
HAL Id: hal-00440479
https://hal.science/hal-00440479

Submitted on 10 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Core Code Generation From Interface Based
Hierarchy

Jonathan Piat, Shuvra S. Bhattacharyya, Maxime Pelcat, Mickaël Raulet

To cite this version:
Jonathan Piat, Shuvra S. Bhattacharyya, Maxime Pelcat, Mickaël Raulet. Multi-Core Code Genera-
tion From Interface Based Hierarchy. Conference on Design and Architectures for Signal and Image
Processing (DASIP) 2009, Sep 2009, Sophia Antipolis, France. �hal-00440479�

https://hal.science/hal-00440479
https://hal.archives-ouvertes.fr

Multi-core code generation from Interface based hierarchy

Jonathan Piat1, Shuvra S. Bhattacharyya2, Maxime Pelcat1, and Mickael Raulet1
1IETR/INSA, UMR CNRS 6164

Image and Remote Sensing laboratory
F-35043 Rennes, France

email: {firstname.lastname@insa-rennes.fr}
2Department of Electrical and Computer Engineering,

University of Maryland
College Park, MD, 20742, USA

email: {ssb@umd.edu}

Abstract

Dataflow has proved to be an attractive computational
model for programming digital signal processing (DSP) ap-
plications. A restricted version of dataflow, termed syn-
chronous dataflow (SDF), offers strong compile-time pre-
dictability properties, but has limited expressive power. A
new type of hierarchy semantics that we propose for the
SDF model allows more expressivity in SDF while main-
taining its predictability. This new hierarchy semantic is
based on interfaces that fix the number of tokens con-
sumed/produced by a hierarchical vertex in a manner that is
independent or separate from the specified internal dataflow
structure of the encapsulated subsystem. This interface-
based hierarchy gives the application designer more flex-
ibility to apply iterative design approaches, and to make
optimizing choices at the design level. This type of hierar-
chy is also closer to the host language semantics (i.e., the
the semantics of the languages, such as C, Java and Ver-
ilog/VHDL, in which the internal functionality of primitive
SDF blocks is typically written) because hierarchy levels
can be interpreted as code closures (i.e., semantic bound-
aries), and allow one to design iterative patterns. This pa-
per presents our proposed approach to hierarchical SDF
system design, and demonstrates how we can take advan-
tage of the proposed hierarchy semantics to generate effi-
cient static C code targeting embedded applications.

1 Introduction

Since applications such as video coding/decoding or dig-
ital communications with advanced features are becoming
more complex, the need for computational power is rapidly

increasing. In order to satisfy software requirements, the
use of parallel architecture is a common answer. To reduce
the software development effort for such architectures, it
is necessary to provide the programmer with efficient tools
capable of automatically solving communications and soft-
ware partitioning/scheduling concerns. Most tools such as
PeaCE [14], SynDEx [3] or PREESM [9] use as an entry
point a model of the application associated to a model of
the architecture. Data flow model is indeed a natural rep-
resentation for data-oriented applications since it represents
data dependencies between the operations allowing to ex-
tract parallelism. In this model the application is described
as a graph in which nodes represent computations and edges
carry the stream of data-tokens between operations. The
Synchronous Data Flow (SDF) model allows to specify the
number of tokens produced/consumed on each outgoing/in-
coming edges for one firing of a node. Edges can also carry
initialization tokens, called delay. That information allows
to perform analysis on the graph to determine whether or
not the graph is schedule-able, and if so to determine an
execution order of the nodes and application’s memory re-
quirements.

In order to extend the expressivity of the SDF model, we
propose a new hierarchy type more detailed in [8] allow-
ing the designer to describe sub-graphs in a top down ap-
proach, thus adding relevant information for later optimiza-
tions. The purpose of this paper is to describe the methods
allowing to generate static C code for multi-processor ar-
chitecture from a given hierarchical SDF description. This
C code can then be compiled for the operators of the ar-
chitecture. Code generation is a key point of rapid proto-
typing tools as it allows the designer to go from its repre-
sentation to an efficient implementation. Application such
as RVC (Reconfigurable Video Coding) needs rapid proto-

1

typing tools allowing to re-use portion of already developed
algorithm in any video coding/decoding profile. In that case
static code generation leads to a predictable implementation
that can easily target embedded system and takes advantage
of the multi (heterogeneous) cores architectures.

Section 2 explains the data flow semantics and particu-
larly synchronous data flow graphs, section 3 presents the
existing hierarchy types and 4 introduces the proposed hier-
archy and its code generation. Section 5 uses the described
hierarchy type to design an example and provides some re-
sults. Finally, section 6 highlights the future work and con-
cludes this paper.

2 Synchronous Data Flow Graph

The Synchronous Data Flow (SDF) graph [5] is used to
simplify the application specification, by allowing the rep-
resentation of the application behavior at a coarse grain.
This data flow model represents operations of the appli-
cation and specifies data dependencies between the oper-
ations.

A Synchronous Data Flow graph is a finite directed,
weighted graph G =< V,E, d, p, c > where :

• V is the set of nodes; each node represents a compu-
tation that operates on one or more input data streams
and outputs one or more output data streams.

• E ⊆ V × V is the edge set, representing channels
which carry data streams.

• d : E → N ∪ {0} (N = 1, 2, . . .) is a function with
d(e) the number of initial tokens on an edge e.

• p : E → N is a function with p(e) representing the
number of data tokens produced at e’s source to be car-
ried by e.

• c : E → N is a function with c(e) representing the
number of data tokens consumed from e by e’s sink
node.

The topology matrix is the matrix of size |E| × |V |, in
which each row corresponds to an edge e in the graph and
each column corresponds to a node v. Each coefficient (i, j)
of the matrix is positive and equal to N if N tokens are pro-
duced by the jth node on the ith edge or negative and equal
to N if N tokens are consumed by the jth node on the ith

edge. It was proved in [5] that a static schedule for graph
G can be computed only if its topology matrix’s rank is one
less than the number of nodes in G. This necessary condi-
tion means that there is a Basic Repetition Vector (BRV) q
of size |V | in which each coefficient is the repetition factor
for the jth vertex of the graph. SDF graph representation
allows use of hierarchy, meaning that for v = G, a vertex

may be described as a graph. A vertex with no hierarchy is
called an actor.

2.1 SDF to DAG translation

One common way to schedule SDF graphs onto mul-
tiple processors is to first convert the SDF graph into a
precedence graph such that each vertex in the precedence
graph corresponds to a single execution of an actor from
the SDF graph. Thus each SDF graph actor A is “expanded
into” qA separate precedence graph vertices, where qA is
the component of the BRV that corresponds to A. In gen-
eral, the SDF graph exposes some of the functional paral-
lelism in the algorithm; the precedence graph may reveal
more functional parallelism, and in addition, it exposes the
available data-parallelism. A valid precedence graph con-
tains no cycle and is called DAG (Directed Acyclic Graph).
Unfortunately, the expansion due to the repetition count
of each SDF node can lead to an exponential growth of
nodes in the DAG. Thus, precedence-graph-based multipro-
cessor scheduling techniques, such as those developed in
[11, 12], in general have complexity that is not polynomi-
ally bounded in the size of the input SDF graph, and can re-
sult in prohibitively long scheduling times for certain kinds
of graphs (e.g., see [10]).

3 Hierarchy types in SDF graph

Hierarchy can be extracted from a graph in order to op-
timize application for the scheduling, but can also be used
by user to describe an application at different grain level.
A first type of hierarchy has been described in [10], as
a mean of representing cluster of actor in a SDF graph.
In [10] clustering is used as a pre-pass for the schedul-
ing described in [4] that reduces the number of vertices in
the DAG, minimizes synchronization overhead for multi-
threaded implementation and maximizes the throughput by
grouping buffers [4]. Another type of hierarchy as also been
introduced in the Parameter-based SDF model. The PSDF
hierarchy is described in [1] where the authors introduce
a new SDF model called Parameterized SDF. This model
aims at increasing SDF expressivity while maintaining its
compile time predictability properties. In this model a sub-
system (sub-graph) behavior can be controlled by a set of
parameters that can be configured dynamically. These pa-
rameters can either configure sub-system interface behavior
by modifying production/consumption rate on interfaces, or
configure behavior by passing parameters (values) to the
sub-system actors.

From a programmer view it is important to be able to
design independent parts of an application (function) con-
sidering fixed interfaces and then instantiate them into the
application. This allows to have a local analysis and to reuse

2

code into different application with minimal modifications.
To do so it is necessary to define an additional kind of hier-
archy which is designer/programmer oriented. This kind of
hierarchy allows to keep the statical properties of the SDF
while extending its expressivity by specifying the interfaces
behavior.

4 Interface-based SDF Hierarchy

While designing an application, user might want to use
hierarchy in a way to design independent graphs that can be
instantiated in any design. From a programmer view it be-
haves as closures since it defines limits for a portion of an
application. This kind of hierarchy must ensure that while a
graph is instantiated, its behavior might not be modified by
its parent graph, and that its behavior might not introduce
deadlock in its parent graph. The rules defined in the com-
position rules ensure the graph to be deadlock free when
verified, but are used to analyze a graph with no hierar-
chy. In order to allow the user to hierarchically design a
graph, this hierarchy semantic must ensure that the com-
posed graph will have no deadlock if every level of hierar-
chy is independently deadlock free. To ensure this rule we
must integrate special nodes in the model that restrict the
hierarchy semantic. In the following a hierarchical vertex
will refer to a vertex which embeds a hierarchy level, and a
sub-graph will refer to the graph representing this hierarchy
level.

4.1 Special nodes

Source node: A Source node is a bounded source of to-
kens which represents the tokens available for an iteration
of the sub-graph. This node behaves as an interface to the
outside world. A source port is defined by the four follow-
ing rules:

A-1 Source production homogeneity: A source node
Source produces the same amount of tokens on all its
outgoing connections p(e) = n ∀e ∈ {Source(e) =
Source}.

A-2 Interface Scope: The source node remains write-
locked during an iteration of the sub-graph. This
means that the interface cannot be filled by the outside
world during the sub-graph execution.

A-3 Interface boundedness: A source node cannot be re-
peated, thus any node consuming more tokens than
made available by the node will consume the same
tokens multiple times (ring buffer). c(e)%p(e) =
0 ∀e ∈ {source(e) = source}.

A-4 SDF consistency: All the tokens made available by a
source node must be consumed during an iteration of
the sub-graph.

Sink node: A sink node is a bounded sink of tokens that
represent the tokens to be produced by an iteration of the
graph. This node behaves as an interface to the outside
world. A sink node is defined by the four following rules:

B-1 Sink producer uniqueness: A sink node Sink only has
one incoming connection.

B-2 Interface Scope: The sink node remains read-locked
during an iteration of the sub-graph. This means that
the interface cannot be read by the outside world dur-
ing the sub-graph execution.

B-3 Interface boundedness: A sink node cannot be re-
peated, thus any node producing more tokens than
needed by the node will write the same tokens mul-
tiple times (ring buffer). p(e)%c(e) = 0 ∀e ∈
{target(e) = Sink}.

B-4 SDF consistency: All the token consumed by a sink
node must be produced during an iteration of the sub-
graph.

4.2 Hierarchy deadlock-freeness

Considering a consistent connected SDF graph G =
{g, z}, g = {Source, x, y, Sink} with Source being a
source node and Sink being a sink node, and z being an
actor. In the following we show how the hierarchy rules
described above ensure the hierarchical vertex g to not in-
troduce deadlocks in the graph G:

• if it exists a simple path going from x to y contain-
ing more than one arc, this path cannot introduce cycle
since this path contains at least one interface, mean-
ing that the cycle gets broken. User must take this into
account to add delay to the top graph.

• Rules A2-B2 ensure that all the data needed for an it-
eration of the sub-graph are available as soon as its ex-
ecution starts, and that no external vertex can consume
on the sink interface while the sub-graph is being ex-
ecuted. As a consequence no external vertex strongly
connected with the hierarchical vertex can be executed
concurrently. The interface ensures the sub-graph con-
tent to be independent to the outside world, as there is

no edge α ∈

α
′‖


(src(α′) = x)

and
(snk(α′) ∈ C)

and
(snk(α′) /∈ {x, y})


 con-

sidering that snk(α′) /∈ {x, y}) cannot happen.

• The designing approach of the hierarchy cannot lead
to an hidden delay since even if a delay is in the sub-
graph, an iteration of the sub-graph cannot start if its
input interfaces are not full.

3

Those rules also guarantee that the edges of the sub-
graph have a local scope, since the interfaces make the inner
graph independent from the outside world. This means that
when an edge in the sub-graph creates a cycle (and contains
a delay), if the sub-graph needs to be repeated this iterating
edge will not link multiple instances of the sub-graph.

The given rules are sufficient to ensure a sub-graph to not
create deadlocks when instantiated in a larger graph.

4.3 Hierarchy scheduling

As explained in [6] interfaces to the outside world must
not be taken into account to compute the schedule-ability
of the graph. As in our hierarchy interpretation, inter-
faces have a meaning for the sub-graph, they must be taken
into account to compute the schedule-ability, since we must
ensure that all the tokens on the interfaces will be con-
sumed/produced in an iteration of the sub-graph (see rules
A4-B4).

Due to the interface nature, every connection coming/-
going from/to an interface must be considered like a con-
nection to an independent interface. Adding an edge e to
graph G increases the rank of its topology matrix Γ if the
row added to Γ is linearly independent from the other row.
Adding an interface to a graph G composed of N vertices,
and one edge e connecting this interface toG adds a linearly
independent row to the topology matrix. This increases the
rank of the topology matrix of one, but adding the inter-
face’s vertex will yield in a N + 1 graph : rank(Γ(GN)) =
N − 1 ⇒ rank(Γ(GN+1)) = rank(Γ(GN)) + 1 =
(N+1)−1. The rank of the topology matrix remains equal
to the number of vertices less one meaning that this graph
remains schedule-able. Since adding an edge between a
connected interface and any vertex of the graph, results in
(in meaning) adding an edge between a newly created in-
terface and the graph, it does not affect the schedule-ability
considering the proof above. This means that a sub-graph
can be considered schedule-able if its actor graph (exclud-
ing interfaces) is schedule-able.

Before scheduling a hierarchical graph, we must verify
that every level of hierarchy is deadlock free. Applying
the balance equation to every level is sufficient to prove the
deadlock freeness of a level.

4.4 Hierarchy behavior

Interfaces behavior can vary due to the graph schedule.
This behavior flexibility can ease the development process,
but needs to be understood to avoid meaningless applica-
tions.

- Source behavior
As said in the source interface rules, a source interface

can have multiple outgoing (independent) connection and

reading more tokens than made available results in read-
ing modulo the number of tokens available (circular buffer).
This means that the interface can behave like a broadcast.
In Figure 1, vertices A and B have to execute respectively
4 and 6 times to consume all the data made available by the
port. In this example, the Source interface will broadcast
twice to vertex A and three times to vertex B. This means
that the designer must keep in mind that the interfaces can
have effect on the inner graph schedule.

Source
2

2
A

1

3

×4

B

2
1

×6

Figure 1. Source example and its execution
pattern

- Sink behavior
As said in the sink interface rules, a source interface can

only have one incoming connection, and writing more to-
kens than needed on the interface results in writing modulo
the number of tokens needed (circular buffer). In Figure 2,
the vertex B writes 3 tokens in a Sink that consumes only
one token, due to the circular buffer behavior, only the last
token written will be made available to the outside world.
This behavior allows to easily design iterative pattern with-
out increasing the number of edges. This behavior can also
lead to mistakes (from the designer view) as if there is no
precedence between multiple occurrences of a vertex that
writes to an output port, a parallel execution of these occur-
rences leads to a concurrent access to the interface and as
a consequence to indeterminate data in the sink node. This
also leads to dead codes from the node occurrences that do
not write to the sink node.

A
3

B
1 1

Sink
1

A

B1

B2

B3

Sink

Figure 2. Sink example and its precedence
graph

4

4.5 Interface-based hierarchy optimiza-
tion for multi-core scheduling

Designing an application using a hierarchical model not
only ease the designer work but also provide useful infor-
mation about relevant way to group operation and data (op-
eration and data clustering). In order to use those informa-
tion for the mapping/scheduling step, only the top level of
the graph is scheduled. This means that all the potential
parallelism embedded in the hierarchy remains unavailable.
In order to extract parallelism from the designer descrip-
tion, the graph must run through several transformation like
HSDF transformations, and/or hierarchy flattening before
being scheduled. To allow the designer to choose the level
of potential parallelism to extract from the hierarchy, the
graph hierarchy can be flattened to a given level thus re-
vealing the potential parallelism in the parent graph. This
means that a hierarchy level can be removed and the vertices
it contains appear in the top graph. Running a HSDF trans-
formation will then extract some more parallelism but will
decrease the data-throughput since data sets will be divided
in several smaller sets. Increasing the potential parallelism
by flattening a hierarchy level also increases the number of
vertices to schedule thus increases the scheduling complex-
ity.

After those transformations the Interface-based hierar-
chy can be scheduled/mapped onto multi-core architecture
using an adapted method.

4.6 Interface based hierarchy mapping
and scheduling

By using off-line mapping and scheduling, one can gen-
erate, at compile-time, a deployment on a parallel architec-
ture with optimized properties such as response time (la-
tency), memory consumption or execution time. The inputs
of the mapping and scheduling transformation are usually a
Directed Acyclic Graph (DAG) of actors and a graph with
processor vertices modeling the architecture [13]. The role
of the mapping process is to choose one core to execute each
actor while the scheduling process consists in choosing an
order of execution for the actors.

The compile-time predictability of interface based SDF
hierarchy enables the graph mapping and scheduling. A
complete knowledge of all actors is necessary including
Deterministic-Actor-Execution-Time (DAET), i.e. the time
needed to execute each actor on each processor available
for it. Before the mapping and scheduling process, a par-
tial transformation of the graph in a Directed Acyclic Graph
(DAG) must be applied, as described in section 2.1. Only
the transformed highest level of hierarchy will be mapped
and scheduled, reducing the mapping and scheduling com-
plexity. The DAET of a hierarchical actor is computed from

the execution time of the mono-processor scheduling of the
actor’s subgraph on the chosen processor. A trade-off be-
tween mapping accuracy and mapping speed is done while
converting the interface based SDF hierarchy to a DAG.

heuris tics

A rch itecture
B enchm ark

C om puting (AB C)
m apping

cost

D A G A rch itecture num ber
o f cores

D ep loym ent

Figure 3. Structure of a split mapping
scheduling algorithm

The problem of mapping and scheduling with the overall
goal of minimizing the global response time, often simply
called the task scheduling problem [13], has been proven to
be NP-complete in [2] for realistic cases (more than 2 pro-
cessors, actors with different timings, and so on). Heuristics
are needed in order to solve the problem in polynomial time.
In [7], the architecture of a mapping and scheduling proces-
sor is detailed where several heuristic are implemented and
can be combined with several ways to evaluate a deploy-
ment. The mapping and scheduling algorithm is split into
two parts, the heuristic part and the Architecture Benchmark
Computing (ABC) part (see Figure 3). The heuristic part
makes the mapping choices using an algorithm such as a
list scheduling or a genetic algorithm. It minimizes a given
cost and delegates the cost evaluation to the ABC part. The
ABC part can return costs of any type: response time, mem-
ory consumption, execution time, etc... In the classic case
of response time minimization, several ABCs are available
to model the behavior of a deployment at different level of
precision, taking into account the Inter-Processor Commu-
nication (IPC) impact.

After the mapping and scheduling process, a deployment
is generated consisting in a DAG with mapping properties,
a total order of the actors and added special Send and Re-
ceive actors that will be transformed into IPC calls during
the code generation.

4.7 Code generation from interface based
hierarchy

Code generation from an interface based hierarchy tar-
gets embedded application by generating static C code from
a scheduling/mapping of the graph for a given architecture.
One C file is generated for each core and the syntax must
take advantage of available C code pattern in order to pro-

5

vide a human-readable code. To allow any C compiler to
optimize the generated code, information such as variable
scope and deterministic loop iteration domain must be taken
into account. The generated C code must be architecture in-
dependent meaning that platform dependent code such as
IPC functions, and operating system dependent functions
will be generated as generic call that must then be imple-
mented by the user. Additional properties on the graph, pro-
vide informations such as data types (integer, char ...), and
each actor is associated to a C like prototype that gives in-
formation on the arguments types and order. Figure 4 gives
an example of hierarchical graph and its mono-processor
code generation.

4.7.1 Code generation from the top graph

After the mapping/scheduling step, the top graph is an SDF
graph in which vertices have additional properties providing
information on the core the vertex is mapped to and the ver-
tex’s scheduling order. This graph also have additional ver-
tices representing Inter Processor Communications (IPC) as
a pair of a send vertex and a receive vertex linked by a prece-
dence arc.

Generating code from this graph consist in synthesiz-
ing the arcs into buffers and the atomic vertices into func-
tion calls. In our code generation arcs are synthesized as
one-dimension arrays of a given type. Those buffers are
then protected by semaphores when involved in IPC. Spe-
cial vertices such as join, fork, broadcast, circular-buffer
are synthesized as memory copy with relevant arguments
: Fork = {N} ⇒ N × {1}, Join = N × {1} ⇒ {N}
,Broadcast = {N} ⇒ b × {N}, Circular − Buffer =
N × {1} ⇒ {1}. Vertices with repetition factor greater
than one are embedded into a loop, which consume/pro-
duce from/in the input/output buffers by using pointers into
those buffers (Figure 4). Atomic vertices are synthesized as
function calls with their respective input/output buffers as
arguments.

4.7.2 Code generation from a hierarchical vertex

Generating code from a vertex which is associated to a hi-
erarchy level is a little harder because we must ensure the
interfaces to keep the same behavior as in the data-flow se-
mantic. A pre-pass analyzes the interfaces behavior in the
graph and adds broadcast vertex on source interface out-
going edges and circular-buffer vertex on sink interface in-
coming edge when needed.

• Broadcast adding rule : c(e)%p(e) 6= 0

• Circular buffer adding rule : c(e)%p(e) 6= 0

Those rules ensures that there will not be any buffer over-
flow when writing into a sink interface, and to not read out

of the bounds of a source interface.
To simplify the code generation, strongly connected

components in the hierarchy are clustered and edges con-
taining delays are linked around the constructed cluster.
This allows to synthesized strongly connected components
in a factorized manner instead of repeating elements be-
longing to the strongly connected component. The schedul-
ing order of the vertices in the block of code is obtained by
doing a topological sort of the vertices.

As described earlier a hierarchy level behaves as a block
of code meaning that all the arcs contained in it have a lo-
cal scope. As a consequence a hierarchy level is described
as a block of code in which arcs linking vertices are syn-
thesized as local buffers, and arcs linked to interfaces are
synthesized as pointer in a buffer obtained from the upper
hierarchy level.

H
A

4
Src

4 4
b

2 2
c

1 1
Snk

1 1
D

1

void main (void){
i n t AtoH [4] ;
i n t HtoD [1] ;
i n t i ;
whi le (1){
A(AtoH) ;
{

i n t ∗ s r c = &AtoH [0] ;
i n t ∗ snk = &HtoD [0] ;
i n t b t o c [4] ;
f o r (i = 0 ; i < 2 ; i ++){

i n t ∗ s u b s r c = s r c [i ∗2%4];
i n t ∗ s u b b t o c = b t o c [i ∗2%4];
b (s u b s r c , s u b b t o c) ;
}
f o r (i = 0 ; i < 4 ; i ++){

i n t ∗ s u b b t o c = b t o c [i ∗1%4];
i n t ∗ s u b s n k = snk [i ∗1%1];
c (s u b b t o c , s u b s n k) ;
}
}
D(HtoD) ;
}
}

Figure 4. Example of a hierarchical graph
and its code generation

5 Application case study

In this section we will show how the new hierarchy
type (interface based hierarchy) can be used to design a
IDCT2D CLIP examples. The IDCT2D is a common ap-
plication in image decoding which operates over a 8 × 8
matrix of coefficient to decode 8 × 8 pixel block. In the
video decoding context the IDCT2D is followed by a clip
operation which adds or not a sign bit on samples depending

6

IDCT2D
IDCT2D CLIP

blockIn
64 64

mux

1

64

64

64

idct
8

8

trans
64 64

64

trig

2

blockOut
64

64
blocki

64

signedi

1

clip

6464

1

blocko

64

Figure 5. IDCT2D CLIP SDF graph designed with hierarchy type 2

on the kind of prediction being used for the block (INTER
or INTRA).

5.1 IDCT2D description

The IDCT2D CLIP used in this example (Figure 5) is a
recursive pattern using only 4 operations.

• mux : This actor, acts as a multiplexor. It outputs the
data from the source port blockIn on its first firing and
outputs the data from trans on the second firing.

• idct : Performs an one dimension IDCT on a vector of
8 elements (IDCT1D).

• trans : Transposes an 8× 8 matrix.

• clip : Apply the signed depending on the kind of the
prediction type.

In this representation the trig operation is a null time
operation which forces the loop to iterate twice. The
IDCT2D CLIP is defined using two level of hierarchy. The
first level performs a classic IDCT2D by using one dimen-
sion IDCT and transposition of an 8 × 8 matrix. The ad-
ditional level add the clip operation which is specific to the
video decoding algorithm. This operation computes on each
sample a 9 bit signed integer for INTER prediction, while it
does an 8 bit unsigned integer for INTRA prediction.

5.2 Example Mapping/Scheduling

In order to show the result of the IDCT2D mapping on
a four cores architecture, the application is instantiated into
an application generating four blocks of data to be com-
puted and a single signed data. The IDCT2D vertex is thus
triggered four times and the signed data is broadcasted to
each instance of the IDCT2D. In order to extract some par-
allelism from the description, an HSDF transformation is
applied, which instantiates four times the IDCT2D vertex,

an adds fork and join vertices on the input and output data.
The mapping step distributes an IDCT2D on each core of
the architecture and generates the send and receive opera-
tion on the useful data. The result shows that the mapping
takes advantage of the hierarchy by generating grouped data
transfer thus minimizing the communication setup over-
head in the IPCs. Flattening the hierarchy leads to a larger
number of vertex to schedule but the mapping leads to the
same solution, and the code generation gives a bigger ap-
plication memory footprint since all the buffer embedded
into the hierarchy are allocated as global buffers. Figure
6 gives statistics extracted from the scheduling. The DAG
size refers to the number of vertices in the DAG to sched-
ule, and is given for different hierarchy flattening level. The
memory footprint refers to the buffers allocated statically.
The buffers embedded into hierarchy levels, are allocated
dynamically by the compiler and takes advantage of their
respective scope (code block). The memory statistics pre-
sented are deduced from the code generation.

HSDF Flattening Level 1 Flattening Level 2
DAG size 9 13 33
Memory 323 int 385 int 1092 int

Figure 6. Applications statistics for different
level of flattening : static memory allocations
per core and number of vertices in the DAG

6 Further work and Conclusion

This paper introduces a new form of hierarchy seman-
tics for synchronous dataflow (SDF) representations that
involves the designer more in the application optimization
process by allowing him to modify the topological descrip-
tions of application subsystems with more freedom rela-
tive to the corresponding subsystem interfaces. The ap-

7

void i d c t 2 d c l i p (i n t ∗ b l o c k i ,
i n t ∗ s ign ,
i n t ∗ b l oc ko){

i n t b l o c k o u t [6 4] ;
i n t t r i g g e r s [2] ;
i n t i d c t 1 d l o o p [6 4] ;
i n i t d e l a y (i d c t 1 d l o o p , 6 4 /∗ i n i t s i z e ∗ /) ;
t r i g (t r i g g e r s) ;
f o r (i = 0 ; i <2 ; i ++){

i n t ∗ t r i g g e r = &t r i g g e r s [(i ∗1)%2] ;
i n t r o w s i n [6 4] ;
i n t r o w s o u t [6 4] ;
mux (b l o c k i , i d c t 1 d l o o p , t r i g g e r , r o w s i n) ;
f o r (j = 0 ; j <8 ; j ++){

i n t ∗ r o w o u t = &r o w s o u t [(j ∗8)%64] ;
i n t ∗ r o w i n = &r o w s i n [(j ∗8)%64] ;
i d c t 1 d (row in , r o w o u t) ;

}
t r a n s (rows ou t , b l o c k o u t , i d c t 1 d l o o p) ;

}
c l i p (b l o c k o u t , s ign , b lo ck o) ;

}

Figure 7. Code generated using PREESM

plication of our methods to multi-core DSP system design
is demonstrated with a detailed case study involving two-
dimensional discrete cosine transform computation.

The new form of SDF hierarchy that we propose in this
paper allows the designer to perform optimization on the
application at a topological level (i.e., in terms of rear-
rangements of dataflow block instances and their intercon-
nections), and provides a programming interface for hier-
archical organization that is more natural in various con-
texts. In particular, our hierarchy representation is closer
to the semantics of C and other common target languages
for SDF-based synthesis flows, and makes the application
easier to describe for programmers who are, for example,
more familiar with C, and less familiar with concepts such
as repetitions vectors and subinit graphs. Our method al-
lows reuse of graphs developed in other applications with
minimal modifications, and offers more flexibility by al-
lowing the description of execution patterns that do not
map directly into conventional types of hierarchy. Our pro-
posed interface-based hierarchy semantics for SDF graphs
has been implemented as the algorithm specification model
in the PREESM tool [9].

A useful direction for further investigation is the de-
velopment of techniques for optimized scheduling that are
derived from our proposed new form of SDF hierarchy
organization. Such scheduling could automatically opti-
mize execution for the given SDF graph by choosing to
remove hierarchy levels or perform SDF-to-homogeneous-
SDF transformation on selected subsystems to take advan-
tage of available parallelism. Code generation could also
be improved by integrating target compiler directives with

code at subsystem boundaries that back-end compilers can
use for more thorough optimization.

References

[1] B. Bhattacharya and S. S. Bhattacharyya. Parameterized
dataflow modeling for DSP systems. IEEE Transactions on
Signal Processing, 49(10):2408–2421, October 2001.

[2] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity; A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., 1990.

[3] T. Grandpierre and Y. Sorel. From algorithm and architec-
ture specification to automatic generation of distributed real-
time executives: a seamless flow of graphs transformations.
In International Conference on Formal Methods and Models
for Codesign, MEMOCODE’03, June 2003.

[4] C. Hsu, J. L. Pino, and S. S. Bhattacharyya. Multithreaded
simulation for synchronous dataflow graphs. In Proceedings
of the Design Automation Conference, pages 331–336, June
2008.

[5] E. Lee and D. Messerschmitt. Pipeline interleaved pro-
grammable dsp’s: Synchronous data flow programming.
Proceedings of the IEEE, 35(9):1334–1345, Sept. 1987.

[6] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal process-
ing. IEEE Trans. Comput., 36(1):24–35, 1987.

[7] M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan. Scalable
compile-time scheduler for multi-core architectures. In De-
sign, Automation and Test in Europe Conference (DATE),
2009.

[8] J. Piat, S. S. Bhattacharyya, and M. Raulet. Interface-based
hierarchy for Synchronous Data-Flow Graphs. in Signal
Processing Systems (SiPS), 2009.

[9] J. Piat, M. Raulet, M. Pelcat, P. Mu, and O. Déforges. An
extensible framework for fast prototyping of multiprocessor
dataflow applications. In IDT08: Proceedings of the 3rd
International Design and Test Workshop, december 2008.

[10] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A hierarchical
multiprocessor scheduling system for DSP applications. In
Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, pages 122–126 vol.1, November
1995.

[11] H. W. Printz. Automatic mapping of large signal processing
systems to a parallel machine. PhD thesis, Carnegie Mellon
University, 1991.

[12] G. C. Sih and E. A. Lee. Dynamic-level scheduling for het-
erogeneous processor networks. In Proceedings of the Sec-
ond IEEE Symposium on Parallel and Distributed Process-
ing, pages 42–49, October 1990.

[13] O. Sinnen and L. Sousa. Communication contention in task
scheduling. IEEE Transactions on Parallel and Distributed
Systems, 16(6):503–515, 2005.

[14] W. Sung, M. Oh, C. Im, and S. Ha. Demonstration Of Code-
sign Workflow In PeaCE. In in Proc. of International Con-
ference of VLSI Circuit, 1997.

8

	Introduction
	Synchronous Data Flow Graph
	SDF to DAG translation

	Hierarchy types in SDF graph
	Interface-based SDF Hierarchy
	Special nodes
	Hierarchy deadlock-freeness
	Hierarchy scheduling
	Hierarchy behavior
	Interface-based hierarchy optimization for multi-core scheduling
	Interface based hierarchy mapping and scheduling
	Code generation from interface based hierarchy
	Code generation from the top graph
	Code generation from a hierarchical vertex

	Application case study
	IDCT2D description
	Example Mapping/Scheduling

	Further work and Conclusion

