
HAL Id: hal-00438851
https://hal.science/hal-00438851

Submitted on 4 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-intrusive QoS Monitoring and Analysis for
Self-Healing Web Services

Riadh Ben Halima, Mohammed Karim Guennoun, Khalil Drira, Mohamed
Jmaiel

To cite this version:
Riadh Ben Halima, Mohammed Karim Guennoun, Khalil Drira, Mohamed Jmaiel. Non-intrusive QoS
Monitoring and Analysis for Self-Healing Web Services. The First IEEE International Conference on
the Applications of Digital Information and Web Technologies, Aug 2008, Ostrava, Czech Republic.
pp.6. �hal-00438851�

https://hal.science/hal-00438851
https://hal.archives-ouvertes.fr

Non-intrusive QoS Monitoring and Analysis for Self-Healing Web Services

Riadh Ben Halima (1), Karim Guennoun (1), Khalil Drira (1) and Mohamed Jmaiel (2)

(1) LAAS-CNRS, University of Toulouse, 7 avenue de Colonel Roche, 31077 Toulouse, France
{rbenhali, kguennou, khalil}@laas.fr

(2) University of Sfax, National School of Engineers, B.P.W, 3038 Sfax, Tunisia
Mohamed.Jmaiel@enis.rnu.tn

Abstract

Monitoring and analysis of QoS are crucial steps for the
provisioning of self-healing web services and for manag-
ing web service-based distributed interactive applications.
Dealing with these issues becomes even more challenging
when applications are dynamically built by composition of
distributed services involving different service providers. In
this case, assuming access to the internal logic and its im-
plementation within the composed web services is not real-
istic. In this paper, we propose an architectural framework
for monitoring and analysis of QoS driven by models for
QoS analysis. This framework has been implemented and
experimented for the web service technology within the Eu-
ropean WS-DIAMOND 1 project. We consider the general
context where only SOAP messages between web services
are monitored. The main novelty of our approach is, on
the one hand, to provide a generic application-independent
framework. On the other hand, we provide models allow-
ing QoS deficiencies to be detected and considered as an
indicator of the health degradation of the monitored web
services.

1 Introduction

Building distributed applications by dynamically select-
ing and connecting web services constitutes a powerful
adaptation and repair mechanism. This also leads to com-
plex composite systems where design-time requirement
analysis solutions are no more sufficient. Additional man-
agement is needed not only for deciding about the capa-
bility of a given service to satisfy a given set of require-
ments, but also for assessing continuously this capability
during the exploitation of the services. This relies on ob-
serving and analyzing the behavior of the service. It is
useful for providing self-healing and self-optimizing web

1Web Services - DIAgnosability, Monitoring and Diagnosis

services and associated applications as addressed by auto-
nomic computing and communication. Both functional and
non functional properties may be analyzed through obser-
vation of exchanged messages between the interconnected
web services. For QoS-like properties, analysis may rely
on a standard SLA verification. Observing mismatches is
targeted, and exploited for a number of purposes such as
billing negotiation, or future selection of services.

Assuming the existence of a pre-defined SLA may not
apply in practice for all situations, such as free or informal
cooperation between web services. SLA may not be known
or defined in many situations. In these situations observing
QoS parameters such as response and execution times may
be analyzed by run-time comparison with similar values.
When SLA is not predefined, analysis may be conducted
following a collaborative technique by comparing, during
its exploitation, the QoS parameters of a given service to
those of services of the same class, obtained from past or
current observations. This is the approach we adopted in
the WS-DIAMOND project for providing self-healing solu-
tion for web service-based distributed applications. In this
project, both functional and QoS properties are managed.
The functional-related analysis is implemented for moni-
toring a given process execution, providing the so-called
instance-level self-healing. The QoS-related analysis is im-
plemented for monitoring a multiple process executions,
providing the so-called class-level self-healing. QoS pa-
rameters values are analyzed in their trends as indicators
of a predictable degradation of the service health. For this
purpose, we implemented a monitoring framework and de-
fined a measurement approach for QoS parameters analysis.
Our approach is application-independent and is applicable
for any deployment context, both for requester and provider
sides.

No assumption is required on the internal logic and the
implementation details of web services. We rely on SOAP-
level interceptors that may be deployed on requester-side
only when access policies restrict access to the provider-
side.

The analysis and diagnosis accuracy may require infor-
mation about the global architecture when dealing with or-
chestration or choreography between several services coop-
erating to provide a common global function. This is rea-
sonable since it may be deduced by analyzing the business
process of the implemented application.

In this paper, we present a self-healing framework able
to manage web service-based distributed interactive appli-
cations. Our framework focuses on QoS monitoring and
uses models for QoS analysis. It considers the communica-
tion level monitoring while intercepting exchanged SOAP
messages and extending them with QoS parameter values.
It is achieved using dynamically deployed handlers. The
analysis of logged QoS parameter values allows the detec-
tion of QoS deficiencies and the identification of the defi-
cient source. This is achieved based on statistical functions
and time-related constraints which represent and indicator
of the health degradation of the monitored web services.

This paper is organized as follows. Section 2 presents the
elaborated models for monitoring and QoS degradation de-
tecting. Section 3 focuses on the analysis of the degradation
source. Section 4 details the proposed architectural frame-
work within the FoodShop application. Section 5 discusses
related work. The last section concludes the paper.

2 Models for Monitoring and Detection

Monitoring software applications aims to observe their
constituting components to estimate the current health level.
We introduce, in this section, a QoS-driven approach to
achieve this task for web service-oriented systems. It sep-
arates clearly the business logic of a web service from its
monitoring functionality. In addition, we believe that lay-
ing on QoS characteristics observations is an efficient way
to predict and prevent service breakdown. Indeed, a con-
tinuous increasing of the response time or a continuous de-
creasing of admission rate is a significant indicator to an
imminent service deny. Hence, we monitor the evolution
of a given QoS characteristic more than its absolute values.
QoS values such as response time may differ from one con-
text to another (e.g. deployment machine, available network
bandwidth, etc.) while the evolution of these values within
the same context is the real indicator of the service health.
The general approach involves two complementary aspects.
On the one hand, we use statistical functions (mean, max,
min and standard deviation2) to have reference values re-
lated to the normal functioning of the system. And on the
other hand, we use patterns, which are sets of events inter-
linked by time constraints, to monitor the evolution of these
QoS values.

2The standard deviation of a set of values distribution is a measure of
the spread of its values.

Several QoS parameters may be considered, such as re-
sponse time [8, 9], throughput [6, 10] and availability [6, 8].
These QoS parameters are measured while considering the
following four time values; t1: the time at which the request
has been issued by the service requester, t2: the time at
which the request has been received by the service provider,
t3: the time at which the response has been issued by the
service provider, and t4: the time at which the response has
been received by the service requester.

The considered QoS parameters are: (1) The Response
Time: defined as the time elapsed between sending a re-
quest and receiving its response; Tresp = t4 − t1, (2)
The Execution Time: defined as the time elapsed for pro-
cessing a request; Texec = t3 − t2, (3) The Communi-
cation Time: defined as the round trip time of a request
and its response; Tcomm = Tresp − Texec, (4) The
Throughput: defined as the amount of requests that can be
processed in a specified period of time; Throughput =
Number of requests/period of time, and (5) The
Availability: defined as the probability that the service
is accessible; Availability = Number of successful
executions/Total number of invocations.

Our approach is proactive. It is based on observing the
evolution of runtime computed QoS values to detect QoS
degradation considered as the symptom of an imminent de-
ficiency. To take into account a reference behavior, we use
pre-computed and/or on-the-fly-computed statistical indi-
cators. Considered events may correspond for instance to
detect or not that a measured QoS value exceeds a given
threshold. Time constraints correspond mainly to the oc-
currence or not of a given event within a given time lapse.

Monitoring QoS aims to evaluating the health of a given
service and not only a specific interaction within a given
conversation. The degradation detection scope includes in-
teractions between all requesters and providers. In our point
of view, observing N response time increases, when deal-
ing with requests from M distinct requesters, is considered
as a QoS degradation in the same way as for N response
time increases when dealing with M requests from the same
requester. N is related to the tolerated threshold of accept-
able degradation of each QoS parameter. For instance, the
threshold = the QoS parameter average (Avg) + a tolerated
delay (TD) and N=3 in order to raise degradation alarms
related to Tresp.

3 Models for Analysis

The analysis task lays on the monitoring and the detec-
tion of deficiency patterns. Indeed, QoS degradation may
have several sources and may be triggered by one or many
services of the application. For implementing effective self-
healing, we need to locate the deficient services and reason
about the degradation source. For instance, combining dif-

2

ferent QoS parameter values such as response time and ex-
ecution time allows discriminating network and processing
deficiencies while reasoning about architectural dependen-
cies allows eliminating QoS degradation propagation that
are irrelevant for repair.

Let’s consider a pair 〈 provider, requester 〉 for which
alarms revealing QoS degradation on Tresp are raised, as
shown in Table 1 at line 3. This algorithm discriminates
between network (Communication) and processing (Execu-
tion) deficiencies. Three cases are distinguished:

1 LocateDegradation(Texec,AvgTexec,TDTexec,Tresp,AvgTresp,TDTresp)
2 begin
3 if (Tresp > AvgTresp + TDTresp) then
4 if (Texec AvgTexec + TDTexec) then
5 Degradation_levels="Communication";
6 else DelayTexec= Texec – (AvgTexec+ TDTexec);
7 if (Tresp – DelayTexec AvgTresp + TDTresp) then
8 Degradation_levels="Execution";
9 else
10 Degradation_levels="Execution&Communication";
11 endif
12 endif
13 enif
14 end

Table 1. The discrimination algorithm

In the first case (lines 4,5), the Texec value does not
exceed the max acceptable value (Average + Tolerated De-
lay). Since the response time is composed of execution
and communication times, we deduce that the degrada-
tion is located at the network level. In the second case
(lines 6,7,8), only the Texec exceeds the max value and
its delay (DelayTexec) is the origin of the Tresp degra-
dation raise. The degradation comes from the processing
level. In the third case (lines 9,10), both communication
and execution times exceed the max acceptable values and
the degradation is at both levels: processing and network.

After locating the degradation level (for instance in ex-
ecution resource level), we start the reasoning about its
source. For this purpose, let’s consider the scenario of in-
terlocked communication illustrated in Figure 1. WS2 ex-
ecution time exceeds the max acceptable value. It is defi-
cient. Monitoring and detection mechanisms related to ser-
vice WS1 also detects execution time degradation due to the
propagation phenomena. Not detecting that the second de-
ficiency is a simple propagation of the first one may lead to
useless reconfiguration actions.

As illustrated in Figure 1, the requester’s message is pro-
cessed by WS1, which calls WS2 to achieve a part of the
required task. TexecWS1 represents the execution time of
the first pair Requester/WS1 and TexecWS2 represents the
execution time of the second pair WS1 (as requester)/WS2.

WS2 generates an important delay (DelayWS2) during

Requester WS1 WS2

T
exec

T
ex

q

Task
Request Subtask

M
a

accep
execu

timc
W

S
2

xec
W

S
1

D
elay

W
S

2Response

ax
ptable
ution

m
e

2

Figure 1. QoS degradation propagation

the processing of each request leading to a high overhead
for both TexecWS1 and TexecWS2 values. The two detec-
tion processes, related to TexecWS1 and TexecWS2 trigger
alarms.

In the case of naive analysis, two independent analysis
processes are considered. The first is related to WS2 web
service. It compares the response time and the communi-
cation time with the max acceptable values. It deduces that
the problem comes from the processing level. It decides,
for instance, to substitute WS2 by an equivalent web ser-
vice which provides the same WSDL interface. Similarly,
the local analysis related to WS1 also detects a QoS degra-
dation. It decides also to substitute WS1 by an equivalent
web service.

When the analysis is made locally and the degradation of
WS1 and WS2 is considered separately, each analysis leads
to the verdict of a local deficiency:

Local Analysis(WS1, degradation) ⇒ WS1 deficiency
and

Local Analysis(WS2, degradation) ⇒ WS2 deficiency.

When this analysis verdict is handled by repair function-
alities, reconfiguration actions would substitute each one of
the two services:

Substitute(WS1, WS1′), where WS1’ is equivalent to WS1.
and

Substitute(WS2, WS2′), where WS2’ is equivalent to WS2.

When considering global architectural dependencies,
analysis is more accurate. It makes possible to identify that
only WS2 is the source of degradation. Detected degrada-
tion of WS1 is correctly analyzed as a propagation manifes-
tation.

Global Analysis(WS1, WS2, degradation, degradation) ≡
Local Analysis(WS1, degradation) ∧
Local Analysis(WS2, degradation) ∧
(TexecWS1 −DelayWS2 ≤ AvgTexecWS1 +TDTexecWS1)

⇒ WS2 deficiency ∧ WS1 uses a deficient WS

With WS1 degradation is due to degradation propagation.
The corresponding reconfiguration sequence is more ef-

ficient and requires only substituting WS2:
Substitute(WS2, WS2′) where WS2’ is equivalent to WS2.

3

Different analysis situations may be distinguished as fol-
lows:

1- First case: WS2 responses come with delay and WS1
responses come with delay after eliminating the WS2’s
delay propagation.
Both services are deficient. In this case, the global
analysis is equivalent to the local analysis of WS1 and
WS2. Both services have to be substituted.

Global Analysis(WS1,WS2, degradation, degradation) ≡
Local Analysis(WS1, degradation) ∧
Local Analysis(WS2, degradation) ∧

(TexecWS1 − DelayWS2 ≥ AvgTexecWS1 + TDTexecWS1)
⇒ WS1 deficiency ∧WS2 deficiency

2- Second case: WS2 responses come with delay and if
we eliminate the WS2’s propagated delay, WS1 re-
sponses would not come with delay.
Both services seem to be deficient, but the WS2 is the
source of degradation, and the delay engendered by
this degradation (DelayWS2) propagates and affects
the WS1. The global analysis identifies the degrada-
tion source, and requests for WS2 substitution.

Global Analysis(WS1,WS2, degradation, degradation) ≡
Local Analysis(WS1, degradation) ∧
Local Analysis(WS2, degradation) ∧
(TexecWS1−DelayWS2 ≤ AvgTexecWS1 +TDTexecWS1)

⇒ WS2 deficiency ∧ WS1 uses a deficient WS

3- Third case: WS2 responses come with delay and not
WS1 responses.
Only the WS2 web service seems to be deficient, and
the high speed of WS1 execution absorbs the WS2’s
Delay (DelayWS2).

Global Analysis(WS1,WS2,¬deficient, deficient) ≡
Local Analysis(WS1,¬degradation) ∧
Local Analysis(WS2, degradation)

⇒ WS2 deficiency

4- Fourth case: WS1 responses come with delay and not
WS2 responses.
Only the WS1 web service is degraded.

Global Analysis(WS1,WS2, deficient,¬deficient) ≡
Local Analysis(WS1, degradation) ∧
Local Analysis(WS2,¬degradation)

⇒ WS1 deficiency

4 Implementation

4.1 Architectural Framework

We implemented a self-healing architecture (QoS-SHA)
in the context of the WS-DIAMOND project. Four main

components compose this architecture [3]:

-The Monitoring component : It includes observing and
storing relevant QoS parameter values entities using two
monitors (Requester-Side Monitor: in short ReqSideMon,
and Provider-Side Monitor: in short ProvSideMon) and a
Logging Manager.

-The Detection component : It inspects the service be-
havior and detects QoS degradation.

-The Analysis component : It reasons about degradation
based on QoS values stored by the monitoring and identifies
the deficiency source.

-The Repair component: It switches requesters to sub-
stitutable providers using a dynamic binding connector.

The Monitoring component intercepts request/response
messages and extends them with metadata describing the
involved QoS parameters and the related values obtained at
runtime. These parameters may need to be processed on
the provider side (as execution time), or on the requester
side (as response time), or on both sides (as communication
time).

In a local context, we deal separately with each provider
and its requesters. For each web service provider, we de-
ploy a monitor and for each requester, we deploy a monitor
per web service. Additional components for logging, de-
tecting and analyzing QoS degradation are implemented as
web services. We deploy an instance of these components
for each web service provider and its requesters. In a global
context, we need to connect the components implementing
the analysis in order to exchange the pertinent information.
This allows the identification of the source of QoS degrada-
tion through the whole set of involved web services, on the
basis of the received alarms from the distributed detection
components.

4.2 Application

We consider, here, the instantiation of the QoS-SHA to
the FoodShop scenario of the WS-DIAMOND project.

The FoodShop example is concerned with a web service-
based company that sells and delivers food. The company
has an online Shop, several warehouses (WH1, ..., WHn) re-
sponsible for stocking imperishable goods. Customers (C1,
..., Ck) interact with the Shop in order to make their orders,
pay the bills and receive their goods. In case of perish-
able items, that cannot be stocked, or in case of out-of-stock
items, the warehouses must interact with several suppliers
(SUP1, ..., SUPm).

Figure 2 shows the QoS-SHA deployment details be-
tween each pair of requester/provider from the three con-
sidered actors: the FoodShop, Shop, the warehouse, WH1,
and the supplier, SUP1. Grouping the analysis WSs as il-
lustrated by the dashed box of Figure 2, allows comparing

4

ReqSideMon
ProvSideMonProvSideMon

DB

WH1

Logging
Manager WS

Logging
Manager WS

Detection
WS

Detection
WS

Analysis
WS

Analysis
WS

Repair
WS

Repair
WSShop

ReqSideMon

ProvSideMonProvSideMon

SUP1
ReqSideMon

DB

Repair
WS

Repair
WS

Logging
Manager WS

Logging
Manager WS

Detection
WS

Detection
WS

Analysis
WS

Analysis
WS

C t i l t d W b S i SOAP h b t WSComponents implemented as Web Services

Components implemented as Axis Handlers SOAP messages forward between handlers

SOAP messages exchange between WS

Figure 2. Details of QoS-SHA applied to the FoodShop scenario

execution time of the two involved web services, WH1 and
SUP1. This makes possible to diagnosis correctly the QoS
degradation and to decide, for instance, substituting only
SUP1, considered as the only deficient web service.

More precisely, we consider the global QoS-related de-
pendencies between these three services showing the im-
portance of the global monitoring and analysis for efficient
reconfiguration actions. In the first phase, these dependen-
cies are given as assumptions for the Analysis web services.
This requires the knowledge of the all possible interactions
between web services which are not easy to fix. In the sec-
ond phase, we used WS-Addressing in order to associate to-
gether requests of both synchronous and asynchronous in-
vocations (using the message headers MessageId and Re-
latesTo) and to handle dependent services (using the mes-
sage header Source). Doing so, we deduced automatically
the structural dependencies from the monitoring data.

ReqSideMon
ProvSideMonProvSideMon Shop2

Logging
Manager WS

Logging
Manager WS

Detection
WS

Detection
WS

Analysis
WS

Analysis
WS

Repair
WS

Repair
WSCons mer Shop1Manager WSManager WS WSWS WSWSConsumer

DB
Tomcat Console

p

Delay
MySQLsoapUI Delay

Injector

Figure 3. The FoodShop prototype

Figure 3 details the developed prototype3 of the Food-
Shop application. We consider, on the left, the consumer
acting as a requester of the Shop1 web service which is on
the right side. Between the requester and the provider, we
deploy the QoS-SHA. We use a Delay Injector to simulate

3Demonstration is available at http://www.laas.fr/ khalil/Video.html

QoS degradation. As a result, the Detection and Analysis
web services detect and identify the degradation. The Re-
pair web service asked for recovery, substitutes Shop1 by
Shop2 in a seamless way to the requester and the provider.
We use Apache Tomcat5.9 as web server, Axis1.4 as web
service container, ActiveBPEL2.1 as BPEL engine, soa-
pUI1.5 as a client, MySQL5 as database management sys-
tem, and Java as programming language.

1200
1400
1600
1800
2000

m
e

(m
s) With Monitors

Without Monitors

0
200
400
600
800

1000

1 3 5 10 25 50 75 100 200 350 500

R
es

p
o

n
se

 T
im

Requesters number

Figure 4. Overload of monitoring

In order to estimate the monitor overload, we conduct a
large scale experiments under the gird5000 to measure the
response time of web services while varying the requesters
number from 1 to 500. We obtained the two curves shown
in Figure 4. In the first, the monitoring is achieved using
the ReqSideMon and the ProvSideMon (monitoring com-
ponents). In the second, the measurement is done in the
client code and without using monitors. We can see for in-
stance that for less than 50 concurrent clients, both curves
are similar and the overload of monitors is negligible. For
the largest requesters number (500), the overload is smaller
than 0.5s.

5

5 Related Work

In this section, we first present different QoS monitoring
approaches compared to our work. However, the monitor-
ing may be performed differently at three levels, namely:
service level [5, 8], communication level [3, 10, 7] (as our
approach) and orchestration level [2, 4].

The service level monitoring considers the basic moni-
toring approach. It inserts the monitoring code within the
web service requesters/providers code. Such monitoring
may be achieved while inserting directly, for instance, a
timer within the client code [5], or encapsulating it in an
aspect, which is merged into the functional code thanks to
the Aspect Oriented Programming (AOP) [8].

The communication level monitoring intercepts ex-
changed messages between web service providers and re-
questers. Such approach targets only the interactions where
a given service is involved and do not need access to its in-
ternal state which is generally hidden due to security rea-
sons. This approach may be applied at the SOAP level
while using standard XML parsing libraries [3, 10], or at
the HTTP level while using proxies [7].

The orchestration level monitoring supervises orches-
trated services as BPEL using handlers provided by the or-
chestration engine such as Active BPEL. Such approach
may observe its behavior by intercepting the input/output
messages that are received/sent by the processes [2]. The
approach presented in [4] monitors behaviors of orches-
trated web services with respect to an already expected be-
havior which is specified formally with algebraic notations
and saved in a registry. The monitoring is achieved using
the AOP inside the BPEL engine.

The analysis of a web service behavior may be per-
formed at instance level that deals with the execution of a
single instance [1] from a specific requester, either at class
level, that considers all instances like our work. The work
in [2] deals with boolean and time related properties at in-
stance and class levels.

In [1], authors propose an instance level and hierarchi-
cal analysis for complex services. They deploy local ana-
lyzer on each basic service, and a global one associated with
the workflow that collects local analysis and reasons about
faults in current running activity. However, web services
are usually multi-providers, which do not allow modifying
their services in order to interact with an external compo-
nent, like the local analyzer. But, in our approach, no as-
sumptions are required.

6 Conclusion

In this paper, we presented an application-independent
approach to monitor, detect and analyze QoS degradation
for web services. This constitutes one of the two parts of the

self-healing framework developed in the context of the IST
WS-DIAMOND project. The presented approach has been
implemented and experimented under Axis and Apache WS
container. It acts at the communication level, with no in-
trusion in the application code, and achieves detection and
analysis based-on statistical functions and time-related con-
straints.

Large scale experiments have been performed to mea-
sure the QoS monitoring overload. We are now working on
improving the repair enactment in order to reduce the un-
availability of the service during reconfiguration.

References

[1] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi,
M. Segnan, and D. T. Dupre. Enhancing web services with
diagnostic capabilities. In ECOWS ’05: Proceedings of
the Third European Conference on Web Services, page 182,
Washington, DC, USA, 2005. IEEE Computer Society.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-
time monitoring of instances and classes of web service
compositions. In ICWS ’06: Proceedings of the IEEE Inter-
national Conference on Web Services, pages 63–71, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[3] R. BenHalima, M. Jmaiel, and K. Drira. A qos-driven recon-
figuration management system extending web services with
self-healing properties. In 16th IEEE International Work-
shops on Enabling Technologies: Infrastructures for Collab-
orative Enterprises WETICE, pages 339–344, Paris, France,
18-20 June 2007. IEEE Computer Society.

[4] D. Bianculli and C. Ghezzi. Monitoring conversational web
services. In IW-SOSWE ’07: 2nd international workshop on
Service oriented software engineering, pages 15–21, New
York, NY, USA, 2007. ACM.

[5] A. Mani and A. Nagarajan. Understanding quality of ser-
vice for web services. Technical report, IBM Develop-
erWorks, www-106.ibm.com/developerworks/webservices
/library/ws-quality.html, Jan 2002.

[6] D. A. Menascé. Qos issues in web services. IEEE Internet
Computing, 6(6):72–75, 2002.

[7] N. Repp, R. Berbner, O. Heckmann, and R. Steinmetz. A
cross-layer approach to performance monitoring of web ser-
vices. In Proceedings of the Workshop on Emerging Web
Services Technology. CEUR-WS, Dec 2006.

[8] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping per-
formance and dependability attributes ofweb services. In
ICWS ’06: Proceedings of the IEEE International Confer-
ence on Web Services (ICWS’06), pages 205–212, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[9] A. E. Saddik. Performance measurements of web services-
based applications. IEEE Transactions on Instrumentation
and Measurement, 55(5):1599–1605, October 2006.

[10] N. Thio and S. Karunasekera. Automatic measurement of a
qos metric for web service recommendation. In ASWEC ’05:
Proceedings of the Australian conference on Software Engi-
neering, pages 202–211. IEEE Computer Society, 2005.

6

