parameters at the stepq (q ∈ N), the two steps (E and
M) of this algorithm are described as follows. This algorithm is computationally feasible
for a small number of objects, typicallym≤ 7. However, it could lead to computational
difficulties for largerm values because of the sum overPm involved in both E and M
steps (see discussion at the beginning of Section 3.3).

Note that since the conditional probability (2.1) is invariant to an inversion of the first
two elements of the presentation order (Lemma 1 of D), the numberm! of presentation
ordersy to be considered in the calculation of the probability (2.2)may be reduced by
half. This remark can be used in order to accelerate the EM algorithm.

The E step Thecomplete-datalog-likelihood is given by

lc(µ,π ;x1, . . . ,xn,y1, . . . ,yn) =
n

∑
i=1

∑
y∈Pm

1{y = yi} ln

(

1
m!

p(xi |y; µ,π)

)

.

The E step consists of computing the conditional expectation Q of lc expressed by:

Q((µ,π),(µ,π){q};x1, . . . ,xn) =
n

∑
i=1

∑
y∈Pm

t{q}
iy ln

(

1
m!

p(xi |y; µ,π)

)

,
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where the conditional probabilityt{q}
iy thatyi = y is given by:

t{q}
iy =

p(xi |y;(µ,π){q})

∑τ∈Pm
p(xi |τ;(µ,π){q})

.

The M step The M step consists of choosing the value(µ,π){q+1} which maximizes
the conditional expectationQ computed at the E step:

(µ,π){q+1} = argmax
(µ,π)∈Pm×[

1
2,1]

Q((µ,π),(µ,π){q};x1, . . . ,xn).

For the modal rankµ, it is however numerically expensive to explore all the discrete
spacePm even for relatively small values ofm. To overcome this difficulty, a specific
strategy will be proposed in Section 3.4. The value of probability π , maximizingQ leads
to following update:

π{q+1} =
∑n

i=1∑y∈Pm
t{q}
iy G(xi ,y,µ{q})

∑n
i=1∑y∈Pm

t{q}
iy A(xi ,y)

.

Note that this value ofπ{q+1} can be interpreted as the proportion of good manipulations
(switching to right or stop) in the insertion sort algorithm.

The algorithm stops when the difference of the log-likelihood between two succes-
sive iterations is less than a given threshold. We discuss now how to efficiently start the
algorithm.

3.2 Initialization strategy for π in EM

We propose here a straightforward asymptotic bound onπ to initialize EM. We will dis-
cuss in Section 3.4 how to also restrict the possible values for µ.

Proposition 1. Denoting by f0 the empirical modal relative frequency, the interval[π̂−, π̂+]
asymptotically containsπ where

π̂− = f
1

m−1
0 and π̂+ = f

2
m(m−1)

0 . (3.1)

Proof. Using Lemma 6 (see D) and also the fact that, for anyµ andy, p(µ|y; µ,π) =
πA(µ,y) (see the proof in Lemma 5), it leads to the following bounds for the probability of
µ:

πm(m−1)/2 ≤ p(µ; µ,π) ≤ πm−1.

Since f0 is a consistent estimator of p(µ; µ,π), it ends the proof.

As soon asπ̂− and π̂+ are greater than12, this result is useful to initializeπ in EM
by choosing uniformlyπ{0} in the interval given by (3.1). If onlŷπ+ ≥ 1

2, the interval
becomes[1

2, π̂+]. If both bounds are lower than12, then the interval[1
2,1] must be used.

In Table 4 of Section 4, bounds associated with all the data sets are greater than12 and
the retained intervals are quite narrow in comparison to[1

2,1], so the strategy seems to be
efficient.
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3.3 Using a SEM-Gibbs algorithm for a large number of objects (m≥
8)

As discussed at the beginning of Section 3.1, the EM algorithm is not appropriate as soon
asm≥ 8 because of the factorial term present in both E and M steps: for m= 8 orm= 9,
EM could be still feasible although it would be extremely slow (respectively about 4.104

and 4.105 sums involve in E and M steps); form≥ 10, this computational times would
become definitively inaccessible (more than 3.106 sums involve in E and M steps).

A so-called SEM-Gibbs algorithm may provide an efficient andelegant solution. The
fundamental idea of this algorithm is to reduce the computational complexity that was
present in both E and M steps of EM by removing all explicit andextensive use of the

conditional probabilitiest{q}
iy . It relies on the SEM algorithm [12, 5] which generates the

latent variablesyi at a so-called stochastic step (S step) from the conditionalprobabilities
t{q}
iy computed at the E step. Then these latent variables are directly used during the
M step. However, the advantage with SEM-Gibbs algorithm relies on the fact that the
latent variables are generated without calculating conditional probabilities thanks to Gibbs
algorithm. The proposed SEM-Gibbs algorithm proceeds in the following steps:

The SE-Gibbs step It consists of generating a sampleyi{q} from t{q}
iy (for all i ∈{1, . . . ,n})

like in a SE step of the standard SEM algorithm but without anycalculation of conditional

probabilitiest{q}
iy since it invokes instead the following Gibbs algorithm. Starting from an

arbitrary sampleyi{q,0}, generater ∈ {1, . . . ,R} sequencesyi{q,r} (Rbeing a given number)
where

(yi{q,r+1}
j , ·) ∼ p

(

yi
j ,y

i
j+1|(y1, . . . ,y j−1)

i{q,r+1},(y j+2, . . . ,ym)i{q,r},x1, . . . ,xn;(µ,π){q}
)

for j ∈ {1, . . . ,m−2} and where

(ym−1,ym)i{q,r+1} ∼ p
(

yi
m−1,y

i
m|(y1, . . . ,ym−2)

i{q,r+1},x1, . . . ,xn;(µ,π){q}
)

.

Note that both previous expressions do not involve any combinatorial calculation. IfR is
large enough,yi{q,R} arises fromt{q}

iy , thus we retainyi{q} = yi{q,R} (i = 1, . . . ,n).

The M step The M step consists of choosing the value(µ, p){q+1} which maximizes
the completed log-likelihood computed at the SE-Gibbs step:

(µ,π){q+1} = argmax
(µ,π)∈Pm×[

1
2,1]

lc(µ,π ;x1, . . . ,xn,y1{q}, . . . ,yn{q}).

For the modal rankµ, it is however numerically expensive to explore all the discrete space
Pm even for relatively small values ofm. To overcome this difficulty, a specific strategy
will be proposed in Section 3.4. For the probabilityπ , maximizinglc(µ,π ;x1, . . . ,xn,y1{q}, . . . ,yn{q})
leads to the following update, removing any combinatorial difficulty:

π{q+1} =
∑n

i=1G(xi ,yi{q},µ{q})

∑n
i=1A(xi ,yi{q})

.
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Unlike EM, the random sequence of parameters(µ,π){q} generated by SEM-Gibbs
does not converge pointwise. Consequently its stopping rule can not rely on difference
of the likelihood between two successive iterations. The simplest alternative solution is
to stop the SEM-Gibbs algorithm after a given numberQ of iterations. After removing a
burn in period corresponding to the firstB iterations, we retain a point estimate of(µ,π) in
the following manner: for each distinctµ values in the sequenceµ{q} (q= B, . . . ,Q), take
the meanπ̄µ of the associatedπ{q} values and then retain the couple(µ, π̄µ) leading to
the highest log-likelihoodl(µ, π̄µ ;x1, . . . ,xn). Since the log-likelihood calculation suffers
from combinatorial issues, we use in addition the followingapproximation:

l(µ,π ;x1, . . . ,xn) =−
n

∑
i=1

ln

(

∑
y∈Pm

1
p(xi |y; µ,π)

p(y|xi ; µ,π)

)

≈−
n

∑
i=1

ln

(

1
S

S

∑
s=1

1
p(xi |yi,s; µ,π)

)

,

where allyi,s arise independently fromp(y|xi ; µ,π) (s= 1, . . . ,S). Section 3.5 will validate
on some real and artificial data sets that our SEM-Gibbs strategy leads to very accurate
estimates despite its lower computational cost compared tothe standard EM algorithm.

3.4 Reducing the number of reference ranks µ for EM and SEM-
Gibbs

We propose a strategy to reduce (often drastically) the number of possible values forµ in
the step M of both EM and SEM-Gibbs. This result relies on Proposition 1 and also on
the following proposition.

Proposition 2. Let Nx be the number of individuals equal to x∈ Pm among a random
sample fromISR(µ,π) of size n. Denoting by

hα(π) = #{x : p(Nx ≥ Nµ ; µ,π) ≥ α}

the number of ranks for which the empirical frequency can be greater than or equal (with
probability at leastα ∈ [0,1]) to the empirical frequency associated with the theoretical
modal rankµ, the following inequality asymptotically holds for anyµ ∈ Pm and π ∈
[1
2,1]:

hα(π) ≤ hα
(

π̂−
)

.

Proof. We know from Proposition 1 that asymptoticallŷπ− ≤ π . Proposition 5 in C
allows to conclude the proof.

The idea is to browse the empirical modal rank in associationwith some other ranks
having high empirical relative frequency. The following strategy can be used only if
π̂− ≥ 1

2. Firstly, hα (π̂−) is estimated with a parametric bootstrap [8] ofM replications
from ISR(µ, π̂−). The key point is that it is independent fromµ, so anyµ ∈ Pm can be
used. Then thehα (π̂−) most frequent distinct ranks in the sample(x1, . . . ,xn) are retained
as possibleµ values among the potentialm!/2 possibilities and are used both as potential
initial valuesµ{0} and also as values to browse during the M step.
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The proposed strategy is aimed to significantly reduce the number of candidates for
µ. The number of candidates forµ reduces when the size of the observed samplen grows
sincehα (π̂−)

p
→ 1 whenn→ ∞. So, the browsed ranks are asymptotically reduced to the

empirical modal rank which is known to be a consistent estimator of µ.
Table 4 (Column “#µ”) of Section 4 illustrates through numerical examples thatthis

procedure effectively reduces the number of possible ranksfor µ in comparison to the
m!/2 possible values.

Remarks

• Proposition 2 gives asymptotic guaranties on the proposedstrategy to reduce the
number of candidates for modeµ of the distribution. The practical efficiency of
this strategy is illustrated in the next section through simulation studies.

• On the real data sets used in Section 4, we noticed that the proposed strategy to
preselectµ is less time-consuming since it takes less than 1% of the the entire
process composed of preselection and of estimation (whatever be the estimation
algorithm: EM or SEM-Gibbs).

• Note that the selection of the possible ranks should be carried out only once before
the start of the EM or the SEM-Gibbs algorithms. This will be the strategy we
follow in experiments throughout this paper.

3.5 Validation of the SEM-Gibbs algorithm based on simulations

In order to illustrate the estimation accuracy of the SEM-Gibbs approach, we propose to
evaluate it both on simulated and real data sets. We introduce here thenormalizedKendall
distanceK̄(·, ·) = K(·, ·)2[m(m−1)]−1 because its value is between 0 and 1, indicating
respectively minimum and maximum disagreement.

• Simulated data.20 samples of sizen = 100 are simulated according toISR with
three values ofπ (π ∈ {0.6,0.75,0.9}) and two values ofm (m∈ {5,10}). These
parameters are then estimated by SEM-Gibbs approach with the following settings:
Q = 100 SEM iterations,B = 10 burn in iterations andR = 10 Gibbs iterations
inside the SE step. Results are displayed in Table 2. We triedwith higher values for
Q, B andR, but the results were essentially unchanged. Despite the small number of
both Gibbs and SEM iterations, it appears that the accuracy of estimated parameters
is very satisfactory, both with low and larger value ofm. Note also that estimation
of µ is a harder task whenπ is low, as expected (recall that information onµ is
weak for smallπ).

• Real data. For all data sets considered below in Section 4 we have run EM and
SEM-Gibbs, except the Election data set wherem = 14 (EM is not numerically
available in this case). Tuning parameters of EM and SEM-Gibbs are also the same
as in Section 4. However, SEM-Gibbs is run here 10 times at random to evaluate
stability of its results forµ, π andl (herel is exact likelihood, not the approximated

9



Table 2: Simulated data to validate SEM-Gibbs algorithm (20replicates of sizen = 100):
π̂ andK̄(µ̂ ,µ) indicate respectively the mean of theπ estimate (in parenthesis its standard
deviation) and the mean of thestandardizedKendall distance between theµ estimate and
the true one (in parenthesis its standard deviation).

m= 5 m= 10
π π̂ K̄(µ̂,µ) π̂ K̄(µ̂,µ)

0.6
0.572 0.210 0.566 0.180

(0.032) (0.141) (0.250) (0.063)

0.75
0.759 0.000 0.700 0.056

(0.021) (0.000) (0.022) (0.036)

0.9
0.895 0.000 0.884 0.002

(0.015) (0.000) (0.008) (0.007)

Table 3: Real data to validate SEM-Gibbs algorithm (10 independent runs of SEM-
Gibbs): µ̂EM, µ̂SEM-gibbs, π̂EM, π̂SEM-gibbs, lEM, lSEM-Gibbs denote respectivelyµ, π and l estimated
by EM and by SEM-Gibbs. Column “mean” displays the mean of each statistics onµ, π
andl given at top of the table, over 10 runs of SEM-Gibbs. Columns “best” and “worst”
give the value of these statistics with parameters obtainedrespectively with the best and
the worst likelihood over the 10 runs of SEM-Gibbs.

K̄(µ̂EM, µ̂SEM-gibbs) |π̂EM − π̂SEM-gibbs| lEM − lSEM-Gibbs

data set mean best worst mean best worst mean best worst
Football 0.00 0.00 0.00 0.004 0.001 0.007 0.02 0.00 0.04
Cinema 0.00 0.00 0.00 0.003 0.000 0.006 0.01 0.00 0.02
Rugby 0.05 0.00 0.17 0.007 0.000 0.013 0.35 0.00 1.15
Words 0.00 0.00 0.00 0.001 0.000 0.002 0.02 0.01 0.02
Sports 0.01 0.00 0.05 0.002 0.000 0.005 0.09 0.00 0.40

one since it is numerically available form≤ 7). Results are displayed in Table 3: in
column “best”, the best SEM-Gibbs (according tol ) and EM coincide; in columns
“means” and “worst” SEM-Gibbs is very close to EM. Thus, it confirms the good
behaviour of SEM-Gibbs we validated previously with simulated data.

4 Numerical illustration

4.1 Presentation of the six real data sets

The ISR distribution is now compared to MallowsΦ model on six real data sets: two
general knowledge quizzes (the answers of the 40 students being questioned are in E),
four nations rugby league rankings, Fligner and Verducci’swords associations rankings
[10], Louis Roussos’s sports rankings [27] and 2002 GeneralIrish Election data set [14].
MallowsΦ model has been chosen as the reference model since, in addition to being one
of the model based on paired comparison which has been the most studied [26, 10, 11,
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28, 23], it is also linked with some multistage models (see Section 1).

• Football quiz. This quiz consists of ranking four national football teams accord-
ing to increasing number of wins in the football World Cup:O1 = France,O2 =
Germany,O3 = Brasil,O4 = Italy. The correct answer isµ∗ = (1,2,4,3).

• Cinemaquiz. This quiz consists of ranking chronologically the following Quentin
Tarantino movies:O1 = Inglourious Basterds,O2 = Pulp Fiction,O3 = Reservoir
Dogs,O4 = Jackie Brown. The correct answer isµ∗ = (3,2,4,1).

• Rugby. This data set is the result of four nations rugby league, from 1883 to 1909
(except years 1888 and 1889 because only three nations were in the tournament,
and except years 1886, 1890, 1897, 1898 and 1906 due to tie), which includes
O1 = England,O2 = Scotland,O3 = Ireland andO4 = Wales.

• Words. [10] examined the data collected under the auspices of the Graduate Record
Examination Board. A sample of 98 college students were asked to rank five words
according to strength of association (least to most associated) with the target word
“Idea”: O1 = Thought,O2 = Play,O3 = Theory,O4 = Dream andO5 = Attention.

• Sports. This data set is due to Louis Roussos [27] who asked 130 students at the
University of Illinois to rank seven sports according to their preference in participat-
ing: O1 = Baseball,O2 = Football,O3 = Basketball,O4 = Tennis,O5 = Cycling,
O6 = Swimming,O7 = Jogging.

• Election. The general election system for the Irish House of Parliament is based
on ranking of the candidates in order of preference. [14] presented and studied
the 2002 General Election data set, consisting of the 64,081rankings of the 14
candidates among which 2,490 are full rankings. Only these 2,490 full rankings are
used here. Refer to [14] for more details on this data set.

The empirical distribution of the first three data sets (for which the number of objects to
rank is 4) is graphically displayed on theleft column of Figure 1 in the ranking space
(orderings are displayed on each node).

4.2 Estimation results

For each data set, theISR distribution and the MallowsΦ model are estimated. AnR pack-
age is available on the authors website1. For theISR model, the estimation is carried out
using EM algorithm whenm≤ 7, and SEM-Gibbs algorithm is used whenm> 7 (Elec-
tion data set). ForISR the convergence threshold for the growth of log-likelihoodin EM
algorithm was fixed to 10−6 and only one initialization ofπ in [π̂−, π̂+] has been used
(no change on the results have been observed with several initializations), andB = 30,
Q = 100,R= 10 for SEM-Gibbs algorithm is used. For MallowsΦ model, the numeri-
cal optimization has been carried out with a quasi-Newton method and the convergence
threshold ofISR (10−6).

1http://math.univ-lille1.fr/∼jacques/soft.html
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(c) Rugby quiz data set

Figure 1: Empirical (left) and estimateISR (right) distributions for the three data sets
wherem= 4. The area of the dots is proportional to the corresponding probability.
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The ISR distribution of the first three data sets is graphically displayed on theright
column of Figure 1 for a visual comparison with the empiricaldistribution. In addition, a
χ2 adequacy test, where the distribution under the null assumption is estimated by boot-
strap [8] based on 1,000 replications, is performed for bothmodels and for all data sets and
the results are displayed in Table 4 (Column “̂p-value”). Depending on selected threshold
on the p-value (typically models with p-value greater than 0.05 are not rejected) we no-
tice that both models can be suitable for some data sets but not for all of them. Moreover,
when comparing maximum log-likelihood values (Column “l ”; the highest likelihoods
are in bold),ISR leads to a greater maximum likelihood than MallowsΦ model for 4 data
sets among 6. Consequently,ISR could be a natural competitor to be considered beside
other classical models in any rank data analysis.

Table 4: ISR and MallowsΦ models estimation results: estimate parametersµ̂ , π̂ (ISR)
andλ̂ (Mallows), maximum log-likelihoodl , estimated p-value of theχ2 adequacy test,
number of possibleµ explored (#µ; For ISR it corresponds tôhα(π̂−) with α = 0.05 and
M = 100 replications), lower and upper boundsπ̂− andπ̂+ for π (ISR only)

data set model µ̂ π̂ or λ̂ l p̂-value #µ π̂− π̂+

Football ISR (1,2,4,3) 0.834 -88.53 0.001 1 0.794 0.891
Mallows (1,2,4,3) 1.106 -89.17 0.001 1 - -

Cinema ISR (4,3,2,1) 0.723 -111.94 0.042 14 0.630 0.794
Mallows (4,3,2,1) 0.628 -112.12 0.029 2 - -

Rugby ISR (2,4,1,3) 0.681 -58.68 0.538 12 0.585 0.765
Mallows (2,4,1,3) 0.528 -58.33 0.395 2 - -

Words ISR (2,5,4,3,1) 0.879 -275.43 0.001 1 0.762 0.897
Mallows (2,5,4,3,1) 1.431 -251.27 0.019 1 - -

Sports ISR (1,3,2,4,5,7,6) 0.564 -1102.12 0.999 2† 0.534 0.836
Mallows (1,3,4,2,5,6,7) 0.083 -1102.84 1 11 - -

Election ISR (13,4,1,2,3,5,6 0.682 -48329.76 0.999 6 ‡ ‡

7,8,9,10,11,12,14)
Mallows (4,13,2,5,1,14,7 0.164 -60157.38 0.999 38 - -

6,10,8,9,12,3,11)
† α = 0.1 for the Sports data set to avoid to manyµ due to the smallπ value ‡ Useless for SEM-Gibbs

We note that the strategy selecting the number of possible reference ranks to explore
(Section 3.4) is effective. Indeed, only one candidate forµ has been selected by this
strategy for the three data sets Football, Words and Sports (Column “#µ”) and for other
data sets the number of candidates is relatively small in comparison withm!. Concerning
MallowsΦ model, the estimation ofµ is carried out by an empirical iterative local search
(in the sense of the Kendall distance) around the modal rank [11] which appears to be
effective.

We discuss now the meaningful interpretation ofISR parameters by further analysing
Table 4.

• Footballquiz. The estimation of the reference rankµ coincides with the real rank.
In addition, the accuracy level of students knowledge in football is quite high since
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it is reflected by a high probabilityπ (0.834) of well paired comparison. This un-
derlines that the right answer is, on the whole, known with high level of confidence
by this population of students.

• Cinemaquiz. The estimation of the reference rankµ does not coincide with the real
rank even if the chronological order is correct for three films of four. However, the
accuracy level of students knowledge in cinema is equal toπ = 0.723. The students
seem to have better knowledge in football than in cinema.

• Rugby. TheISR model estimation on the Rugby data set suggests a ranking between
these four nations: during this time Scotland were the best,then Wales, England
and finally Ireland. But the low value of the probabilityπ (0.681) means that the
confidence in this ranking is not very high.

• Words. The high value ofπ (0.879) for the Fligner and Verducci’s Word data set
shows that the questioned students overall share the same opinion for the association
with the word Idea: Thought is the most associated followed by Theory, Dream,
Attention and finally Play which is the least associated.

• Sports. The reference rank(1,3,2,4,5,7,6) estimated for theISR model reflects a
preference of the students at the University of Illinois forcollective sports: Baseball,
Basketball and Football are at the top three places while individual sports are at the
end of the ranking: Cycling, Jogging and Swimming. Tennis, which is intermediate
between a collective sport and an individual sport, is rationally ranked between
these two groups.

• Election. This last data set calls for an interesting remark: except the first two
candidates, it suggests that all other candidates tends to be ordered similar to their
initial order in the list. Note that we considered only 4% of the voters in our study,
those who “bothered” to rank every one of the 14 candidates. Probably most of
them have the common trait that they did not care who is rankedafter the first
two candidates since, in the Irish voting system, two-thirds of voters see their first
choice elected. They may express such an indifference beyond the second rank by
choosing the initial order in the list of candidates whereasthe remaining 96% of
voters prefer not to complete the rest of the list. Notice also that about 45% of these
remaining 96% of voters select only one or two candidates. A more comprehensive
study including partial ranks would be obviously required to analyse more precisely
the results of these elections.

From the MallowsΦ parameters point of view, most results are highly consistent with
ISR: main modal ranks are identical and the dispersion parameter λ is also well correlated
with π , thoughλ is more abstract and could be less easy to understand by a practitioner.
Only the modal rank of the last two data sets (Sports and Election) differs: for the Sports
data set, MallowsΦ model classifies Tennis inside the collective sports collection instead
of being put at the borderline of collective and individual sports, asISR does; For the
Election data set, MallowsΦ model provides the same first two candidates asISR but in
the reverse order and, in addition, all other candidates arevery different between both
methods.
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5 Discussion

In this paper we propose that rank data could be considered asthe result of a paired com-
parisons sort algorithm, where the possibility of wrong comparisons exists and occurs
randomly according to a Bernoulli model. It opens a new way topropose many distribu-
tions on rankings, all of them benefiting from very meaningful parameters (the reference
rankµ and the probabilityπ of good paired comparison). In order to minimize the num-
ber of paired comparisons, and consequently number of potential wrong comparisons, the
insertion sort algorithm has been kept in this paper for its optimality whenm≤ 10 since
it is expected to be a frequent limit in “human rankings”. Theresulting distribution, the
so-calledISR, has been established and many desirable properties were being pointed out.
In addition, the latent variable interpretation of model allows the derivation of specific
EM and SEM-Gibbs algorithms which can be easily acceleratedby drastically reducing
the number of potential reference ranksµ to consider. Although our approach is not able
to deal with very large data sets like web pages rankings or some kinds of biological data,
these computational gains allow to deal with usual data setsof moderate size typically
provided by a “human ranking” process.

In fact, theISR model can be considered as the precursor to a wider family of rank-
ing models. The insertion sort algorithm was kept in this work from some optimality
arguments. However, it is possible to easily set up a new model by changing it. For in-
stance, we can use a selection sort algorithm instead, or anyother standard algorithms [?,
see]]Knu1973. Obviously, properties of the new model obtained in this way would need
to be established again. In each case, it could also be possible to weaken the assumption
thatπ remains constant all along the sorting process, for instance to model the tiredness
of the judge during the sorting process.

Another interesting prospect initialized by the present work is the possibility to in-
clude some information about the initial rankingy in the model and its corresponding
estimation. Indeed, in questionnaires this initial order is often known and it is useful
information which can be naturally used by our class of models. It is also possible to
consider some more diffuse information abouty, for instance to ignore the exacty value
but to know that ally are the same for all questionnaires (realistic situation for many ranks
coming from quiz studies), or other realistic variants [2].In the same spirit, the model is
also flexible enough to take into account the usual behaviourthat some individuals may
rank the items from the beginning to the end and others to do the opposite.

Although theISR is unimodal (as many other distributions for ranks), multimodality
can be easily taken into account through mixture ofISR distributions after leading a spe-
cific identifiability study. For instance, we can think that in our football quiz, girls and
boys responses will probably not follow the same distribution, as it is suggested by very
low estimated p-value [17]. This extension is natural sinceseveral mixtures of rank data
models have already been considered with success to treat heterogeneity of rank popu-
lation: mixture of MallowsΦ models [28], mixture of Plackett-Luce or Benter models
[13, 15, 16] and more recently mixtures of weighted distance-based models [24].

Finally, there is also a need to adapt our models to other situations than full rank data.
This approach needs to be extended to other types of ranks, frequently encountered in
practice, as partially or incomplete ranked data [22, 20, 23], which would be very useful
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to further analyse the Irish election data set, tied data or even ranks resulting from multiple
preference responses.
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A. Additional notations useful for the proofs

Additional notations are needed in the proofs displayed in the appendices below. All these
notations are illustrated in detail through an example in Table 5. In addition, to clarify
them, the calculation for stepj = 2 (for instance) is detailed at the end of the present
appendix.

In the following, j = 1, . . . ,m denotes the step in the sorting algorithm consisting in
ranking the objectOy j .

A(x,y) = ∑m
j=1A j(x,y) andA j(x,y) = A−

j (x,y)+A+
j (x,y) designate the total number

of all paired comparisons respectively for the whole process and for the stepj. In this
definition,A−

j (x,y) is the number ofall comparisons of the current objectOy j with the
objects already ranked (according tox) before it (if they exist) andA+

j (x,y) indicates if the
current objectOy j is compared, at thej step of the sorting, with the object ranked inx just
after it. Formally,A−

j (x,y) corresponds to the cardinal ofA
−
j (x,y) = {i : x−1

yi
< x−1

y j
,1≤

i < j} which is the set of the indices of the presentation ordery for which the already
sorted objectsOy1, . . . ,Oy j−1 are ranked inx before the current objectOy j . In a similar
way,A+

j (x,y) is the cardinal of the setA +
j (x,y) = {i : i = argmin1≤i′< j{i′ : x−1

yi′
> x−1

y j
}}

which corresponds to the index of the ranky designating the object sorted inx just after
Oy j among the already sorted objectsOy1, . . . ,Oy j−1, if it exists. This set has at most one
element.

G(x,y,µ) = ∑m
j=1G j(x,y,µ) andG j(x,y,µ) = G−

j (x,y,µ)+ G+
j (x,y,µ) are the total

number ofgoodpaired comparisons respectively for the whole process and for the step
j. Formally,G−

j (x,y,µ) = ∑i∈A
−
j (x,y) δyiy j (µ) is the number ofgoodcomparisons (ac-

cording toµ) of the current objectOy j with the objects already ranked before it (if they
exist), whereδii ′(µ) = 1{µ−1

i < µ−1
i′ } is equal to 1 ifOi is correctly ranked beforeOi′

(according toµ), 0 otherwise(i, i′ = 1, . . . ,m, i 6= i′). In a similar way,G+
j (x,y,µ) =

∑i∈A
+
j (x,y) δy jyi (µ) is the indicator ofgoodcomparison (according toµ) of the current

objectOy j with the object already ranked just after it (if it exists).

Detail of step j = 2 to be read in conjunction with Table 5

• A
−

2 = {}: the new object 3 (to be sorted) has been compared to the already sorted
object 1 but 1 is not sortedbefore3 in the final orderingx;
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Table 5: An example to illustrate the notations withµ = (1,2,3), y = (1,3,2) andx =
(3,1,2). The notationx( j), defined in B, means the ranking of thej first objects iny in the
order imposed byx
step j unsorted sorted A

−
j A

+
j A−

j A+
j A j G−

j G+
j G j

start y = 1 3 2 - - - - - - - - -
1 3 2 x(1) = 1 {} {} 0 0 0 0 0 0

2 2
3

?
↔ 1

{} {1} 0 1 1 0 0 0
x(2) = 3 1

3 -
2

?
↔ 3 1

{3,1} {} 2 0 2 1 0 13 2
?
↔ 1

x = 3 1 2
A = 3 G = 1

• A
+

2 = {1}: the new object 3 (to be sorted) has been compared to the already sorted
object 1 and 1 is sortedafter 3 in the final orderingx;

• A−
2 = 0 andA+

2 = 1: number of comparisons listed respectively inA
−

2 andA
+

2 ;

• A2 = 1: total number of comparisons to sort the new object 3.

• G−
2 = 0 andG+

2 = 1: number ofgoodcomparisons listed respectively inA −
2 and

A
+

2 ;

• G2 = 1: total number ofgoodcomparisons to sort the new object 3.

B. Building the ISR distribution

The goal of this appendix is to prove that (2.1) corresponds to the stochastic insertion sort
algorithm with probabilityπ of good paired comparison, and independence between the
paired comparisons.

Proof. Let x( j) be the ordering of the firstj (1≤ j ≤ m) objects iny in the order imposed
by x (sox(m) = x). An example of this notation is in Table 5. Thus, there exists following
relationship betweenx( j) andx( j−1):

x( j) = (x( j−1)
1 , . . . ,x( j−1)

A−
j (x,y)

,y j ,x
( j−1)

A−
j (x,y)+1

, . . . ,x( j−1)
j−1 ).

Equation (2.1) is now proved by induction onj. It is true for j = 1 while there is only one
objecty1 to sort: p(x(1)|y; µ,π) = 1. Since the result of the rankingx( j) from x( j−1) is the
result ofA j(x,y) independent Bernoulli experiments of parameterπ , then, conditionally
to x( j−1), the probability ofx( j) is

p(x( j)|x( j−1),y; µ,π) = πG j(x,y,µ)(1−π)A j(x,y)−G j (x,y,µ).
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We conclude the proof by noticing that

p(x( j)|y; µ,π) = p(x( j)|x( j−1),y; µ,π)p(x( j−1)|y; µ,π),

from the following implied relationship between events:x( j) ⇒ x( j−1).

C. Mathematical statement of the ISR properties and re-
lated proofs

In the following, compositionτ ◦x will be noted shortlyτx for anyτ andx in Pm.

Proposition 3. (Uniformity forπ = 1
2.) For all x,µ ∈ Pm, p(x; µ, 1

2) = m!−1.

Proof. Let e be the identity permutation ofPm. Firstly using Lemma 3 of D and then
using the fact that p(.|e; µ, 1

2) is a probability distribution onPm, we have

p(x; µ, 1
2) ∝ ∑

y∈Pm

p(x|y; µ, 1
2) = ∑

y∈Pm

p(y−1x|y−1y; µ, 1
2) = ∑

y∈Pm

p(y−1x|e; µ, 1
2) = 1.

Proposition 4. (Modeµ.) For all x 6= µ ∈ Pm andπ > 1
2, p(µ; µ,π) > p(x; µ,π).

Proof. Using the fact that{π > 1
2 ⇔ π > 1−π}, x 6= µ and then Lemma 2, we obtain:

m! p(x; µ,π) < ∑
y∈Pm

πA(x,y) = ∑
y∈Pm

πA((µx−1)x,(µx−1)y) = ∑
y′∈Pm

πA(µ,y′) = m! p(µ; µ,π).

The last equality comes from the fact thatA(µ,y′) = G(µ,y′,µ).

Corollary 1. (Anti-modeµ̄ .)For all x 6= µ̄ ∈ Pm andπ > 1
2, p(µ̄ ; µ,π) < p(x; µ,π).

The proof is symmetrical to that of Proposition 4.

Proposition 5. (Link betweenµ andπ .) For all x,µ ∈ Pm, p(µ; µ,π)−p(x; µ,π) is an
increasing function ofπ ≥ 1

2.

Proof. Noting∆(π) = p(µ; µ,π)−p(x; µ,π), ∂∆(π)/∂π , we can written

∂∆(π)

∂π
=

1
m! ∑

y∈Pm

{

A(µ,y)πA(µ,y)−1−G(x,y,µ)πG(x,y,µ)−1(1−π)A(x,y)−G(x,y,µ)
}

+c,

wherec is a non-negative term independent fromπ . Sinceπ ≥ 1
2, we deduce that

G(x,y,µ)πG(x,y,µ)−1(1−π)A(x,y)−G(x,y,µ) ≤ G(x,y,µ)πA(x,y)−1.

Using the fact thatA(µ,y) ≥ G(x,y,µ), we deduce that∂∆(π)/∂π ≥ 0.

Proposition 6. (Symmetry.) For all x,µ ∈Pm and allπ ∈ [0,1], p(x; µ̄ ,1−π) = p(x; µ,π).
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Proof. Using Lemma 4, we can write:

p(x; µ̄ ,1−π) ∝ ∑
y∈Pm

πA(x,y)−(A(x,y)−G(x,y,µ))(1−π)A(x,y)−G(x,y,µ) ∝ p(x; µ,π).

Proposition 7. (Identifiability.) TheISR distribution is identifiable sinceπ > 1
2.

Proof. The identifiability problem can concern parametersπ and/orµ.

• First, there exists no couple(µ,µ ′) ∈ P
2
m with µ 6= µ ′ such that p(x; µ,π) =

p(x; µ ′,π) for anyx∈ Pm and anyπ > 1
2. Indeed, choosingx = µ, from Lemma 5

we have p(µ; µ,π) 6= p(µ; µ ′,π).

• Second, for a givenµ ∈ Pm, assume there existsπ 6= π ′ such that p(x; µ,π) =
p(x; µ,π ′) for anyx ∈ Pm. In particular, forx = µ, in the proof of Lemma 5 we
obtained thatG(x,y,x) = A(x,y), thus∑y∈Pm

πA(µ,y) = ∑y∈Pm
π ′A(µ,y). The strictly

increasing functionp 7→ πn on the interval[1
2,1] for all n∈ N∗ ensures thatπ = π ′.

• Assume finally there exists(µ,µ ′)∈P2
m with µ 6= µ ′ andπ < π ′ such that p(x; µ,π) =

p(x; µ ′,π ′) for any x ∈ Pm. In the proof of Lemma 5, it is also obtained that
G(x,y,µ) < A(x,y) whenx 6= µ, thus

p(x|y; µ,π) < πA(x,y) < π ′A(x,y)
= p(x|y;x,π ′),

and then by averaging over ally in Pm gives p(x; µ,π) < p(x;x,π ′). Choosing
x = µ ′ ensures the identifiability of theISR model.

D. Lemmas

Lemma 1. Let ẽ= (2,1,3, . . . ,m) be the permutation inverting the first two elements. For
all x,y,µ ∈ Pm andπ ∈ [0,1], p(x|y; µ,π) = p(x|yẽ; µ,π).

Proof. We use notationsx( j) that have already been introduced in B. The key point of
the proof is to notice that the first two objects iny lead to the same paired comparison
at the second step of the sorting process whatever is their order in y, so p(x(2)|yẽ,π) =
p(x(2)|y,π). Combining this result with the fact that p(x|x(2),yẽ,π) = p(x|x(2),y,π), since
ẽonly affects the first two objects, this concludes the proof.

Lemma 2. For all x,y,τ ∈ Pm, A(x,y) = A(τx,τy).

Proof. First we prove thatA−
j (x,y) = A−

j (τx,τy). For any j = 1, . . . ,m, we have (notice
that i is always such that 1≤ i < j)

A−
j (τx,τy) = #{i : (τx)−1

(τy)i
< (τx)−1

(τy) j
} = #{i : (x−1τ−1τy)i < (x−1τ−1τy) j}

= #{i : (x−1y)i < (x−1y) j} = #{i : x−1
yi

< x−1
y j

} = A−
j (x,y).

Using the fact thatA+
j (x,y) = 1{A−

j (x,y) + 1 ≤ j − 1} we also deduce thatA+
j (x,y) =

A+
j (τx,τy). Consequently,A j(x,y) = A j(τx,τy) and, so,A(x,y) = A(τx,τy).
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Lemma 3. For all x,y,µ,τ ∈ Pm, p(x|y; µ, 1
2) = p(τx|τy; µ, 1

2).

Proof. Whenπ = 1
2, we obtain by using Lemma 2

p(τx|τy; µ, 1
2) =

(1
2

)A(τx,τy)
=
(1

2

)A(x,y)
= p(x|y; µ, 1

2).

Lemma 4. For all x,y,µ ∈ Pm G(x,y, µ̄) = A(x,y)−G(x,y,µ).

Proof. Let ē be the permutation of total inversion previously introduced in Section 2.3
andi, i′ = 1, . . . ,m, i 6= i′. We first prove thatG−

j (x,y, µ̄) = A−
j (x,y)−G−

j (x,y,µ). Using

successively the fact that̄µ = µē, ē= ē−1, {i < i′ ⇔ ēi > ēi′} andi 6= i′, we have

δii ′(µ̄) = 1{(µē)−1
i < (µē)−1

i′ } = 1{ē−1
µ−1

i
< ē−1

µ−1
i′
} = 1{ēµ−1

i
< ēµ−1

i′
}

= 1{µ−1
i > µ−1

i′ } = 1−1{µ−1
i < µ−1

i′ } = 1−δii ′(µ),

and then

G−
j (x,y, µ̄) = ∑

i∈A
−
j (x,y)

(1−δyiy j (µ)) = A−
j (x,y)−G−(x,y,µ).

In a similar manner, we can prove thatG+
j (x,y, µ̄) = A+

j (x,y)−G+
j (x,y,µ). The proof

follows immediately from these two results.

Lemma 5. For all x,µ ∈ Pm, x 6= µ andπ > 1
2, p(x; µ,π) < p(x;x,π).

Proof. First note thatG(x,y,µ) < A(x,y) for µ 6= x. Since{π > 1
2 ⇔ 1− π < π}, we

deduce forµ 6= x that p(x|y; µ,π) < πA(x,y). Also note thatG(x,y,x) = A(x,y), thus
p(x|y;x,π) = πA(x,y). Consequently, we have p(x|y; µ,π) < p(x|y;x,π) and the proof is
concluded by averaging over all possible presentation orders y in Pm.

Lemma 6. For all µ,y∈ Pm, m−1≤ A(µ,y) ≤ m(m−1)/2.

Proof. Left bound: there is no comparison when the first element arises and at least one
comparison for each of them−1 other elements. Right bound: there is still no comparison
when the first element arises and at mostj −1 comparisons when for thejth new object
to rank, soA(µ,y) ≤ ∑m

j=1( j −1) = m(m−1)/2.

E. Quiz data sets
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