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HOMOLOGICAL PROPERTIES OF STRATIFIED SPACES

Martin Saralegi∗

In [4], Goresky and MacPherson introduced intersection homology in order to extend Poincaré Duality
to some singular spaces. They also introduced the intersection cohomology from a differential point of view
by means of intersection differential forms [3]. Using the sheaf axiomatic construction of [5], it is shown
in [3] that the intersection homology is dual to the intersection cohomology. Moreover, a subcomplex of
intersection differential forms is exhibited in [2] for which the usual integration

∫
of differential forms on

simplices realizes the above duality (deRham Theorem). The context of these works is the category of
Thom-Mather stratified spaces.1 2

Later, MacPherson introduced a more general notion of intersection homology, by enlarging the notion of
perversity [8]. The aim of this work is to extend the previous deRham Theorem to this new context; we also
give a weaker presentation of intersection differential forms. The description of the “allowability condition”
for intersection differential forms uses the tubular neighborhoods of the strata, it is a germ condition. It
seems more natural to give a presentation of intersection differential forms whose “allowability” is measured
more directly on the strata, as for the intersection homology.

Since the differential forms cannot be defined on the singular part of A, the version we propose here
uses a blow up π: Ã → A of the stratified space (essentially the resolution of singularities of Verona [14]).
The allowability of the differential forms is measured on the desingularization π−1(S) of the strata S of A.
This gives rise to weak intersection differential forms. We show that the complex of these differential forms
calculates the intersection homology of A. The proof is direct; that is, we show that the usual integration∫

of differential forms on simplices realizes the isomorphism. We finish the work by giving a direct proof
of the fact that the Poincaré Duality for intersection cohomology (IH p̄

∗ (A) ∼= IH q̄
n−∗(A)) can be realized by

the integration
∫

of the usual wedge product of differential forms (see also [3] for classical perversities).

In Section 1 we recall the notion of a stratified space A and we introduce the blow up of A: the unfolding
(in fact, the resolution of singularities of Verona without faces). Remark that in some cases the unfolding of
A appears more naturally than the tubular neighborhood system of A: compact Lie group actions, compact
singular Riemannian foliations [10], etc . . .We recall in the second Section the results of [7] and [2] about the
intersection homology. Section 3 is devoted to the study of weak intersection differential forms. In the last
Section we give the principal results of this note: the deRham Theorem (see §4.1.5) and Poincaré Duality
(see §4.2.7).

We are grateful to G.Hector, E.Ghys (who suggested to us the use of the unfolding) and D.Tanré for
useful discussions. We would like to thank the Department of Mathematics of the University of Illinois at
Urbana-Champaign for its hospitality during the writing of this paper.

In this work all manifolds are considered smooth and without boundary, “differentiable” and smooth
mean “of class C∞” and the chains and cochains complexes are taken with coefficients in IR.
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2Classification AMS. Primary : 55N33, Secondary : 57N80.



Homological properties of stratified spaces 2

1 Stratified spaces. Unfoldings

The stratified spaces used in [3] and [2] are Thom-Mather stratified spaces which are stratified pseudoman-
ifolds. These spaces have a blow up in a manifold, which we called unfolding (see [14] and [2]).

1.1 Stratified spaces

We introduce the notion of singular space involved in this work.

1.1.1 Remember that a Thom-Mather stratified space A is the union of smooth manifolds, called strata,
each of which possesses a tubular neighborhood; these neighborhoods intersect each other in a conical way1.
The dimension of A, written dim A, is the greatest dimension of the strata.

A stratified space is a Thom-Mather stratified space A such that for each stratum S there exists a
stratum R, with dim R = dimA, satisfying S ⊂ R. These strata with maximal dimension are the regular
strata, the others are the singular strata. We shall write S to represent the family of singular strata
and Σ ⊂ A the union of singular strata. The stratified space A is said to be normal if it possesses only
one regular stratum. Notice that, if the codimension of singular strata is at least two, the stratified space
A is a topological pseudomanifold (as defined in [5]). A useful concept in this work is the depth of A:
d(A) = max{i ∈ {0, . . . ,dim A} / there exists a family of strata S0, . . . , Si with S0 ⊂ S1, S1 ⊂ S2, . . . }.

1.2 Unfoldings

We introduce the notion of unfolding, it is the resolution of singularities of [14] in the category of manifolds
without boundary. It comes from A replacing each singular point by an unfolding of its link.

1.2.1 An unfolding of a 0-dimensional stratified space is a finite covering.
An unfolding of a n-dimensional stratified space A is a continuous map π from a manifold Ã onto A

such that

• for each regular stratum R, the restriction π:π−1(R)→ R is a finite trivial smooth covering,

• for each singular stratum S of dimension i, for x ∈ S and for x̃ ∈ π−1(x) there exists a commutative
diagram:

U IRi × cL

V IRi × L̃×]− 1, 1[

(1) π P
Φ

Φ̃

-

-

? ?

where:

i) U and V are neighborhoods of x and x̃ respectively,

ii) πL: L̃→ L is an unfolding of L, compact stratified space,
iii) Φ is a strata preserving homeomorphism whose restriction to each stratum is smooth and

Φ̃ is a diffeomorphism.
iv) P (x, ỹ, r) = (x, [πL(ỹ), |r|]).

Here cL denotes the cone L× [0, 1[ / L× {0} and [ , ] a point of cL.

1For the notions related to Thom-Mather spaces we refer the reader to [12] and [9].
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It is shown in [2] that any stratified space possesses an unfolding. But in some cases the unfolding is
a more natural structure than the Thom-Mather structure: the orbit space of an action of a compact Lie
group, and the leaf space of a singular Riemannian manifold (see [10]).

1.2.2 The neighborhood U is called distinguished neighborhood of x. The point x has a base for the
family of neighborhoods formed by distinguished neighborhoods. To see this, it suffices to reparametrize
]− 1, 1[ and the ratio of cL. As a consequence we get that each open set W ⊂ A has the natural unfolding
π:π−1(W ) → W . The stratified spaces M × A, where M is a manifold, and cA, for A compact, have also
natural unfoldings:

π1:M × Ã→M ×A defined by π1(x, ã) = (x, π(ã)),(2)

π2: Ã×]−1, 1[→ cA defined by π2(ã, t) = [π(ã), |t |].(3)

1.2.3 An isomorphism between two stratified spaces A and A′ with unfoldings Ã and Ã′ is given by a
stratum preserving homeomorphism f :A → A′ and by a diffeomorphism f̃ : Ã → Ã′ satisfying π′f̃ = fπ.
For example (Φ, Φ̃) is a isomorphism.

Under the unfolding π each singular stratum S becomes a hypersurface of Ã related to S by the following
Proposition.

Proposition 1.2.4 Let S be a singular stratum of A. Then, the restriction of π to a connected component
of π−1(S) is a smooth locally trivial fibration with fiber L̃.

Proof. It suffices to consider the diagram (1) for a point x ∈ S:

U ∩ S IRi × {vertex}

π−1(S) ∩ V IRi × L̃× {0}

π P ≡ projection

Φ

Φ̃

♣-

-

? ?

Throughout this work, we fix a n-dimensional stratified space A and an unfolding π: Ã → A. In fact,
all the results of this work still hold if A is a topological pseudomanifold, with smooth strata, admitting an
unfolding.

2 Intersection homology

MacPherson has presented a weaker notion of perversity and generalized the simplicial intersection homology
(see [8]). As we shall see, this is also the case for the singular intersection homology of [7]. In this section
we show how the singular intersection homology of A can be computed by using the complex of singular
intersection chains which have a lifting ; this is an important tool for the deRham Theorem.

2.1 Singular intersection homology

We recall the definition of the notion of perversity of [8] and we present the corresponding adaptation of the
singular intersection homology of [7].

2.1.1 A perversity is a function p̄:S → ZZ from the set of singular strata to the integers. Two perversities
p̄ and q̄ are dual if p̄(S)+ q̄(S) = codim S−2, for each S ∈ S. For example, the zero perversity 0̄, defined
by 0̄(S) = 0, and the top perversity 0̄, defined by t̄(S) = codim S − 2, are dual.
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A classical perversity of a topological pseudomanifold is a function p from the integers greater than
one to the integers with the properties that p(2) = 0 and p(i + 1) is either p(i) + 1 or p(i) for i > 2. The
classical perversity p induces a perversity p̄ by taking p̄(S) = p(codim S) for each singular stratum.

From now on, we fix a perversity p̄. The following definitions are adaptations of the notions of [7] to this
new context.

2.1.2 A singular simplex σ:∆→ A of dimension i is p̄-allowable (or allowable) if
a) σ sends the interior of ∆ in a regular stratum of A,and
b) σ−1(S) ⊂ (dim ∆− codim S + p̄(S))-skeleton of ∆, for each singular stratum S of A.

When p̄ is a classical perversity the condition b) implies a). Observe that each singular simplex obtained
from σ by linear subdivision is still p̄-allowable.

A singular chain ξ =
m∑

j=1

rjσj is p̄-allowable (or allowable) if each singular simplex σj is p̄-allowable. We

shall say that ξ is a p̄-intersection (or intersection) singular chain if ξ is p̄-allowable and the boundary ∂ξ,
where we have neglected all simplices not satisfying a), is also p̄-allowable. When p̄ is a classical perversity,
any simplex of the boundary ∂ξ verifies a).

Define SC p̄
∗ (A) to be the complex of p̄-intersection singular chains. Proceeding as in [7], we can prove that

this differential complex computes the intersection homology of [8]. That is, we get H∗(SC p̄(A)) ∼= IH p̄
∗ (A).

An isomorphism between two stratified spaces A and A′ induces an isomorphism between IH p̄
∗ (A) and

IH p̄
∗ (A′).

The following local calculations will be used throughout this work. They are shown in [7] for a classical
perversity, but the same proofs hold for a perversity..

Proposition 2.1.3 If M is a contractible manifold the map a 7→ (t0, a), where t0 is a fixed point of M ,
induces an isomorphism IH p̄

∗ (A) ∼= IH p̄
∗ (M ×A).

Proposition 2.1.4 If A is compact then the map a 7→ [t0, a], where t0 is a fixed point of the interval ]0, 1[,

induces an isomorphism IH p̄
j (cA) ∼=

{
IH p̄

j (A) if j < n− p̄(vertex of cA)

0 if j ≥ n− p̄(vertex of cA)

By working with this new definition of perversity we loose some properties of [4], namely the stratification
invariance of IH p̄

∗ (A). However, the following property remains.

Proposition 2.1.5 If A is manifold then IH p̄
∗ (A) ∼= H∗(A), for any stratification on A, provided that

0 ≤ p̄ ≤ t̄.

Proof. Locally, the manifold A looks like IRi×cL (see §1.2.1), where L is a homological sphere. The previous

calculation shows that IH p̄
j (IRi×cL) ∼=

{
IH p̄

j (L) if j ≤ codim S − 1− p̄(S)

0 if j ≥ codim S − p̄(S)
. An argument by recurrence

on the depth of A shows that IH p̄
∗ (L) ∼= H∗(L). Since 0 ≤ p̄ ≤ t̄, we get IH p̄

∗ (IRi × cL) ∼= H∗(IR
i × cL).

Now, the passage from the local to the global can be done as in [7]. ♣
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2.2 Liftable singular intersection chains

The notion of lifting of a singular chain arises from the notion of unfolding of a stratified space. This
concept is useful because it allows us to integrate the intersection differential forms over the liftable singular
intersection chains. We introduce in this section the notion of the lifting of the singular chains.

2.2.1 Let ∆ be the standard simplex. An unfolding of ∆ is given by a decomposition ∆ = ∆0 ∗ · · · ∗∆p

and by the map µ from ∆̃ = c̄∆0 × · · · × c̄∆p−1 ×∆p onto ∆ defined by:

µ([x0, t0], . . . , [xp−1, tp−1], xp) =

t0x0 + (1− t0)t1x1 + · · ·+ (1− t0) · · · (1− tp−2)tp−1xp−1 + (1− t0) · · · (1− tp−1)xp.

Here c̄∆i denotes the closed cone ∆i × [0, 1] / ∆i × {0}, and [xi, ti] a point of it. The map µ is well defined
and maps diffeomorphically the interior of ∆̃ to the interior of ∆.

2.2.2 The boundary of ∆̃ has the following decomposition ∂∆̃ = ∂̃∆+δ∆̃ (see [2]), where ∂̃∆ is the unfolding
of the boundary ∂∆ with the induced decomposition, and δ∆ is formed by the faces µ(F ) of ∆ with:

F = c̄∆0 × · · · × c̄∆i−1 × (∆i × {1}) × c̄∆i+1 × · · · × c̄∆p−1 ×∆p.

Observe that the map µ , when restricted to the interior of ∆̃, is a submersion.

2.2.3 Let σ:∆→ A be a singular simplex. We shall say that σ is a liftable singular simplex if:

a) for each face C of ∆ there exists a stratum S of A containing the image by σ of the interior of C, and
b) there exists an unfolding µ: ∆̃→ ∆ and a differentiable map σ̃: ∆̃→ Ã such that πσ̃ = σµ.

The map σ̃ is a lifting of σ. It is shown in [2] that any singular simplex obtained from σ by linear subdivision
of ∆ has a lifting.

A singular chain ξ =
m∑

j=1

rjσj is liftable if each singular simplex σj is liftable. We define RC p̄
∗ (A) to be

{ξ ∈ SC p̄
∗ (A) / ξ is liftable}. Notice that this complex is differential. An isomorphism between two stratified

spaces A and A′ induces an isomorphism between H∗(RC p̄(A)) and H∗(RC p̄(A′)).

The two following results are proved in [2] for a classical perversity, but the proofs still hold for any
perversity.

Proposition 2.2.4 Let I be an open interval of IR. Then the map a 7→ (t0, a), where t0 is a fixed point of
I, induces an isomorphism H∗(RC p̄(A)) ∼= H∗(RC p̄(I ×A)).

Proposition 2.2.5 If A is compact then the map a 7→ [t0, a], where t0 is a fixed point of the interval ]0, 1[,

induces an isomorphism Hj(RC p̄
∗ (cA)) ∼=

{
Hj(RC p̄

∗ (A)) if j < n− p̄(vertex of cA)
0 if j ≥ n− p̄(vertex of cA).

2.3 Relation between IH p̄
∗
(A) and H∗(RC p̄(A))

This section is devoted to show that the inclusion RC p̄
∗ (A) →֒ SC p̄

∗ (A) induces an isomorphism in homology
(quasi-isomorphism). First, we introduce the Mayer-Vietoris argument, and we show how to localize the
problem. Then we will use the local calculations made in the above section.
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2.3.1 Let U = {Uα / α ∈ J} be an open cover of A. The complexes SUC p̄
∗ (A) and RUC p̄

∗ (A) of U-small
chains are defined as subcomplexes of SC p̄

∗ (A) and RC p̄
∗(A) respectively, these are generated by the chains

lying on some open of the cover U . The exact sequences

0← SUC p̄
∗ (A)←

⊕

α0

SC p̄
∗ (Uα0

)←
⊕

α0<α1

SC p̄
∗ (Uα0

∩ Uα1
)← · · ·(4)

0← RUC p̄
∗ (A)←

⊕

α0

RC p̄
∗ (Uα0

)←
⊕

α0<α1

RC p̄
∗ (Uα0

∩ Uα1
)← · · ·(5)

are the Mayer-Vietoris sequences (see [1, page 186]).

The next step is to show that the subcomplex of U -small chains is homologous to the original one (see
§2.3.5). In order to do this we need some preliminary results.

A singular simplex σ:∆→ A is p̄-good (or good) if
a) for each singular stratum S the minimal face CS of ∆ containing σ−1(S) satisfies dim CS ≤ dim∆−

codim S + p̄(S), and
b) the family {CS / dim CS = dim ∆− codim S + p̄(S)} is totally ordered by inclusion.

Lemma 2.3.2 Any maximal element of the barycentric subdivision of an allowable singular simplex is good.

Proof. Let ϕ:∇ → A be an allowable singular simplex and σ:∆→ A an element of its barycentric subdivision
with dim∇ = dim ∆. Recall that the trace on ∆ of the j-skeleton of ∇ is a face of ∆ with dimension lower
or equal than j. So, for each singular stratum S, the minimal face CS of ∆ containing σ−1(S) satisfies a).

If dim CS = dim ∆−codim S+ p̄(S) then the trace on ∆ of the (dim ∆−codim S+ p̄(S))-skeleton of ∇ is
exactly CS . The result follows now from the fact that the family {C face of ∆ / C ⊂ (dim C)−skeleton of ∇}
is totally ordered by inclusion. ♣

Lemma 2.3.3 Let σ:∆→ A be a good allowable singular simplex. Suppose that T (σ) = min{CS / dimCS

= dim ∆ − codim S + p̄(S)} exists. For each codimension one face s:C → ∆ of σ satisfying §2.1.2 a), we
get

s is not allowable if and only if C ⊃ T (σ).

In this case, if σ′:∆→ A is another good allowable singular simplex having s as a face, we have the relation
T (σ) = T (σ′).

Proof. If s is not allowable then there exists a singular stratum S with s−1(S) 6⊂ (dim ∆−1−codim S+p̄(S))-
skeleton of C. Since s−1(S) ⊂ CS ∩C and dimCS = dim ∆− codim S + p̄(S) we conclude that CS ⊂ C and
therefore T (σ) ⊂ C.

On the other hand, if CS ⊂ C for some singular stratum then we have σ−1(S) = s−1(S) and dimCS =
dim ∆− codim S + p̄(S). Hence s−1(S) 6⊂ (dim ∆− 1− codim S + p̄(S))-skeleton of C.

Finally, we prove T (σ) = T (σ′). Write S the singular stratum verifying CS = T (σ). The relation
σ−1(S) = s−1(S) ⊂ (σ′)−1(S) implies T (σ) ⊂ C ′

S . Since dimC ′
S ≤ dim ∆− codim S + p̄(S) = dim T (σ) we

obtain C ′
S = T (σ). By the definition of T (σ′), we can write T (σ′) ⊂ C ′

S , that is, T (σ′) ⊂ T (σ). Similarly,
we prove T (σ) ⊂ T (σ′) and therefore T (σ) = T (σ′). ♣

We have already noticed that the chain subdivision is an interior operator in SC p̄
∗ (A) and RUC p̄

∗ (A). We
shall let S:SC p̄

∗ (A)→ SC p̄
∗ (A) and S:RC p̄

∗ (A)→ RC p̄
∗ (A) the barycentric subdivision (see [15, page 206]).
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Lemma 2.3.4 For each ξ ∈ SC p̄
∗ (A) (resp. RC p̄

∗ (A)) there exists ℓ ≥ 1 such that Sℓ(ξ) ∈ SUC p̄
∗ (A) (resp.

RUC p̄
∗ (A)).

Proof. The method used in [15, page 207] ensures the existence of ℓ ≥ 1 such that Sℓ(ξ) =
m∑

j=1

rjσj is an

element of SU
∗ (A) satisfying: σj(T (σj)) ⊂ Uα ⇒ Imσj ⊂ Uα, when T (σj) exists. We need to prove that

Sℓ(ξ) belongs to SUC p̄
∗ (A) (resp. RC p̄

∗ (A)).
Notice that if T (σj) does not exist, the singular simplex σj lies in SUC p̄

∗ (A) (resp. RC p̄
∗ (A)). Thus,

we can assume the existence of T (σj), for j = 1, . . . , n. The Lemma will be proved if we show that, for a

fixed α ∈ J , the chain ξα =
∑

σj(T (σj ))⊂Uα

rjσj is an element of SC p̄
∗ (Uα) (resp. RC p̄

∗ (Uα)). In fact we only

need to show that the elements of ∂ξα satisfy §2.1.2 b). Let σj be an element of ξα. There exists a family
{σj0 , . . . , σjp} of good allowable singular simplices of ξ which cancel the codimension one faces of σj not
satisfying §2.1.2 b). From the previous Lemma, we know that the simplices {σj0 , . . . σjp} are in ξα. Thus
the chain ξα is an intersection chain. ♣

The relationship between the U -small chains and the original chains is given by:

Proposition 2.3.5 The inclusions SUC p̄
∗ (A) →֒ SC p̄

∗ (A) and RUC p̄
∗ (A) →֒ RC p̄

∗ (A) are quasi-isomorphisms.

Proof. For a proof of this fact we refer the reader to [15, appendix I, page 207]. The idea behind is quite
intuitive: to get an inversion chain map, subdivide each chain in A until it becomes U -small, and this is
possible by Lemma above. Now, we only need to show that the homotopy operator is an interior operator
in the complexes SC p̄

∗ (A) and RC p̄
∗ (A).

Let σ:∆→ A be a liftable p̄-allowable singular simplex (the same proof holds for a p̄-allowable singular
simplex). Consider the cone singular simplex cσ: c̄∆→ A defined by cσ([x, t]) = σ(tx + (1− t)B), where
B is the barycenter of ∆. We must proof that cσ is also a liftable p̄-allowable singular simplex. This arises
from the following remarks:

• For each face C of ∆ we have cσ(interior of C×]0, 1[) = σ(interior of C) ⊂ A−Σ, and cσ(interior of C×
{1}) = σ(interior of C) ⊂ S, for some stratum S.

• cσ(vertex of c̄∆) = σ(B) ⊂ A− Σ.

• For any singular stratum S

1. (cσ)−1(S) = σ−1(S)× {1} ⊂ (dim ∆− codim S + p̄(S))-skeleton of ∆× {1}, if p̄(S) < codim S,

2. (cσ)−1(S) ⊂ c̄∆ ⊂ (dim c̄∆− codim S + p̄(S))-skeleton of c̄∆, if p̄(S) ≥ codim S.

• Consider σ̃: ∆̃ = c̄∆0 × · · · × c̄∆p−1 × ∆p → Ã a lifting of σ. In c̄∆ we have the decomposition

∆0 ∗ · · · ∗ ∆p−1 ∗ ({S} ∗ ∆p), where S is the vertex of the cone c̄∆. The unfolding µ′: ˜̄c∆ → c̄∆ is
defined by

µ′(x = [x0, t0], . . . , [xp−1, tp−1], txp + (1− t)S) =

t0x0 + (1− t0)t1x1 + · · ·+ (1− t0) · · · (1− tp−2)tp−1xp−1 + (1− t0) · · · (1− tp−1)(txp + (1− t)S).

We define the lifting c̃σ: ˜̄c∆→ Ã by c̃σ(x) = σ̃(P0, . . . , Pp) with
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– Pi = {1− (1− ti) · · · (1− tp−1)(1− t)(1− (αi + · · ·+ αp)}
−1




tixi + (1− ti) · · · (1− tp−1)(1− t)αiBi

+
{(1− ti)− (1− ti) · · · (1− tp−1)(1− t)(α0 + . . . + αi)}Si




for i ∈ {0, . . . , p− 1} and

– Pp = {1− (1− t)(1− αp)}
−1(txp + (1− t)αpBp).

Here B =
p∑

i=0

αiBi , where Bi is the barycenter ∆i , and Si is the vertex of c̄∆i. This map is well

defined because:

a) Pi depends on {tixi, ti, . . . , tp−1, t}, and

b) 1 6= (1− t)(1− αp) and 1 6= (1− ti) · · · (1− tp−1)(1 − t)(1− (αi + · · ·+ αp)) for i ∈ {0, . . . , p− 1};

and it is a differentiable map. Since πσ̃ = σµ, a straightforward computation shows πc̃σ = cσµ′.
Therefore, the simplex cσ has a lifting. ♣

To get the main result of this section we also need the following Lemma:

Lemma 2.3.6 Suppose A compact. Then the first statement implies the second one:
a) the inclusion RC p̄

∗(W ) →֒ SC p̄
∗ (W ) is a quasi-isomorphism for each open W ⊂ A,

b) the inclusion RC p̄
∗ (V ) →֒ SC p̄

∗ (V ) is a quasi-isomorphism for each open V ⊂ IRm × cA.

Proof. We proceed in four steps.
1) V = IRm × cA. We apply §2.1.2, §2.1.3, §2.2.4, §2.2.5 and the hypothesis a) for W = A.

2) V =]a1, b1[, . . . , ]am, bm[×cεA, where ai , bi ∈ IR, ε ∈]0, 1[ and cεA = A× [0, ε[ / A× {0}. Since V is
isomorphic to IRm × cA it suffices to apply 1).

3) V =]a1, b1[, . . . , ]am, bm[×]ε, ε′[×W , where ai , bi ∈ IR, ε, ε′ ∈]0, 1[ and W ⊂ A. In this case it follows
from §2.1.2, §2.2.4 and the hypothesis a).

4) General case. Let U = {Uα / α ∈ J} an open cover of V with each Uα satisfying 1). Observe that the
intersections Uα0

∩Uα1
satisfy 2) or 3). Then, from (4) and (5) we get the following commutative diagram:

0← SUC p̄
∗ (A)←

⊕

α0

SC p̄
∗ (Uα0

)←
⊕

α0<α1

SC p̄
∗ (Uα0

∩ Uα1
)← · · · ,

0← RUC p̄
∗ (A)←

⊕

α0

RC p̄
∗ (Uα0

)←
⊕

α0<α1

RC p̄
∗ (Uα0

∩ Uα1
)← · · ·

6 6 6ι1 ι2 ι3

where ι· is the inclusion. According to 2) and 3) the maps ι2 and ι3 are quasi-isomorphisms. By the Five
Lemma the inclusion ι1 is also a quasi-isomorphism. The proof finishes after applying the Lemma 2.3.4. ♣

We arrive to the principal result of this section.

Proposition 2.3.7 The inclusion RC p̄
∗ (A) →֒ SC p̄

∗ (A) is a quasi-isomorphism.
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Proof. We proceed by induction over the depth of A. If d(A) = 1 then the unfolding of A is a trivial covering
over each connected component of A. So, the complex SC p̄

∗ (A) (resp. RC p̄
∗ (A)) is the complex of singular

chains of A (resp. differentiable singular chains), and the result holds (see [6]).

Suppose the Proposition were proved for every B with d(B) < d(A). Consider an open cover U =
{Uα / α ∈ J} of A by distinguished neighborhoods (see §1.2.2). Following (4) and (5) we have the com-
mutative diagram of the above Lemma. Here, each open Uα is isomorphic to some IRm × cL. Since for
each open W ⊂ L we have: d(W ) ≤ d(L) < d(cL) ≤ d(Uα) ≤ d(A) we can apply §2.3.5 and get that ι2
is a quasi-isomorphism. The same argument shows that the operator ι3 is a quasi-isomorphism. The proof
follows from the Five Lemma and Lemma 2.3.4. ♣

3 Intersection cohomology

Goresky and MacPherson introduced the intersection cohomology from the point of view of differential
forms (deRham intersection cohomology) for a Thom-Mather stratified space (see [3]). In [2] we showed
how to calculate this cohomology with the subcomplex of liftable forms. The allowability of an intersection
differential form ω is reflected on the behavior of the germ of ω near Σ. We introduce the notion of weak
intersection differential form, whose allowability is measured directly on the singular part by means of the
unfolding.

3.1 Weak intersection differential forms

From now on q̄ will denote the dual perversity of p̄ (see [4]), that is, q̄(S) = codim S − 2 − p̄(S) for each
singular stratum S.

3.1.1 A differential form ω in A−Σ is liftable if there exists a differential form ω̃ on Ã, called the lifting
of ω, coinciding with π∗ω on π−1(A− Σ). By density this form is unique.

If the forms ω and η are liftable then the forms ω + η, ω ∧ η and dω are also liftable, and we have the
following relations:

˜ω + η = ω̃ + η̃ , ω̃ ∧ η = ω̃ ∧ η̃ and d̃ω = dω̃.

Hence, the family of liftable differential forms is a differential subcomplex of the deRham complex of Ã.

3.1.2 Cartan’s filtration. Let τ :M → B be a differential submersion with M and B manifolds. For each
k ≥ 0 we denote FkΩ

∗
M the subcomplex of differential forms on M satisfying:

If ξ0, . . . , ξk are vectorfields on M , tangents to the fibers of τ , then iξ0 · · · iξk
ω ≡ iξ0 · · · iξk

dω ≡ 0.(6)

Here iξ· denotes the interior product by ξ·. This is Cartan’s filtration of τ (see [3]). We shall write
||ω||B the smallest integer j satisfying iξ0 · · · iξj

ω ≡ 0, where ξ0, . . . , ξj are as in (6). Then, FkΩ
∗
M = {ω ∈

Ω∗
M/||ω||B ≤ k and ||dω||B}. Notice that if α ∈ FkΩ

∗
M and β ∈ Fk′Ω∗

M then

α + β ∈ Fmax(k,k′)Ω
∗
M and α ∧ β ∈ Fk+k′Ω∗

M .(7)

The allowability condition is written in terms of the Cartan’s filtration of the fibration π:π−1(S) → S
(see §1.2.4).

3.1.3 A liftable differential form ω is a p̄-weak intersection differential form (or weak intersection
differential form) if for each singular stratum S, the restriction of ω̃ to π−1(S) belongs to Fq̄(S)Ω

∗

π−1(S).

We shall write K∗
q̄(A) the complex of q̄-weak intersection differential forms. It is a differential subcomplex
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of the deRham complex of Ã, but it is not always an algebra. It coincides with the complex Ω∗(A) of
differential forms of A if Σ = ∅.

3.1.4 Remarks.
1) In spite of the fact that K∗

q̄(A) depends of the unfolding chosen Ã, the cohomology of the complex
does not (see Theorem 4.1.5).

2) Since the allowability condition is a local condition then, for each open set U ⊂ A, the restriction
ρ:K∗

q̄(A)→ K∗
q̄(U) is a well defined differential operator.

3) With the notations of [2]: Ω∗
q̄(A) ∩ K∗

q̄(A) = K∗
q̄ (A).

4) For q̄ = 0̄ the complex K∗
q̄(A) contains the Verona’s complex (see [13]) and it can be seen as the limit

of the Verona’s complex when ρX goes to 0.
5) An isomorphism between two stratified spaces A and A′ induces an isomorphism between H∗(Kq̄(A))

and H∗(Kq̄(A
′)).

3.2 Local calculations

We compute the cohomology of K∗
q̄(I × A) and K∗

q̄(cA) in terms of that of K∗
q̄(A). Since the proofs are

similar to those of [2] we only give a sketch.

Proposition 3.2.1 Fix I =]− ε, ε[ an interval of IR. The maps pr: I × (A−Σ)→ A−Σ and J :A−Σ→
I × (A − Σ), defined respectively by pr(t, a) = a and J(a) = (t0, a), for a fixed t0 ∈ I, induce the quasi-
isomorphisms:

pr∗:K∗
q̄(A)→ K∗

q̄(I ×A) and J∗:K∗
q̄(I ×A)→ K∗

q̄(A).

Proof (sketch). Consider p̃r: I×Ã→ Ã and J̃ : Ã→ I×Ã defined by p̃r(t, ã) = ã and J̃(ã) = (t0, ã). The two
operators pr∗ and J∗ are well defined because, for each stratum S of A, we have ||p̃r∗ω = p̃r∗ω̃||I×S ≤ ||ω̃||S
and ||J̃∗η = J̃∗η̃||S ≤ ||η̃||I×S , for any liftable form ω ∈ Ω∗(A − Σ) and η ∈ Ω∗(I × (A− Σ)). In fact these

two operators are homotopic; a homotopy operator is given by Hη =

∫
−

t0

η. This comes from the following

facts:

• H̃η =

∫
−

t0

η̃ (on I × Ã),

• ||H̃η||I×S ≤ ||η̃||I×S , and

• dHη = Hdη + (−1)i−1(η − pr∗J∗η).

where η ∈ Ωi(I × (A− Σ)) is a liftable form. ♣

Proposition 3.2.2 Suppose A is compact. Then H i(K∗
q̄(cA)) ∼=

{
H i(K∗

q̄(A)) if i ≤ q̄(vertex of cA)

0 if i > q̄(vertex of cA).

where the isomorphism is induced by the canonical projection pr: (A− Σ)×]0, 1[→ (A− Σ).

Proof (sketch). The complex K∗
q̄(cA) is naturally isomorphic to the subcomplex C∗ of K∗

q̄(A×]− 1, 1[) made
up of the forms η satisfying:

1) η = 0 on (A− Σ)× {0} if (degree of η) > q̄(vertex of cA),
2) dη = 0 on (A− Σ)× {0} if (degree of η) = q̄(vertex of cA), and
3) σ∗η = η on (A− Σ)× (]−1, 1[−{0}) where σ:A×]−1, 1[→ A×]−1, 1[ is given by σ(a, t) = g(a,−t).
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With the notations of the above Proposition (for ε = 1 and t0 = 0) we get: pr∗(Ki
q̄(A)) ⊂ Ci, for

i < q̄(vertex of cA); pr∗(Ki
q̄(A) ∩ d−1{0}) ⊂ Ci, for i = q̄(vertex of cA); J∗Ci = {0}, for i > q̄(vertex of cA)

and H∗(C∗) = C∗. The same procedure used in §3.2.1 finishes the proof. ♣

4 Intersection cohomology of stratified spaces

We prove in this section the two principal results of this work: the deRham Theorem and Poincaré Duality.

4.1 The deRham Theorem

In this section we show that we can use the complex of weak intersection differential forms to compute
the intersection cohomology of A. The isomorphism is given by the integration of differential forms over
simplices. This integration is well defined because it is calculated on Ã.

4.1.1 Integration over simplices. Let ω be an element of K∗
q̄(A) and let σ:∆→ A be a liftable singular

simplex with σ(i(∆)) ∩Σ = ∅, where i(∆) denotes the interior of ∆. We define the integral of ω over σ
as: ∫

σ
ω =

∫

i(∆)
σ∗ω.

Does this integral makes sense? Let ∆
µ
← ∆̃

σ̃
→ Ã be a lifting of σ (see §2.2.3). We recall that the

restriction of µ to i(∆̃), the interior of ∆̃, is a diffeomorphism. Then, the map σ: i(∆) → (A − Σ) is
differentiable and we can write

∫

i(∆)
σ∗ω =

∫

i(∆̃)
µ∗σ∗ω =

∫

i(∆̃)
σ̃∗π∗ω.

Since ω̃ is a global differential form on Ã, we get:

∫

σ
ω =

∫

∆̃
σ̃∗ω̃,(8)

which is finite. We shall write

∫

σ
ω = 0 if σ(∆) ⊂ Σ.

4.1.2 Integration over chains. For each differential form ω ∈ K∗
q̄(A) and each chain c =

m∑

j=1

rjσj ∈ RC p̄
∗ (A)

we define ∫

c
ω =

m∑

j=1

rj

∫

σj

ω.

This makes sense because σj(i(∆)) is included in A−Σ (see §2.1.1), and we can apply the above definition.
So we get the integration operator

∫
:K∗

q̄(A) −→ Hom(RC p̄
∗ (A); IR)

defined by (ω 7→ (c 7→
∫

c
ω)).

The following Stokes formula shows that this operator is a differential operator.
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Proposition 4.1.3 For each differential form ω ∈ K∗
q̄(A) and each singular chain c ∈ RC p̄

∗ (A) we have∫

∂c
ω =

∫

c
dω.

Proof. By linearity it suffices to show

∫

∂σ
ω =

∫

σ
dω for a liftable p̄-allowable singular simplex σ:∆ → A of

dimension i and a differential form ω ∈ Ki−1
q̄ (A). Observe that

∫

∂σ
ω is well defined because each (i−1)-face

σ:C → A of σ satisfies σ(i(C)) ⊂ A− Σ or σ(C) ⊂ Σ (see §2.2.3).
We first prove (8) for a codimension one face σ:C → A of σ with σ(i(C)) ⊂ Σ, for some singular stratum

S. The relation i(C) ⊂ σ−1(S) ⊂ (dim ∆ − codim S + p̄(S))-skeleton of ∆ implies q̄ < 0 and therefore

ω̃|π−1(S) = 0. We get

∫

C̃
σ̃∗ω̃ = 0 =

∫

C
ω, because πσ̃(i(C̃)) = σ(i(C)) ⊂ S.

In view of (8) we may write

∫

∂σ
ω =

∫

∂̃∆
σ̃∗ω̃ and

∫

σ
dω =

∫

∆̃
dσ̃∗ω̃. According to the usual Stokes formula

we get

∫

∂∆̃
σ̃∗ω̃ =

∫

∆̃
dσ̃∗ω̃, the Proposition will be proved if we show

∫

δ∆̃
σ̃∗ω̃ = 0 (see §2.2.2).

To see this, we consider a face F of δ∆̃ of dimension i − 1 and we verify that σ̃∗ω̃ is 0 on F . We shall
let C = µ(F ) and S a stratum of A with σ(i(C)) ⊂ S (see §2.2.3 a))). We have the following commutative
diagram

i(F ) π−1(S)

i(C) S.

σ̃

σ

µ π

-

-
? ?

Now we distinguish two cases:

• S ⊂ A − Σ. The differential form ω is defined on S and we may write σ̃∗ω̃ = σ̃∗π∗ω = µ∗σ∗ω where
σ∗ω is defined on i(C). But dim C < dim F = i − 1 = degree of ω = degree of σ∗ω. Then σ∗ω = 0
on i(C) and therefore σ̃∗ω̃ = 0 on i(F ).

• S ⊂ Σ. The allowability condition of σ implies: dim C ≤ dimF + 1 − codim S + p̄(S). Hence,
dim F − dimC > q̄(S). On the other hand, since ω̃ ∈ Fq̄(S)Ω

∗

π−1(S), we have σ̃∗ω̃ ∈ Fq̄(S)Ω
∗

i(F ) for the

submersion µ: i(F )→ i(C). These conditions imply that σ̃∗ω̃ vanishes on i(F ). ♣

4.1.4 Remark. In the same way we can show a converse for this Proposition:

K∗
q̄(A) = {ω ∈ Ω∗(A−Σ) / ω liftable and

∫

∂σ
ω =

∫

σ
dω for eachp̄-allowable liftable singular simplex of A}.

We arrive to the first result of this paper.

Theorem (deRham Theorem) 4.1.5 Consider a stratified space A, an unfolding π: Ã→ A and two dual
perversities (p̄, q̄). The homology of the complex of intersection chains SC p̄

∗ (A) and the cohomology of weak
intersection differential forms K∗

p̄(A) are isomorphic to the intersection homology IH p̄
∗ (A).

The integration of the differential forms of K∗
q̄(A) over the liftable chains of SC p̄

∗ (A) is well defined, and
the maps

K∗
q̄(A)

∫
−→ Hom(RC p̄

∗ (A); IR)
ρ
←− Hom(SC p̄

∗ (A); IR) ,

where ρ is the restriction, are quasi-isomorphisms.
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Proof. Following [7] and §2.3.7 it suffices to prove that the operator

∫
:K∗

q̄(A)→ Hom(RC p̄
∗ (A); IR) induces

a quasi-isomorphism in cohomology.
Suppose that for each open cover U = {Uα / α ∈ J} of A we have the following commutative diagram

made up of exact sequences:

0→ K∗
q̄(A)→

∏

α0

K∗
q̄(Uα0

)→
∏

α0<α1

K∗
q̄(Uα0

∩ Uα1
)→ · · ·

0→ Hom(RUC p̄
∗ (A); IR)→

∏

α0

Hom(RC p̄
∗ (Uα0

); IR)→
∏

α0<α1

Hom(RC p̄
∗ (Uα0

∩ Uα1
); IR)→ · · · ,

∫
1

∫
2

∫
3(9) �

��	 ?
@

@@R

where the horizontal arrows are the restrictions and the vertical arrows are the integrations. Using the
procedure followed in Proposition 2.3.7 and using Propositions 2.2.4, 2.2.5, 3.2.1 and 3.2.2 it is easy to prove
the Theorem (for d(A) = 1 we get the usual deRham Theorem for manifolds).

So, we must prove that the rows of (9) are exact. Applying the functor Hom to (5) we get that the
bottom row of (9) is exact. In order to show that the top row is exact we need (following [1, page 94])
to find a partition of unity {fα / α ∈ J} subordinated to the cover U satisfying fαω ∈ K∗

q̄(Uα0
) for each

ω ∈ K∗
q̄(Uα0

) . Since the covers by distinguished neighborhoods are cofinal in the set of all open covers of A
(see §1.2.2), it suffices to show:

There exists a continuous map f : IRm × cA→ [0, 1] and two numbers r, s ∈]0, 1[ with
a) f ≡ 1 on ]− r, r[m×crA,
b) f ≡ 0 on the complementary of ]− s, s[m×csA, and
c) fω ∈ K∗

q̄(IR
m × cA) for each ω ∈ K∗

q̄(IR
m × cA).

To see this, fix two numbers r, s ∈]0, 1[ and two smooth maps f1: IR → [0, 1] and f2: ] − 1, 1[→ [0, 1]
with fi ≡ 1 on [−r, r] and fi ≡ 0 off ] − s, s[, i = 1, 2. The map f : IRm × cA → [0, 1] defined by
f(x1, . . . , xm, [a, t]) = f1(x1) · · · f1(xm)f2(t) is continuous and has a smooth lifting f̃ : IRm×Ã×]−1, 1[→ [0, 1],
given by f̃(x1, . . . , xm, ã, t) = f1(x1) · · · f1(xm)f2(| t |). By construction we have a) and b). Let ω be an
element of K∗

q̄(IR
m× cA), it remains to show that fω belongs to K∗

q̄(IR
m× cA). Let S be a singular stratum

of IRm × cA and P the unfolding of IRm× cA given in §1.2.2; the fiber of P :P−1(S)→ S over (x, [y, t]) ∈ S
is:

• {x} × Ã× {0} if S = IRm × {vertex}

• {x} × π−1(y)× {−t, t} if S = IRm × S′×]0, 1[ , S′ stratum of A.

In any case the function f̃ is constant on the fibers of P :P−1(S) → S. The map f̃ belongs to F0Ω
∗

P−1(S)

and therefore f̃ ω̃ lies on Fq̄(S)Ω
∗

P−1(S) (see (7)). This shows c). ♣

4.2 Poincaré Duality

The intersection homology was introduced with the purpose of extending the Poincaré Duality to singular
manifolds (see [4]). The pairing is given there by the intersection of cycles. In the deRham theory of
manifolds the Duality derives from the integration of the wedge product of differential forms of arbitrary
and compact support. In fact, this point of view is still available in the intersection homology context. This
is shown in this section (see also [3]).

We consider in the following a stratified space A, an unfolding π: Ã → A and two dual perversities p̄
and q̄. We shall suppose also that A is orientable, that is, the manifold A− Σ is an orientable manifold.
This is used to integrate differential forms on A − Σ. In the following we will use the facts: 1) M × A is
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orientable, if M is an orientable manifold M , and 2) cA is orientable, where A is compact. Each link L (see
§1.2.1) is orientable.

4.2.1 For each differential form ω on A − Σ we define the support of ω, written supp(ω), as the closure
on A of the set {x ∈ A− Σ / ω(x) 6≡ 0}. This notion coincides with the usual one if Σ = ∅.

We define K∗
c,p̄(A) as the subcomplex of K∗

p̄(A) made up of the differential forms with compact support.
The relation supp(dω) ⊂ supp(ω) shows that this subcomplex is a differential complex. If A is compact then
K∗

c,p̄(A) coincides with K∗
p̄(A). For Σ = ∅ we have that K∗

c,p̄(A) is just the complex of differential forms of
A with compact support.

For each open set U ⊂ A there is a natural inclusion K∗
c,p̄(U) →֒ K∗

c,p̄(A), extending a form on U − Σ
by zero to a form on A− Σ. The same method used in [1, page 139] applies here to show that, for an open
cover U = {Uα / α ∈ J}, the Mayer-Vietoris sequence:

0← K∗
c,p̄(A)←

⊕

α0

K∗
c,p̄(Uα0

)←
⊕

α0<α1

K∗
c,p̄(Uα0

∩ Uα1
)← · · ·

is exact (see proof of §4.1.5).

The following Lemma will be needed in the definition of the Poincaré pairing.

Lemma 4.2.2 Let ω be a liftable differential form on A− Σ with compact support, then

a)

∫

A−Σ
ω < +∞ and b)

∫

A−Σ
dω = 0.

Proof. Let ℓ the number of connected components of Ã − π−1(Σ). By definition of ω̃ we get:

∫

A−Σ
ω =

ℓ−1
∫

Ã−π−1(Σ)
π∗ω = ℓ−1

∫

Ã−π−1(Σ)
ω̃ = ℓ−1

∫

Ã
ω̃.

a) It suffices to prove

∫

Ã
ω̃ <∞. Since the map π is a proper map (this is shown using the local description

(1) of π and the fact that L̃ is compact) then the support of ω̃ is compact (supp(ω̃) = π−1(supp(ω))).

b) Since Ã has not a boundary, we obtain

∫

Ã
dω̃ = 0. ♣

4.2.3 The above Lemma shows that the pairing

∫
:K∗

q̄(A) ⊗ Kn−∗
c,p̄ (A) → IR given by (ω, η) 7→

∫

A−Σ
ω ∧ η

is well defined and that induces a pairing in cohomology

∫
:H∗(Kq̄(A)) ⊗ Hn−∗(Kc,p̄(A)) → IR, called

Poincaré pairing. We are going to show that it is nondegenerate; or equivalently, the map

∫
:K∗

q̄(A) →

Hom(Kn−∗
c,p̄ (A); IR) given by (ω 7→ (η 7→

∫

A−Σ
ω ∧ η)) is a quasi-isomorphism. First, we do the local

calculations characteristic to the intersection homology: those of I ×A and cA.

Lemma 4.2.4 Let I =]u, v[ be an open interval of IR and let e = e(t)dt be compactly supported 1-form on I
with total integral 1. We write pr1: I×(A−Σ)→ I and pr2: I×(A−Σ)→ (A−Σ) the canonical projections.
Then the following operators (see [1, page 38]):

a) e∗:K
∗
c,p̄(A)→ K∗+1

c,p̄ (I ×A) given by e∗(ω) = pr∗1e ∧ pr∗2ω,

b)

∮
:K∗

c,p̄(I ×A)→ K∗−1
c,p̄ (A) given by

∮
ω =

∫ v

u
ω, and
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c) K:K∗
c,p̄(I × A) → K∗−1

c,p̄ (I × A) given by Kω = Hω − H(pr∗1e) · pr∗2(

∮
ω), where Hω =

∫
−

u
ω (see

§3.2.2),

are well defined and satisfy the relation:

d) 1− e∗

∮
= (−1)i−1(dK −Kd) on Ki

c,p̄(I ×A).

Proof. a) Since pr∗1e ∈ K
1
0̄(I×A), we have e∗(ω) ∈ K∗+1

p̄ (I×A) (see §3.2.1). Its support is compact because:
supp(e∗(ω)) ⊂ supp(e)× supp(ω).

b) The same technique used in §3.2.2 shows that

∮
ω ∈ K∗−1

p̄ (A). For the support we get supp(

∮
ω) ⊂

pr2(supp(ω)).
c) The above remarks and §3.2.2 prove that Kω ∈ K∗−1

p̄ (I×A). Let I ′×C ⊂ I×A be a compact containing
supp(ω) and satisfying supp(e) ⊂ I ′. A straightforward calculation shows that supp(Kω) ⊂ I ′ × C.

d) It is proved in [1, page 38]. ♣

Since

∮
e∗ is the identity on K∗

c,p̄(A) we get from the above Lemma:

Proposition 4.2.5 The operator e∗ induces an isomorphism H∗(Kc,p̄(A)) ∼= H∗+1(Kc,p̄(I ×A)).

For the cone cA we obtain with the notations of §4.2.4 and (u, v) = (0, 1) the following:

Proposition 4.2.6 If A is compact then the operator e∗ induces an isomorphism

H i(K∗
c,p̄(cA)) ∼=

{
H i(K∗

p̄(A)) if i ≥ p̄(vertex of cA) + 2

0 if i ≤ p̄(vertex of cA) + 1

Proof. First of all, we calculate the cohomology of the quotient complex K∗
p̄(cA) / K∗

c,p̄(cA). This complex is
isomorphic by restriction toK∗

p̄(A×]0, 1[)/L∗, where L∗ = {ω ∈ K∗
p̄(A×]0, 1[) / supp(ω) ⊂ A×]0, ε[ for some ε

< 1}; the inverse is given by (class of ω) 7→ (class of (

∫
−

0
pr∗1e) · ω).

We claim that L∗ is acyclic. In fact, for each cycle ω of L∗ we have the formula ω = ±d

∫
−

ε
ω, with

∫
−

ε
ω ∈ K∗

p̄(A×]0, 1[) . Since supp(

∫
−

ε
ω) ⊂ A×]0, ε[, we get the claim. Consider the following diagram

0→ K∗
c,p̄(cA)→ K∗

p̄(cA)→ K∗
p̄(cA) / K∗

c,p̄(cA)→ 0

K∗
p̄(A)

τ1

6
τ2

where τ1 is the projection and τ2 is defined by (η 7→ (class of (

∫
−

0
pr∗1e) · pr∗2η)). The above calculations and

Proposition 3.2.1 show that τ2 is a quasi-isomorphism.
Under this quasi-isomorphism the connecting homomorphism of the associated long sequence becomes

δ:H∗(Kp̄(A)) → H∗+1(Kc,p̄(cA)), defined by δ[η] = [e∗(η)]; and τ1 becomes J∗, where J :A − Σ → (A −
Σ)×]0, 1[ is defined by J(a) = (a, 1

2). Now the result follows from Proposition 3.2.2. ♣

We have arrived to the Poincaré Duality.
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Theorem (Poincaré Duality) 4.2.7 Let A be an orientable stratified space and let (p̄, q̄) be two dual

perversities. The Poincaré pairing

∫
:H∗(Kq̄(A))⊗H∗(Kc,p̄(A))→ IR is nondegenerate.

Proof. It suffices to show that the map

∫
:H∗(Kq̄(A)) → Hom(H∗(Kc,p̄(A)); IR), defined by ([ω] 7→ ([η] 7→

∫

A−Σ
ω ∧ η)) , is an isomorphism (see [1, page 44]). To see this we follow the same procedure as in 2.3.7,

taking into account the following facts:

• If the depth of A is 1 the Theorem is the usual Poincaré Duality for orientable manifolds.

• The diagram

K∗
q̄(IR

i × cL) Hom(Kn−∗
c,p̄ (IRi × cL); IR)

K∗
q̄(cL) Hom(Kn−i−∗

c,p̄ (cL); IR)

∫

∫
pr∗2 e∗

-

-

6

?

is commutative (see below) and the operators pr∗2 and e∗ are quasi-isomorphisms (see §3.2.1) and
§4.2.5). Here e∗(F )(η) = F (pr∗1e ∧ pr∗2η), with pr1: IR

i × (L − Σ(L))×]0, 1[→ IRi and pr2: IR
i × (L −

Σ(L))×]0, 1[→ (L− Σ(L))×]0, 1[ the canonical projections, and e = f(x1) · · · f(xi)dx1 ∧ · · · ∧ dxi is a
compactly supported 1-form on IRi with total integral 1.

The commutativity of the diagram comes from the identity

∫

IRi×(L−Σ(L))×]0,1[
pr∗2ω ∧ pr∗2η ∧ pr∗1e =

∫

(L−Σ(L))×]0,1[
ω ∧ η for each ω ∈ K∗

q̄(cL) and η ∈ Kn−i−∗
c,p̄ (cL).

• Hj(K∗
q̄(cL)) ∼= Hn−i−j(K∗

c,p̄(cL)) ∼= 0 for j ≥ q̄(vertex of cL) + 1 (see Propositions 3.2.2 and 4.2.6).

• The diagram

Hj(K∗
q̄(cL)) Hom(Hn−i−j(K∗

c,p̄(cL)); IR)

Hj(K∗
q̄(L)) Hom(Hn−1−i−j(K∗

p̄(L)); IR)

∫

∫
pr∗2 e∗

-

-

6

?

is commutative (see below) and the operators pr∗2 and e∗ are quasi-isomorphisms (see Propositions 3.2.2
and 4.2.6) for j ≤ q̄(vertex of cL). Here e∗(F )(η) = F (pr∗1e∧ pr∗2η), with pr1: (L−Σ(L))×]0, 1[→]0, 1[
and pr2: (L − Σ(L))× ]0, 1[→ L − Σ(L) the canonical projections, and e is a compactly supported
i-form on ]0, 1[ with total integral 1.

The commutativity of the diagram comes from the identity

∫

(L−Σ(L))×]0,1[
pr∗2ω ∧ pr∗2η ∧ pr∗1e =

∫

L−Σ(L)
ω ∧ η, which holds for each ω ∈ Kj

q̄(L) and η ∈ Kn−i−1−j
p̄ (L). ♣
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