S. [. Allaire, S. Clerc, and . Kokh, A Five-Equation Model for the Simulation of Interfaces between Compressible Fluids, Journal of Computational Physics, vol.181, issue.2, pp.577-616, 2002.
DOI : 10.1006/jcph.2002.7143

[. Aubry, C. Caremoli, J. Olive, and P. Rascle, The THYC three-dimensional thermal-hydraulic code for rod bundles : recent developments and validation tests, Nuclear technology, vol.112, issue.3 2, pp.331-345, 1995.

G. [. Anderson, A. A. Mcfadden, and . Wheeler, DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS, Annual Review of Fluid Mechanics, vol.30, issue.1, pp.139-165, 1998.
DOI : 10.1146/annurev.fluid.30.1.139

]. M. Ara80 and . Arai, Characteristic and stability analyses for two-phase flow equation system with viscous terms, Nucl. Sci. Eng, vol.74, issue.7, pp.74-77, 1980.

T. J. Barthbb73-]-j, D. L. Boris, and . Book, Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. Lecture series -van Karman Institute for Fluid Dynamics Flux corrected transport: Shasta, a fluid transport algorithm that works, Boure and J.-M. Delhaye. Handbook of Multiphase Systems, chapter General equations and two-phase flow modeling. Hemisphere, pp.1-140, 1973.

B. [. Bresch, J. Desjardins, E. Ghidaglia, and . Grenier, On global weak solutions to a generic two-fluid model. To appear in Archive for Rational Mechanics and Analysis The physical closure laws in the CATHARE code, Nuclear Engineering and Design, vol.6, issue.124 2, pp.17229-245, 1990.

A. [. Bestion, . R. Guelfi-]-m, R. J. Baer, J. W. Gross, and . Nunziato, Status and perspective of two-phase flow modelling in the NEPTUNE multi-scale thermal-hydraulic platform for nuclear reactor simulation. Nuclear Engineering and Technology An experimental and theoretical study of deflagration-to-detonation transition (DDT) in the granular explosive, Combust. Flame, vol.37, issue.3, pp.511-52415, 1986.

D. [. Barth, M. R. Jespersen, J. W. Baer, and . Nunziato, The design and application of upwind schemes on unstructured meshes AIAA, 0366 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, International journal of multiphase flow, vol.12, issue.6, pp.22861-889, 1986.

M. [. Barth and . Ohlberger, Encyclopedia of Computational Mechanics Fundamentals, chapter Finite Volume Methods: Foundation and Analysis, Quivy. A non homogeneous riemann solver for shallow water and two phase flows. Flow, Turbulence and Combustion, pp.25391-402, 2004.

T. [. Chapman and . Cowling, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, 1995.
DOI : 10.1119/1.1942035

K. [. Courant, H. Friedrichs, G. Lewy, C. Chen, S. Kharif et al., On the partial difference equations of mathematical physics. english translation of the 1928 german original Two-dimensional Navier- Stokes simulation of breaking waves, Dutykh, C. Acary-Robert, and D. Bresch. Numerical simulation of powder-snow avalanche interaction with an obstacle, pp.215-234, 1967.

I. [. Drew, R. T. Cheng, and . Lahey, The analysis of virtual mass effects in two-phase flow, International Journal of Multiphase Flow, vol.5, issue.4, pp.233-242, 1979.
DOI : 10.1016/0301-9322(79)90023-5

]. F. Ddg08a, D. Dias, J. Dutykh, and . Ghidaglia, A compressible twofluid model for the finite volume simulation of violent aerated flows Analytical properties and numerical results Simulation of free surface compressible flows via a two fluid model, Proceedings of OMAE2008 27th International Conference on Offshore Mechanics and Arctic Engineering, pp.1-38, 2008.

D. [. Dias, J. Dutykh, and . Ghidaglia, A two-fluid model for violent aerated flows, Computers & Fluids, vol.39, issue.2, pp.283-293, 2010.
DOI : 10.1016/j.compfluid.2009.09.005

URL : https://hal.archives-ouvertes.fr/hal-00285037

]. S. Del05, . Dellacheriedel07-]-s, . T. Dellacherie, and . Lahey, On a diphasic low Mach number system ESAIM: M2AN Numerical resolution of a potential diphasic low Mach number system Application of general constitutive principles to the derivation of multidimensional two-phase flow equations, J. Comput. Phys. Int. J. Multiphase Flow, vol.39, issue.5 2, pp.487-514, 1979.

]. D. Dut07 and . Dutykh, Mathematical modelling of tsunami waves Multiphase Science and Technology, chapter Fundamentals of two-phase flow modeling, p.31, 1994.

J. Etienne, P. Saramito, and E. J. Hopfinger, Numerical simulations of dense clouds on steep slopes: application to powder-snow avalanches, Annals of Glaciology, vol.38, issue.1, pp.379-383, 2004.
DOI : 10.3189/172756404781815031

]. A. Gbbea07, D. Guelfi, M. Bestion, and . Boucker, NEPTUNE: a new software platform for advanced nuclear thermal hydraulics, Nuclear Science and Engineering, vol.156, issue.3 2, pp.281-324, 2007.

M. C. Galassi, P. Coste, . Ch, F. More, ]. J. Morettigglt00 et al., Two-phase flow simulations for PTS investigation by means of Neptune CFD code. Science and Technology of Nuclear Installations Robust computational algorithms for dynamic interface tracking in three dimensions, SIAM J. Sci. Comput, vol.21, issue.6 2, p.2240, 2000.

[. Ghidaglia, A. Kumbaro, and G. L. Coq, Une méthode volumesfinisàfinisà flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation, C. R. Acad. Sci. I, vol.322, pp.981-988, 1996.

[. Ghidaglia, A. Kumbaro, G. Le-coq-ghidaglia, and F. Pascal, On the numerical solution to two fluid models via a cell centered finite volume method, Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws, pp.841-867, 1996.
DOI : 10.1016/S0997-7546(01)01150-5

C. [. Gottlieb, E. Shu, and . Tadmor, Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, pp.89-112, 2001.
DOI : 10.1137/S003614450036757X

B. [. Hirt and . Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1981.
DOI : 10.1016/0021-9991(81)90145-5

T. [. Ishii and . Hibiki, Thermo-fluid dynamics of two-phase flow. Birkhäuser, 2006.

]. M. Ish75 and . Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, 1975.

Y. [. Joseph and . Renardy, Fundamentals of two-fluid dynamics, Interdisciplinary Applied Mathematics, vol.3, issue.21, 1993.
DOI : 10.1007/978-1-4613-9293-4

S. Klainerman, A. E. Majdakol72-]-n, . J. Kolgankor01-]-d, and . Korteweg, Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics Kolgan. Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Comm. Pure Appl. Math. Uchenye Zapiski TsaGI [Sci. Notes Central Inst. Aerodyn] Uchenye Zapiski TsaGI [Sci. Notes Central Inst. Aerodyn], vol.35, issue.62, pp.629-1968, 1972.

H. [. Kumbaro, I. Pailì-ere, C. Toumi, and . Viozat, Comparison of low Mach number models for natural convection problems, Heat Mass Transfer, vol.36, pp.567-573, 2000.

]. D. Kro97 and . Kroner, Numerical Schemes for Conservation Laws, p.22, 1997.

]. B. Lar90 and . Larrouturou, How to preserve the mass fraction positivity when computing compressible multi-component flows, J. Comput. Phys, vol.95, issue.2, pp.59-84, 1990.

]. P. Lax73 and . Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia, Penn., 1973. 16 [Llo05] A. Llor. Statistical hydrodynamic models for developed mixing instability flows : analytical " 0D " evaluation criteria, and comparison of single-and two-phase flow approaches, 2005.

]. A. Maj82 and . Majda, Equations of low Mach number combustion, p.19, 1982.

D. [. Meyapin, M. Dutykh, and . Gisclon, Two-fluid barotropic models for powder-snow avalanche flows. In The Fourth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing, Springer series " Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00394437

H. [. Murrone and . Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics, vol.202, issue.2, pp.664-698, 2005.
DOI : 10.1016/j.jcp.2004.07.019

URL : https://hal.archives-ouvertes.fr/hal-00871724

A. Majda and J. Sethian, The Derivation and Numerical Solution of the Equations for Zero Mach Number Combustion, Combustion Science and Technology, vol.6, issue.3-4, pp.185-205, 1985.
DOI : 10.1080/00102208508960376

A. [. Ndjinga, F. D. Kumbaro, P. Vuyst, and . Laurent-gengoux, Numerical simulation of hyperbolic two-phase flow models using a Roe-type solver, Nuclear Engineering and Design, vol.238, issue.8, pp.2075-2083, 2008.
DOI : 10.1016/j.nucengdes.2007.11.014

J. [. Osher and . Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1
DOI : 10.1016/0021-9991(88)90002-2

P. [. Osher and . Smereka, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys, vol.114, issue.2, pp.146-159, 1994.

S. [. Popinet and . Zaleski, A front-tracking algorithm for accurate representation of surface tension, International Journal for Numerical Methods in Fluids, vol.71, issue.6, pp.775-793, 1999.
DOI : 10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#

URL : https://hal.archives-ouvertes.fr/hal-01445441

]. D. Ram00 and . Ramos, Quelques résultats mathématiques et simulations numériques d'´ ecoulements régis par des modèles bifluides, 2000.

]. V. Ran85 and . Ransom, RELAP5/MOD2 code manual, 1985.

D. [. Ransom and . Hicks, Hyperbolic two-pressure models for two-phase flow revisited, Journal of Computational Physics, vol.75, issue.2, pp.498-504, 1988.
DOI : 10.1016/0021-9991(88)90125-8

J. Rovarch, Solveurs tridimensionnels pour lesécoulementslesécoulements diphasiques avec transferts d'´ energie, 2006.

H. Staedtke, G. Franchello, B. Worth, U. Graf, P. Romstedt et al., Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (ASTAR), Nuclear Engineering and Design, vol.235, issue.2-4, pp.379-400, 2005.
DOI : 10.1016/j.nucengdes.2004.08.052

URL : https://hal.archives-ouvertes.fr/hal-00402590

]. Shu88, . M. Shushy98-]-k, and . Shyue, Total-Variation-Diminishing Time Discretizations, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.6, pp.1073-1084, 1988.
DOI : 10.1137/0909073

]. J. Smo94 and . Smoller, Shock waves and Reaction-Diffusion Equations, p.18, 1994.

G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of Computational Physics, vol.27, issue.1, pp.1-31, 1978.
DOI : 10.1016/0021-9991(78)90023-2

S. [. Spiteri and . Ruuth, A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods, SIAM Journal on Numerical Analysis, vol.40, issue.2, pp.469-491, 1984.
DOI : 10.1137/S0036142901389025

]. P. Swe84, ]. Swebysz99, S. Scardovelli, and . Zaleski, High resolution schemes using flux limiters for hyperbolic conservation laws Direct numerical simulation of freesurface and interfacial flow, SIAM J. Numer. Anal. Annu. Rev. Fluid Mech, vol.21, issue.31, pp.995-1011, 1984.

A. [. Toumi, H. Kumbaro, and . Pailì-ere, Approximate Riemann solvers and flux vector splitting schemes for two-phase flow, p.29, 1999.

A. [. Thornber, D. Mosedale, . Drikakis-]-b, and . Van-leer, On the implicit large eddy simulations of homogeneous decaying turbulence Towards the ultimate conservative difference scheme v: a second order sequel to Godunov' method Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes Invariant sets for weakly coupled parabolic and elliptic systems Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder, J. Comput. Phys. J. Comput. Phys. Communications in Computational Physics Rend. Mat. Univ. Roma Comput. Method. Appl. M, vol.226, issue.162, pp.1902-1929, 1975.