A generative model for rank data based on an insertion sorting algorithm

Abstract : An original and meaningful probabilistic generative model for full rank data modelling is proposed. Rank data arise from a sorting mechanism which is generally unobservable for statisticians. Assuming that this process relies on paired comparisons, the insertion sort algorithm is known as being the best candidate in order to minimize the number of potential paired misclassifications for a moderate number of objects to be ordered. Combining this optimality argument with a Bernoulli event during paired comparison step, a model that possesses desirable theoretical properties, among which are unimodality, symmetry and identifiability is obtained. Maximum likelihood estimation can also be performed easily through an EM or a SEM-Gibbs algorithm (depending on the number of objects to be ordered) by involving the latent initial presentation order of the objects. Finally, the practical relevance of the proposal is illustrated through its adequacy with several real data sets and a comparison with a standard rank data model.
Type de document :
Article dans une revue
Computational Statistics and Data Analysis, Elsevier, 2013, 58, pp.162-176. 〈10.1016/j.csda.2012.08.008〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00441209
Contributeur : Julien Jacques <>
Soumis le : samedi 13 octobre 2012 - 10:45:19
Dernière modification le : mercredi 5 septembre 2018 - 15:22:19
Document(s) archivé(s) le : samedi 17 décembre 2016 - 00:43:12

Fichier

Preprint-ISR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Christophe Biernacki, Julien Jacques. A generative model for rank data based on an insertion sorting algorithm. Computational Statistics and Data Analysis, Elsevier, 2013, 58, pp.162-176. 〈10.1016/j.csda.2012.08.008〉. 〈hal-00441209v3〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

469