
HAL Id: hal-00440872
https://hal.science/hal-00440872v2

Submitted on 7 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A second-order model for image denoising
Maïtine Bergounioux, Loïc Piffet

To cite this version:
Maïtine Bergounioux, Loïc Piffet. A second-order model for image denoising. Set Valued Analysis,
2010, 18 (3-4), pp.277-306. �10.1007/s11228-010-0156-6�. �hal-00440872v2�

https://hal.science/hal-00440872v2
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A second-order model for image denoising

M. Bergounioux · L. Piffet

the date of receipt and acceptance should be inserted later

Abstract We present a variational model for image denoising and/or texture iden-

tification. Noise and textures may be modelled as oscillating components of images.

The model involves a L2- data fitting term and a Tychonov-like regularization term.

We choose the BV 2 norm instead of the classical BV norm. Here BV 2 is the bounded

hessian function space that we define and describe. The main improvement is that

we do not observe staircasing effects any longer, during denoising process. Moreover,

texture extraction can be performed with the same method. We give existence results

and present a discretized problem. An algorithm close to the one set by Chambolle [9]

is used: we prove convergence and present numerical tests.

Keywords Second order total variation · image reconstruction · denoising · texture ·

variational method

Mathematics Subject Classification (2000) 65D18 · 68U10 · 65K10

1 Introduction

Variational models in image processing have been extensively studied during the past

decade. There are used for segmentation processes (geodesic or geometric contours) and

restoration purpose as well. We are mainly interested in the last item which involves

denoising or deblurring methods and textures extraction as well. Roughly speaking

image restoration problems are severely ill posed and a Tychonov-like regularization

process is needed. The general form of such models consists in the minimization of an

“energy” functional :

F(u) = ‖u− ud‖X +R(u) , u ∈ Y ⊂ X ,

where X, Y are (real) Banach spaces, R is a regularization operator, ud is the observed

(or measured) image and u is the image to recover or to denoise. The first term is the
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fitting data term and the second one permits to get a problem which is no longer

ill posed via a regularization process. The most famous model is the Rudin-Osher-

Fatemi denoising model (see [1], [20]). This model involves a regularization term that

preserves discontinuities, what a classical H1 -Tychonov regularization method does

not. The observed image to recover is split in two parts ud = u+ v where u represents

the oscillating component (noise or texture) and v is the smooth part (often called

the cartoon component). So we look for the solution as u + v with v ∈ BV (Ω) and

u ∈ L2(Ω), where BV (Ω) is the functions of bounded variation space defined on an

open set Ω ([2,4]). The regularization term involves only the cartoon component v,

while the remainder term ud − v represents the noise to be minimized. We get

min
v∈BV (Ω)

µ|v|BV (Ω) +
1

2
‖ud − v‖2L2(Ω), (PROF )

where µ > 0. This problem has a unique solution in BV (Ω). This functional space is

the good one to deal with discontinuous functions that imply that the derivative (in

the distribution sense) may be a measure (for example a Dirac measure).

This model is used for denoising purpose. However, the use of the BV norm implies

numerical perturbations. The computed solution turns to be piecewise constant which

is called the “staircasing effect”. Therefore, though noise can be successfully removed,

the solution is not satisfactory. This variational model has been improved using different

functional spaces, for the data fitting term or the regularizing term.

Recently people considered that an image can be decomposed into many compo-

nents, each component describing a particular property of the image ([5,6,21–23] and

references therein for example). We shall assume as well that the image we want to

recover from the data ud can be decomposed as f = u+ v where u and v are functions

that characterize different parts of f (see [6,23,26] for example).

Components u and v belong to different functional spaces: u is the non regular

part and belongs to L2(Ω) while v is a more regular part and belongs to BV 2(Ω)

(that we define in the sequel). The remainder term u = f − v involves the oscillating

component (as noise and/or texture) and possibly contours. Such decompositions have

been already performed [5–7] using the so called Meyer-space of oscillating functions G

[19] instead of BV 2(Ω). So far, the modelling we propose is not the same: the oscillating

component will be a priori included in the non regular remainder term part u := f − v

while v involves the cartoon. Our philosophy is different than the one used in Meyer

approach. Here we perform a second order analysis to get sharper result so that we look

for the smooth (cartoon) part. The oscillating part, texture and/or noise and possible

contours will be part of the remainder term and are not modelled a priori.

The paper is organized as follows : in the next section, we present the functional

framework and the space BV 2(Ω) with useful properties. Section 3 is devoted to the

variational model. In section 4, we focus on the discretization process. We present a

Chambolle [9] like algorithm in section 5 and numerical tests are reported in the last

section.

2 The space BV
2(Ω)

Let Ω be an open bounded subset of Rn, n ≥ 2 (practically n = 2) smooth enough

(with the cone property and C1 for example). Following Demengel [10], we define the

space of bounded hessian functions that we call BV 2(Ω). We first recall the definition
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and the main properties of the space BV (Ω) of functions of bounded variation (see [2,

4,7] for example), defined by

BV (Ω) = {u ∈ L1(Ω) | Φ1(u) < +∞},

where

Φ1(u) := sup

{
∫

Ω

u(x) div ξ(x) dx | ξ ∈ C1c (Ω), ‖ξ‖∞ 6 1

}

. (1)

The space BV (Ω), endowed with the norm ‖u‖BV (Ω) = ‖u‖L1 + Φ1(u), is a Banach

space. The derivative in the sense of distributions of every u ∈ BV (Ω) is a bounded

Radon measure, denoted Du, and Φ1(u) =
∫

Ω
|Du| is the total variation of u. We next

recall standard properties of functions of bounded variation [2,4].

Proposition 1 Let Ω be an open subset of Rn with Lipschitz boundary.

1. For every u ∈ BV (Ω), the Radon measure Du can be decomposed into Du =

∇u dx+Dsu, where ∇u dx is the absolutely continuous part of Du with respect of

the Lebesgue measure and Dsu is the singular part.

2. The mapping u 7→ Φ1(u) is lower semi-continuous (denoted in short lsc) from

BV (Ω) to R
+ for the L1(Ω) topology.

3. BV (Ω) ⊂ L2(Ω) with continuous embedding, if n = 2.

4. BV (Ω) ⊂ Lp(Ω) with compact embedding, for every p ∈ [1, 2), if n = 2.

Now we extend this definition to the second derivative (in the distributional sense).

Recall that the Sobolev space is defined as

W 1,1(Ω) = { u ∈ L1(Ω) | ∇u ∈ L1(Ω) }

where ∇u stands for the first order derivative of u (in the sense of distributions).

Definition 1 A function u ∈ W 1,1(Ω) is Hessian bounded if

Φ2(u) := sup

{∫

Ω

〈∇u, div(ξ)〉
Rn | ξ ∈ C2c (Ω,Rn×n), ‖ξ‖∞ 6 1

}

< ∞,

where

div(ξ) = (div(ξ1), div(ξ2), . . . , div(ξn)), (2)

with

∀i, ξi = (ξ1i , ξ
2
i , . . . , ξ

n
i ) ∈ R

n and div(ξi) =

n
∑

k=1

∂ξki
∂xk

.

BV 2(Ω) is defined as the space of W 1,1(Ω) functions such that Φ2(u) < +∞.

Remark 1 If V = R
n×n, ‖ξ‖∞ = sup

x∈Ω

√

√

√

√

n
∑

i,j=1

∣

∣

∣
ξji (x)

∣

∣

∣

2
.

We give thereafter many useful properties of BV 2(Ω) (proofs can be found in [10,24]).
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Theorem 1 The space BV 2(Ω) endowed with the following norm

‖f‖BV 2(Ω) := ‖f‖W 1,1(Ω) + Φ2(f) = ‖f‖L1 + ‖∇f‖L1 + Φ2(f), (3)

where Φ2 is given by (2), is a Banach space.

Proposition 2 A function u belongs to BV 2(Ω) if and only if u ∈ W 1,1(Ω) and
∂u

∂xi
∈ BV (Ω) for i ∈ {1, . . . , n}. In particular

Φ2(u) 6

n
∑

i=1

Φ1

(

∂u

∂xi

)

6 n Φ2(u).

Remark 2 The previous result shows that

BV 2(Ω) =

{

u ∈ W 1,1(Ω) | ∀i ∈ {1, . . . , n},
∂u

∂xi
∈ BV (Ω)

}

.

We get a lower semi-continuity result for the semi-norm Φ2 as well.

Theorem 2 The operator Φ2 is lower semi-continuous from BV 2(Ω) endowed with the

strong topology of W 1,1(Ω) to R. More precisely, if {uk}k∈N is a sequence of BV 2(Ω)

that strongly converges to u in W 1,1(Ω) then

Φ2(u) 6 lim inf
k→∞

Φ2(uk).

Remark 3 In particular, if lim inf
k→∞

Φ2(uk) < ∞, then u ∈ BV 2(Ω).

We have embedding results as well:

Theorem 3 (Demengel [10]) Assume n ≥ 2. Then

BV 2(Ω) →֒ W 1,q(Ω) with q 6
n

n− 1
, (4)

with continuous embedding. Moreover the embedding is compact if q < n
n−1 . In partic-

ular

BV 2(Ω) →֒ Lq(Ω) for q 6
n

n− 2
if n > 2 (5)

BV 2(Ω) →֒ Lq(Ω), ∀q ∈ [1,∞[, if n = 2. (6)

In the sequel, we set n = 2 and Ω is a subset of R2, so that BV 2(Ω) ⊂ H1(Ω) with

continuous embedding and BV 2(Ω) ⊂ W 1,1(Ω) with compact embedding.
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3 The variational model

We now assume that the image we want to recover from the data ud can be decomposed

as f = u + v where u and v are functions that characterize different parts of f (see

[6,23,26] for example). Components u and v belong to different functional spaces: v is

the (smooth) second order part and belongs to BV 2(Ω) while u is the remainder term

that should involve noise and/or texture.

We consider the following cost functional defined on BV 2(Ω) :

F (v) =
1

2
‖ud − v‖2L2(Ω) + λΦ2(v) + δ‖v‖W 1,1(Ω), (7)

where λ, δ ≥ 0. We are looking for a solution to the optimization problem

inf{ F (v) | v ∈ BV 2(Ω) } (P)

The first term ‖ud − v‖2L2(Ω) of F is the fitting data term. Here we have chosen the L2-

norm for simplicity but any Lp norm can be used (p ∈ [2,+∞)). We shall investigate in

a future work the very case where p = 1; indeed we need to develop an approximation

process to deal with this additional non differentiable term. Other terms are Tychonov-

like regularization terms. The term λΦ2(v) + δ‖v‖W 1,1(Ω) is nothing else that the

BV 2(Ω) norm of v. However, we have split it because the δ-part is not useful from the

modelling point of view. It is only necessary to prove existence of solutions. We shall

choose δ = 0 for numerical tests.

If the image is noisy, the noise is considered as a texture and will be involved in

the remainder term u := ud− v: more precisely v will be the part of the image without

the oscillating component, that is the denoised part and u is expected to involve noise,

contours (and part of texture). In the sequel we shall focus on the denoising process.

Such an approach has already been used by Hinterberger and Scherzer [15] with the

BV 2(Ω) space. Their algorithm is different from the one we use here. Note that if we

decide to split the function we look for in more than two components (f = u+ v +w,

where u is the texture part, v the cartoon and w the noise for example, with appropriate

models ) then the minimization problem is a structured optimization problem to which

standard decomposition methods can be applied (for example alternating minimization

(Gauss Seidel) or parallel methods). Therefore, the study of (P) is quite significant from

this point of view. For parallel methods one may consult [3].

First we give a general existence and uniqueness result for problem (P).

Theorem 4 Assume that λ > 0 and δ > 0. Problem (P) has a unique solution v.

Proof.- We first prove existence by using the direct method in calculus of variations.

Let vn ∈ BV 2(Ω) be a minimizing sequence, i.e.

lim
n→+∞

F (vn) = inf{ F (v) | v ∈ BV 2(Ω) } < +∞.

The sequence (vn)n∈N is bounded in BV 2(Ω). With the compactness result of Theorem

3, this yields that (vn)n∈N strongly converges (up to a subsequence) in W 1,1(Ω) to

v∗ ∈ BV 2(Ω). Theorem 2 gives the following:

Φ2(v
∗) 6 lim inf

n→+∞
Φ2(vn).
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So

F (v∗) 6 lim inf
n→+∞

F (vn) = min
v∈BV 2(Ω)

F (v),

and v∗ is a solution to (P). Uniqueness is straightforward with the strict convexity of

F due to the term ‖ud − v‖2L2(Ω).

�

Remark 4 It is an open question to know if we really need δ > 0. We could expect a

Poincaré-Wirtinger inequality in the BV 2(Ω)- space which is not very difficult to prove

using appropriate “density” results. However, the boundary conditions we have to add

are not clear (we have to deal with “second order” Neumann boundary conditions) .

It is not straightforward to get the suitable boundary conditions that allow to assert

that the semi-norm Φ2 is equivalent to the BV 2(Ω)-norm. If we assume δ = 0 we are

not sure to prove existence of a solution without additional assumptions and we lose

uniqueness.

4 The discretized problem

Problem (P) can be written equivalently as

inf
v∈BV 2(Ω)

‖ud − v‖2L2(Ω)

2λ
+ Φ2(v) + δ‖v‖W 1,1(Ω), (P̃)

where δ has been replaced by δ
λ . We are going to compute the solution numerically.

We first present the discretization process.

4.1 Discretization of problem P̃

We assume for simplicity that the image is squared with size N × N . We note X :=

R
N×N ≃ R

N2

endowed with the usual inner product and the associated Euclidean

norm

〈u, v〉X :=
∑

16i,j6N

ui,jvi,j , ‖u‖X :=

√

∑

16i,j6N

u2i,j . (8)

We set Y = X ×X. It is classical to define the discrete total variation as following

(see for example [7]): the discrete gradient of the numerical image u ∈ X is ∇u ∈ Y :

(∇u)i,j =
(

(∇u)1i,j , (∇u)2i,j

)

, (9)

where (∇u)1i,j =

{

ui+1,j − ui,j if i < N

0 if i = N,
and (∇u)2i,j =

{

ui,j+1 − ui,j if j < N

0 if j = N.
The (discrete) total variation corresponding to Φ1(u) is given by

J1(u) =
∑

16i,j6N

∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

, (10)



7

where
∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

=
∥

∥

∥

(

(∇u)1i,j , (∇u)2i,j

)∥

∥

∥

R2

=

√

(

(∇u)1i,j

)2
+

(

(∇u)2i,j

)2
.

The discrete divergence operator div is the opposite of the adjoint operator of the

gradient operator ∇:

∀(p, u) ∈ Y ×X, 〈−div p, u〉X = 〈p,∇u〉Y ,

so that

(div p)i,j =











p1i,j − p1i−1,j if 1 < i < N

p1i,j if i = 1

−p1i−1,j if i = N

+











p1i,j − p2i,j−1 if 1 < j < N

p2i,j if j = 1

−p1i,j−1 if i = N.

(11)

To define a discrete version of the second order total variation Φ2 we have to introduce

the discrete Hessian operator. For any v ∈ X, the Hessian matrix of v, denoted Hv

is identified to a X4 vector: (Hv)i,j =
(

(Hv)11i,j , (Hv)12i,j , (Hv)21i,j , (Hv)22i,j

)

, with, for

every i, j = 1, . . . , N,

(Hv)11i,j =







vi+1,j − 2vi,j + vi−1,j if 1 < i < N,

vi+1,j − vi,j if i = 1,

vi−1,j − vi,j if i = N,

(Hv)12i,j =







vi,j+1 − vi,j − vi−1,j+1 + vi−1,j if 1 < i 6 N, 1 6 j < N,

0 if i = 1,

0 if i = N,

(Hv)21i,j =







vi+1,j − vi,j − vi+1,j−1 + vi,j−1 if 1 6 i < N, 1 < j 6 N,

0 if i = 1,

0 if i = N,

(Hv)22i,j =







vi,j+1 − 2vi,j + vi,j−1 if 1 < j < N,

vi,j+1 − vi,j if j = 1,

vi,j−1 − vi,j if j = N.

The discrete second order total variation corresponding to Φ2(v) is defined as

J2(v) =
∑

16i,j6N

∥

∥(Hv)i,j
∥

∥

R4 . (12)

The discretized problem stands

inf
v∈X

‖ud − v‖2X
2λ

+ J2(v) + δ(|v|+ J1(v)), (Pd)

where

|v| :=
∑

16i,j6N

|vi,j | .

In the finite dimensional case we have an existence result with δ = 0.

Theorem 5 Problem Pd has a unique solution for every δ ≥ 0 and λ > 0.

Proof.- The cost functional

Fδ :=
‖ud − v‖2X

2λ
+ J2(v) + δ(|v|+ J1(v)) ,

is continuous and coercive because of the term ‖ud − v‖2X . In addition it is strictly

convex so that we get the result.
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For numerical purpose we shall set δ = 0. In fact, we have performed tests with δ = 0

and very small δ 6= 0 (as required by the theory to get a solution to problem P̃): results

were identical.

In the sequel, we adapt the method by Chambolle in the BV (Ω)-case, to the

second order framework. We briefly recall the original result of [9]. Consider the finite

dimensional optimization problem derived from the discretization of the ROF model :

inf
u∈X

(

J1(u) +
1

2λ
‖ud − u‖2X

)

. (P1
d)

The following result holds :

Proposition 3 The solution to (P1
d) is given by

u = ud − PλK1
(ud), (13)

where

K1 = {div g | g ∈ Y,
∥

∥gi,j
∥

∥

R2 6 1 ∀i, j = 1, · · · , N },

and PλK1
is the orthogonal projector operator on λK1.

We have a very similar result that we present in next sections. We first describe the

conjugate function of J2

4.2 The J2 Legendre-Fenchel conjugate function

As the function J2 is positively homogeneous, the Legendre-Fenchel conjugate

J∗
2 (v) = sup

u
〈u, v〉X − J2(u),

is the characteristic function of a closed, convex set K

J∗
2 (v) = 1K(v) =

{

0 if v ∈ K

+∞ else.

As J∗∗
2 = J2, we get J2(v) = sup

u∈K

〈v, u〉X . We use the inner scalar product of X4 :

〈p, q〉X4 =
∑

16i,j6N

(

p1i,jq
1
i,j + p2i,jq

2
i,j + p3i,jq

3
i,j + p4i,jq

4
i,j

)

,

for every p =
(

p1, p2, p3, p4
)

, q =
(

q1, q2, q3, q4
)

∈ X4. So, for every v ∈ X,

J2(v) = sup
p∈C

〈p,Hv〉X4 , (14)

where the feasible set is

C := { p ∈ X4 |
∥

∥pi,j
∥

∥

R4 6 1, ∀ 1 ≤ i, j ≤ N } .

Let us compute the adjoint operator of H (which is the discretized “second divergence”

operator) :

∀p ∈ X4, ∀v ∈ X 〈H∗p, v〉X = 〈p,Hv〉X4 .
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We verify that H∗ : X4 → X satisfies for every p = (p11, p12, p21, p22) ∈ X4

(H∗p)i,j =















p11i−1,j − 2p11i,j + p11i+1,j if 1 < i < N

p11i+1,j − p11i,j if i = 1,

p11i−1,j − p11i,j if i = N,

+















p22i,j−1 − 2p22i,j + p22i,j+1 if 1 < j < N,

p22i,j+1 − p22i,j if j = 1,

p22i,j−1 − p22i,j if j = N,

+























































































p12i,j−1 − p12i,j − p12i+1,j−1 + p12i+1,j if 1 < i, j < N,

p12i+1,j − p12i+1,j−1 if i = 1, 1 < j < N,

p12i,j−1 − p12i,j if i = N, 1 < j < N,

p12i+1,j − p12i,j if 1 < i < N, j = 1,

p12i,j−1 − p12i+1,j−1 if 1 < i < N, j = N,

p12i+1,j if i = 1, j = 1,

−p12i+1,j−1 if i = 1, j = N,

−p12i,j if i = N, j = 1,

p12i,j−1 if i = N, j = N,

(15)

+























































































p21i−1,j − p21i,j − p21i−1,j+1 + p21i,j+1 if 1 < i, j < N,

p21i,j+1 − p21i,j if i = 1, 1 < j < N,

p21i−1,j − p21i−1,j+1 if i = N, 1 < j < N,

p21i,j+1 − p21i−1,j+1 if 1 < i < N, j = 1,

p21i−1,j − p21i,j if 1 < i < N, j = N,

p21i,j+1 if i = 1, j = 1,

−p21i,j if i = 1, j = N,

−p21i−1,j+1 if i = N, j = 1,

p21i−1,j if i = N, j = N,

Theorem 6 The Legendre-Fenchel conjugate of J2 is J∗
2 = 1K2

where

K2 := {H∗p | p ∈ X4,
∥

∥pi,j
∥

∥

R4 6 1, ∀i, j = 1, . . . , N} ⊂ X. (16)

Proof.- We have already mentioned that J∗
2 = 1K where K is of a non empty, closed,

convex set subset of X.

We first show that K2 ⊂ K. Let be v ∈ K2. The discretized version of the definition

of the second order total variation gives

J2(v) = sup
ξ∈K2

〈ξ, v〉X ,

and 〈ξ, v〉 − J2(v) 6 0 for every ξ ∈ K2 and v ∈ X. This gives for every v∗ ∈ K2

J∗
2 (v

∗) = sup
v∈K2

〈

v∗, v
〉

− J2(v) 6 0. (17)
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As J∗
2 takes only one finite value, we get J∗

2 (v
∗) = 0, which yields that v∗ ∈ K.

Therefore, K2 ⊂ K and as K is closed we finally obtain

K̄2 ⊂ K.

In particular

J2(v) = sup
ξ∈K2

〈v, ξ〉 6 sup
ξ∈K̄2

〈v, ξ〉 6 sup
ξ∈K

〈v, ξ〉 = sup
ξ∈K

〈v, ξ〉 − J∗
2 (ξ) = J∗∗

2 (v).

As J∗∗
2 = J2, we have

sup
ξ∈K2

〈v, ξ〉 = sup
ξ∈K̄2

〈v, ξ〉 = sup
ξ∈K

〈v, ξ〉 . (18)

Now, let us assume there exists v∗ ∈ K such that v∗ /∈ K̄2. On may strictly separate

v∗ and the closed convex set K̄2. There exists α ∈ R and v0 such that

〈

v0, v
∗〉 > α > sup

u∈K̄2

〈v0, u〉 .

We obtain

sup
ξ∈K

〈v0, ξ〉 >
〈

v0, v
∗〉 > α > sup

u∈K̄2

〈v0, u〉 = sup
u∈K

〈v0, u〉 ,

that gives a contradiction. We have proved that K = K̄2. As K2 is closed we get

K = K2.

�

Remark 5 We proved the previous result for the convenience of the reader. Indeed,

one may note that J2 is the support function of K2 which is the conjugate function

of the indicator function 1K2
of K2 (see [12] p. 19). Therefore, as K2 is closed and

convex and J2 is continuous we get J∗
2 = 1∗∗K2

= 1K2
.

4.3 Case where δ = 0

Now we focus on the case where δ = 0. Indeed, the δ-term in definition 7 was needed

as a tool in the infinite dimensional framework to prove existence of solutions to (P).

However, we have seen that the finite dimensional problem has a solution even if δ = 0,

which is the most interesting case. The problem we have to solve turns to be

min
v∈X

‖ud − v‖2X
2λ

+ J2(v). (P2
d)

As in the BV-case (proposition 3) we have a characterization of the solution.

Theorem 7 The solution v of (P2
d) verifies

v = ud − PλK2
(ud),

where PλK2
is the orthogonal projector operator on λK2.
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Proof.- The proof is similar to the one by Chambolle [9] but we give it for convenience.

The solution v to (P2
d) is characterized by

0 ∈ ∂

(

J2(v) +
1

2λ
‖v − ud‖

2
2

)

=
v − ud

λ
+ ∂J2(v),

that is
ud − v

λ
∈ ∂J2(v). As J2 is proper, convex and continuous, then

v∗ ∈ ∂J2(v) ⇐⇒ v ∈ ∂J∗
2 (v

∗).

So

v ∈ ∂J∗
2 (

ud − v

λ
) ⇐⇒ 0 ∈ −v + ∂J∗

2 (
ud − v

λ
) ⇐⇒ 0 ∈

ud − v

λ
−

ud
λ

+
1

λ
∂J∗

2 (
ud − v

λ
).

This means that w =
ud − v

λ
is the solution to

min
w

1

2

∥

∥

∥w −
ud
λ

∥

∥

∥

2

X
+

1

λ
∂J∗

2 (w).

As J∗
2 = 1K2

this implies that
ud − v

λ
is the orthogonal projection of

ud
λ

on K2 :

ud − v

λ
= PK2

(
ud
λ
) .

As PK2
(
ud
λ
) =

1

λ
PλK2

(ud), this ends the proof.

�

5 A fixed-point algorithm to compute ∂J2

In [9] Chambolle proposed a fixed-point algorithm to compute PλK1
(f) (and ∂J1(f)).

Let us briefly recall the main idea that we use again in the BV 2 context. To compute

PλK1
(f) we have to solve

min{‖λdiv p− ud‖
2
X |

∥

∥pi,j
∥

∥

R2 6 1 ∀i, j = 1, . . . , N}. (19)

that can be solved with a fixed-point method :

p0 = 0 (20a)

pn+1
i,j =

pni,j + τ (∇(div pn − ud/λ))i,j

1 + τ
∥

∥(∇(div pn − ud/λ))i,j
∥

∥

R2

(20b)

In addition, a convergence result is provided :

Theorem 8 ([9], Theorem 3.1) Assume that τ satisfies τ 6 1/8. Then λdiv pn

converges to PλK1
(ud) as n → +∞.
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Remark 6 In [8] J.F. Aujol proves that the modified algorithm :

p0 = 0 (21a)

pn+1
i,j =

pni,j + τ (∇(div pn − ud/λ))i,j

max (1,
∥

∥

∥
pni,j + τ (∇(div pn − ud/λ))i,j

∥

∥

∥

R2

)
(21b)

converges if τ 6 1/4.

We extend this result to the second-order case. To compute PλK2
(ud) we have to solve

min
{

∥

∥λH∗p− ud
∥

∥

2

X
| p ∈ X4,

∥

∥pi,j
∥

∥

2

R4 − 1 6 0, i, j = 1, . . . , N
}

. (P ′)

Let us denote F (p) = ‖λH∗p− ud‖
2
X and

gi,j(p) =
∥

∥pi,j
∥

∥

2

R4 − 1 = (p11i,j)
2 + (p12i,j)

2 + (p21i,j)
2 + (p22i,j)

2 − 1.

First order optimality conditions give the existence of Lagrange multipliers αi,j , (i, j) ∈

{1, . . . , N}2, such that

∇F (p) +

N
∑

i,j=1

αi,j∇gi,j(p) = 0, (22a)

αi,j > 0 and αi,jgi,j(p) = 0, (i, j) ∈ {1, . . . , N}2 . (22b)

It is easy to see that ∇F (p) = 2λH [λH∗p− ud] and that

N
∑

i,j=1

αi,j∇gi,j(p) = 2αi,j

(

(p11i,j , p
22
i,j , p

12
i,j , p

21
i,j)

)

16i,j6N
.

Therefore relations (22) are equivalent to

∀1 ≤ i, j ≤ N
(

H
[

λH∗p− ud
])

i,j
+ αi,jpi,j = 0, (23a)

∀1 ≤ i, j ≤ N αi,j > 0 and αi,jgi,j(p) = 0. (23b)

Let us compute the multipliers αi,j more precisely :

– If αi,j > 0 then
∥

∥pi,j
∥

∥

R4 = 1.

– If αi,j = 0 then (H [λH∗p− ud])i,j = 0.

In both cases we get

∀1 ≤ i, j ≤ N αi,j =
∥

∥

∥

(

H
[

λH∗p− ud
])

i,j

∥

∥

∥

R4

and we finally obtain the following equality : ∀(i, j) ∈ {1, . . . , N}2 ,

(

H
[

λH∗p− ud
])

i,j
+

∥

∥

∥

(

H
[

λH∗p− ud
])

i,j

∥

∥

∥

R4

pi,j = 0. (24)

We use a semi-implicit gradient method to solve these equations, namely :

Choose τ > 0, and

1. Set p0 = 0, n = 0
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2. pn is known. For (i, j) ∈ {1, . . . , N}2 , compute pn+1
i,j with

pni,j = pn+1
i,j + τ

(

(

H
[

H∗pn − ud/λ
])

i,j
+

∥

∥

∥

(

H
[

H∗pn − ud/λ
])

i,j

∥

∥

∥

R4

pn+1
i,j

)

.

This is equivalent to

pn+1
i,j =

pni,j − τ (H [H∗pn − ud/λ])i,j

1 + τ
∥

∥

∥
(H [H∗pn − ud/λ])i,j

∥

∥

∥

R4

. (25)

The algorithm step τ is related to the adjoint operator H∗ norm that we call κ in the

sequel and we first give a κ estimate:

Lemma 1 The adjoint operator H∗ norm, κ satisfies κ ≤ 8 .

Proof.- The definition of κ reads κ = sup
‖p‖

X461

∥

∥H∗p
∥

∥.

As
∥

∥H∗p
∥

∥

X
= sup

q∈B̄X (0,1)

〈

H∗p, q
〉

X
and

∀q ∈ X4 〈

H∗p, q
〉

X
= 〈p,Hq〉X4 6 ‖Hq‖X4‖p‖X4 ,

we get
∥

∥H∗p
∥

∥

X
6 |||H ||| ‖p‖X4 . (26)

For any q ∈ X4

‖Hq‖2X4 =
∑

16i,j6N

[

(

qi+1,j − 2qi,j + qi−1,j

)2
+

(

qi,j+1 − qi,j − qi−1,j+1 + qi−1,j

)2

+
(

qi+1,j − qi,j − qi+1,j−1 + qi,j−1

)2
+

(

qi,j+1 − 2qi,j + qi,j−1

)2
]

6 4
∑

16i,j6N

[

q2i+1,j + q2i,j + q2i,j + q2i−1,j + q2i,j+1 + q2i,j + q2i−1,j+1 + q2i−1,j

+q2i+1,j + q2i,j + q2i+1,j−1 + q2i,j−1 + q2i,j+1 + q2i,j + q2i,j + q2i,j−1

]

6 4× 16 ‖q‖2X .

Finally |||H ||| 6 8, and with relation (26), ‖H∗p‖X 6 8 ‖p‖X4 .

We deduce that κ 6 8 (and κ2 6 64).

�

Theorem 9 Let be τ 6 1/64. Then λ (H∗pn)n converges to PλK2
(ud) as n → +∞.

Proof.- It is easy to check (by induction) that for every n > 0 and i, j,
∥

∥pni,j
∥

∥

R4
6 1.

Set n > 0 and let be ηn = (pn − pn+1)/τ . Denote by (Un)n the sequence defined by :

Un =
∥

∥H∗pn − ud/λ
∥

∥

2

X
, ∀n > 0.

The outline of the proof is the following : we first prove that (Un)n is a (nonnegative)

non increasing sequence and therefore it is convergent. The proof provides an equality

(29) that allows to show that the sequences (pn)n and (pn+1)n have the same cluster

points which are the unique solution to a projection problem. Therefore the whole

sequence (pn)n converges.
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• We first prove that (Un)n is a non increasing sequence if τ 6 1/κ2 where κ is the

norm of H∗. We get

Un+1 =
∥

∥H∗(pn − τηn)− ud/λ
∥

∥

2

X

=
〈

−τH∗ηn +
(

H∗pn − ud/λ
)

,−τH∗ηn +
(

H∗pn − ud/λ
)〉

X

= Un − 2τ
〈

H∗ηn,H∗pn − ud/λ
〉

X
+ τ2

∥

∥H∗ηn
∥

∥

2

X

= Un − 2τ
〈

ηn,H
[

H∗pn − ud/λ
]〉

X4 + τ2
∥

∥H∗ηn
∥

∥

2

X

6 Un − τ
[

2
〈

ηn,H
[

H∗pn − ud/λ
]〉

X4 − κ2τ
∥

∥ηn
∥

∥

2

X4

]

6 Un − τ





N
∑

i,j=1

〈

2ηni,j ,
(

H
[

H∗pn − ud/λ
])

i,j

〉

R4

− κ2τ
∥

∥ηni,j
∥

∥

2

R4





As

ηni,j =
(

H
[

H∗pn − ud/λ
])

i,j
+ ρni,j ,

with

ρni,j =
∥

∥

∥

(

H
[

λH∗pn − ud/λ
])

i,j

∥

∥

∥

R4

pn+1
i,j ;

we obtain
〈

2ηni,j ,
(

H
[

H∗pn − ud/λ
])

i,j

〉

R4

− κ2τ
∥

∥ηni,j
∥

∥

2

R4

=
〈

ηni,j ,
(

H
[

H∗pn − ud/λ
])

i,j

〉

R4

+
〈

ηni,j ,
(

H
[

H∗pn − ud/λ
])

i,j

〉

R4

− κ2τ
∥

∥ηni,j
∥

∥

2

R4

=
〈

ηni,j , η
n
i,j − ρni,j

〉

R4

+
〈

(

H
[

H∗pn − ud/λ
])

i,j
+ ρni,j ,

(

Hl
[

H∗pn−ud/λ
])

i,j

〉

R4

−κ2τ
∥

∥ηni,j
∥

∥

2

R4

=
∥

∥ηni,j
∥

∥

2

R4 −
〈

ηni,j , ρ
n
i,j

〉

R4 +
∥

∥

∥

(

H
[

H∗pn − ud/λ
])

i,j

∥

∥

∥

2

R4

+
〈

ρni,j ,
(

H
[

H∗pn − ud/λ
])

i,j

〉

R4

− κ2τ
∥

∥ηni,j
∥

∥

2

R4

=
∥

∥ηni,j
∥

∥

2

R4−
〈

ηni,j , ρ
n
i,j

〉

R4+
∥

∥

∥

(

H
[

H∗pn−ud/λ
])

i,j

∥

∥

∥

2

R4

+
〈

ρni,j , η
n
i,j− ρni,j

〉

R4 − κ2τ
∥

∥ηni,j
∥

∥

2

R4

= (1− κ2τ )
∥

∥ηni,j
∥

∥

2

R4 +

(

∥

∥

∥

(

H
[

H∗pn − ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρni,j
∥

∥

2

R4

)

.

Finally

Un+1 6 Un−τ





N
∑

i,j=1

(1−κ2τ )
∥

∥ηni,j
∥

∥

2

R4+

(

∥

∥

∥

(

H
[

H∗pn− ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρni,j
∥

∥

2

R4

)



 (27)

As
∥

∥

∥
pn+1
i,j

∥

∥

∥
6 1,

∥

∥ρni,j
∥

∥

R4
6

∥

∥

∥
(H [λH∗pn − ud/λ])i,j

∥

∥

∥

R4

this yields that if τ 6 1/κ2,

then the sequence (Un) is non increasing. Thus, the sequence (Un)n is convergent to

some m. Moreover, relation (27) gives

0 ≤
N
∑

i,j=1

(1−κ2τ )
∥

∥ηni,j
∥

∥

2

R4
+

(

∥

∥

∥

(

H
[

H∗pn− ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρni,j
∥

∥

2

R4

)

≤
Un − Un+1

τ
. (28)
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Passing to the limit in relation (28) gives

lim
n→+∞

N
∑

i,j=1

[

(1−κ2τ )
∥

∥ηni,j
∥

∥

2

R4+

(

∥

∥

∥

(

H
[

H∗pn− ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρni,j
∥

∥

2

R4

)]

= 0. (29)

• Let us prove that we may extract a subsequence (pnk)k of (pn)n such that (pnk)k
and (pnk+1)k have the same limit.

As (pn)n is bounded, we call p̄ one cluster point and (pnk)k the corresponding sub-

sequence of (pn)n such that pnk → p̄, as k → +∞. Let us call p̄′ the limit (up to a

subsequence) of pnk+1. We obtain with relation (25)

p̄′i,j =
p̄i,j − τ (H [H∗p̄− ud/λ])i,j

1 + τ
∥

∥

∥
(H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

. (30)

We note ρ̄ et η̄ the respective limits of ρnk et ηnk when k tends to +∞. With (29), we

obtain

N
∑

i,j=1

[

(1−κ2τ )
∥

∥η̄i,j
∥

∥

2

R4+

(

∥

∥

∥

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρ̄i,j
∥

∥

2

R4

)]

= 0.

As the terms of the sum are nonnegative, we get

∀i, j (1− κ2τ )
∥

∥η̄i,j
∥

∥

2

R4 = 0 and
∥

∥

∥

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

2

R4

−
∥

∥ρ̄i,j
∥

∥

2

R4 = 0.

– If κ2τ < 1, then η̄i,j = 0 for all i, j, and so p̄′ = p̄.

– If κ2τ = 1, then, for all i, j,
∥

∥ρ̄i,j
∥

∥

R4 =
∥

∥

∥(H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

, that is to say

∥

∥

∥

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

R4

∥

∥p̄′i,j
∥

∥

R4 =
∥

∥

∥

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

R4

.

This implies
∥

∥p̄′i,j
∥

∥

R4 = 1 or
∥

∥

∥

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

R4

= 0.

– If
∥

∥

∥
(H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

= 0, then relation (30) gives p̄′i,j = p̄i,j .

– If
∥

∥p̄′i,j
∥

∥

R4
= 1, then

1 =

∥

∥

∥p̄i,j − τ (H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

1 + τ
∥

∥

∥
(H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

6

∥

∥p̄i,j
∥

∥

R4 +
∥

∥

∥τ (H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

1 + τ
∥

∥

∥
(H [H∗p̄− ud/λ])i,j

∥

∥

∥

R4

,

therefore
∥

∥p̄i,j
∥

∥

R4 > 1 and (together with
∥

∥p̄i,j
∥

∥

R4 6 1)
∥

∥p̄i,j
∥

∥

R4 = 1. We

deduce that
∥

∥

∥
p̄i,j − τ

(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

R4

=
∥

∥p̄i,j
∥

∥

R4 +
∥

∥

∥
τ
(

H
[

H∗p̄− ud/λ
])

i,j

∥

∥

∥

R4

.

Since triangular inequality turns to be an equality, there exists β ∈ R
∗ so that

τ
(

H
[

H∗p̄− ud/λ
])

i,j
= βp̄i,j .

As
∣

∣p̄′i,j
∣

∣ = 1, relation (30) implies p̄′i,j =
1− β

1 + |β|
p̄i,j , so that

∣

∣

∣

∣

1− β

1 + |β|

∣

∣

∣

∣

= 1; this

yields β 6 0 and p̄′i,j = p̄i,j .



16

Finally, p̄ = p̄′, and

∀i, j,
(

H
[

λH∗p̄− ud
])

i,j
+

∥

∥

∥

(

H
[

λH∗p̄− ud
])

i,j

∥

∥

∥

R4

p̄i,j = 0.

This is the Euler equation for (P ′). Therefore p̄ is a solution to (P ′). With uniqueness

of the projection, we deduce that the sequence (λH∗pn)n converges to PλK2
(ud).

We conclude with Lemma 1 since τ 6 1/64 then τ ≤ 1/κ2.

�

6 Numerical results

In this section we briefly present numerical tests for the denoising process. A full

comparison with existing methods will be performed in a forthcoming paper.

6.1 Examples

Throughout this section, we consider the following images that are degraded with a

white Gaussian noise with standard deviation σ:

Fig. 1 Test images (“Shapes” (size : 740 × 740) and “Lena” (size : 512 × 512) )

We perform numerical tests with different values of σ. In any case, we observe that

the model is quite efficient for image restoration. Moreover, we note that we lose details

information when parameter λ increases, what was expected. However, especially when

the “observed” image is very noisy, we have a blurriness (subjective) feeling, that we do

not have when restoration is performed with the standard ROF model. Checking what

happens precisely on slices (lines) of the image (Figure 8 for example), we remark that

the BV 2-model keeps contour information pretty well, anyway better than expected

watching the image.

Numerical tests have been performed on different machines so that we cannot report

precisely on the CPU time. However, the result is quite satisfactory after few iterations

so that the process is not too slow. In what follows, the stopping criterion has been

set to a maximal number of iterations itmax that can be chosen arbitrary large. The
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algorithms have been implemented with MATLAB c© software. We give al so the Signal

to Noise Ratio (SNR)1 : SNR(v) = 20 log10

(

‖u‖L2

‖u− v‖L2

)

, where u is the expected

image and v is the restored one. SNR(ud) gives the observed SNR (with the noisy

input image).

We have performed tests for two σ values. In the first example σ = 0.15 and we

stopped after itmax=5000 iterations (Figure 3) and in the second case σ = 0.25 (the

noise is more important). The noisy images are below:

(a) σ = 0.15 (SNR=21.28) (b) σ = 0.15 (SNR=23.08)

(c) σ = 0.25 (SNR=16.90) (d) σ = 0.25 (SNR=18.82)

Fig. 2 Noisy images - white Gaussian noise with standard deviation σ.

1 There are different ways to compute this quantity with MATLAB c© . We used the following
syntax : SNR = 20*log10(norm(u(:))/norm(u(:)-v(:)))
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6.2 Sensibility with respect to λ parameter

(a) λ = 1 (SNR 23.04) (b) λ = 5 (SNR 28.63) (c) λ = 15 (SNR 27.93)

(d) λ = 25 (SNR 25.77) (e) λ = 100 (SNR 21.02) (f) λ = 500 (SNR 18.08)

Fig. 3 Solution v - Standard deviation σ = 0.15 - 5 000 iterations

(a) Noisy: Lena (SNR 16.9) (b) Noisy : Shapes (SNR
18.82)

(c) SNR : 25.5 (d) SNR : 31.04

Fig. 4 Solution v - Standard deviation σ = 0.25 and λ = 25 - 5 000 iterations
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As expected, we see on Figure 3 that the smoothing process is more efficient when λ

is large. For both images, the result is satisfactory for λ ≃ 10.

6.3 Sensitivity with respect to iterations number itmax

We fix λ = 15 and σ = 0.15. Figures 6 and 7 give the behavior of a slice (line) during

iterations (we can see more easily how noise is removed). The algorithm converges

well: the quality of restoration is improved as the number of iterations grows. Noise is

removed and contours are preserved.

(a) Shape (b) Lena

Fig. 5 Noisy images with line - σ = 0.15

(a) Noisy original line (b) 50 iterations

(c) 500 iterations (d) 5000 iterations

Fig. 6 Sensitivity with respect to the number of iterations - σ = 0.15, λ = 50 - Slice of
“Shapes” image
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(a) Original slice

(b) Noisy slice

(c) 10 iterations

(d) 100 iterations

(e) 500 iterations

Fig. 7 Sensitivity with respect to the number of iterations - σ = 0.15, λ = 15 - Slice of “Lena”
image
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6.4 Comparison with the classical Rudin-Osher-Fatemi model

It is well known that the ROF model makes staircasing effect appear, since the resulting

image is piecewise constant on large areas. We first compare the two models on test

images that are not very noisy. In Figure 9 we see that piecewise constant areas appear

with ROF, which is not the case with the BV 2 model. To focus on this fact, we have

selected a line of the image that meets contours.

(a) Noisy image (SNR 16.9) (b) Noisy slice

(c) ROF model solution (SNR
23.82)

(d) ROF model slice

(e) BV 2 model solution - (SNR
25.5)

(f) BV 2 model slice

Fig. 8 Comparison between ROF and BV
2 models - σ = 0.25, λ = 25, 5 000 iterations.
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(a) ROF model - 50 iterations (b) BV
2 model- 50 iterations

(c) ROF model - 300 iterations (d) BV
2 model- 300 iterations

(e) ROF model - 500 iterations (f) BV
2 model- 500 iterations

Fig. 9 Comparison between ROF and BV
2 models - σ = 0.15, λ = 15 (Lena slice).
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(a) Noisy image (b) Noisy slice

(c) ROF model image (d) ROF model slice

(e) BV
2 model image (f) BV

2 model slice

Fig. 10 Comparison between ROF and BV 2 models - σ = 0.25, λ = 50, 10 000 iterations

Figures 8 and 11 are obtained for λ = 25 and λ = 50 respectively and 5 000

iterations. Figures 10 and 12 are obtained for 10 000 iterations and λ = 50 and show

precisely what happens: the image restored with ROF is clearly piecewise constant,

and the BV 2 restored one seems to be blurred (Figure 12). However, this is an optical

effect: considering a slice shows that the BV 2 model removes noise significantly and

contours are better preserved: the amplitude of high peaks that correspond to contours

is not changed, which is not the case in ROF-model (Figure 11).
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(a) Noisy slice

(b) Original slice

(c) BV
2 model - 50 iterations.

(d) BV 2 model - 5 000 iterations.

(e) ROF model - 5 000 iterations.

Fig. 11 Zoom on “Lena” slices- σ = 0.25, λ = 50
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(a) Noisy image (b) Zoom

(c) ROF model image (d) Zoom

(e) BV 2 model image (f) Zoom

Fig. 12 Staircasing effect - σ = 0.25, λ = 50, 10 000 iterations.

6.5 Texture extraction

We do not report much on texture extraction process. The parameter tuning is slightly

different but the algorithm behaves similarly (see [11]). Many variational methods have

been developed for texture extraction (see [5,6] and the references therein). We shall

precisely compare the BV 2 method to the existing ones in a forthcoming paper. We

present an example in Figures 13 and 14.
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(a) Original ud (b) Cartoon v for λ = 10- 30 iterations

(c) Texture (ud − v) λ = 0.1 - 10 iterations (d) Texture (ud − v) λ = 1 - 30 iterations

(e) Texture (ud − v) λ = 5 - 10 iterations (f) Texture (ud − v) λ = 5 - 30 iterations

Fig. 13 Texture extraction - Rescaled texture image ud − v at 10 and 15 iterations
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(a) Cartoon v for λ = 50 (b) Texture (ud − v) λ = 50

(c) Texture (ud − v) λ = 10 (d) Texture (ud − v) λ = 5

Fig. 14 Texture extraction - Rescaled texture image ud − v at 100 iterations

7 Conclusion

The second order approach via the BV 2 space seems promising. Many improvements

have to be performed. The algorithm is still slow (though we get acceptable results for

quite few iterations ≃ 30). We currently investigate the Nesterov- techniques to speed

up the method (see Weiss et al. [25] or Fadili-Peyré [13]). Moreover, we have to look

for modifications of the variational model using different norms (for example the L1

norm) for the fitting data term. Furthermore, coupling existing techniques for texture

extraction with the second order approach should give quite performing results. This

will be done in future works.
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