Velocity and energy relaxation in two-phase flows

Abstract : In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible limit of the simplified model are also discussed. Finally, several numerical results are presented.
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00440852
Contributeur : Denys Dutykh <>
Soumis le : dimanche 14 mars 2010 - 10:33:17
Dernière modification le : lundi 21 mars 2016 - 17:34:54
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 11:25:47

Fichiers

YM_DD_MG.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yannick Meyapin, Denys Dutykh, Marguerite Gisclon. Velocity and energy relaxation in two-phase flows. Studies in Applied Mathematics, Wiley-Blackwell, 2010, 125 (2), pp.179-212. 〈10.1111/j.1467-9590.2010.00484.x〉. 〈hal-00440852v4〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

115