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Stability of Asynchronous Feedback-Interconnected Dispiative Systems

M. Lopez-Martinez, C. Canudas-de-Wit and F.R. Rubio

Abstract— This paper presents a method to analyze the system original stability properties when the intercornimgc
stability of the feedback interconnection of a class of dispative  sjgnals are subject to delays. In addition, this transfeiona
linear systems when the sampling associated to the feedback has been shown, in the continuous-time case [5], [6], [7]

interconnection is asynchronous. We consider systems that , . . . .
are either Input/Output Strictly passive (IOSP), or systens to imply a certain duality between passivity (IOSP) ang

which have bounded L»-gains less than one. The analysis is gain (with v < 1) property. In these works, [5], [6], [7],

performed by using the concept of MAximum Sampling time the scattering transformation has been used in the context o
preserving Dissipation (MASD), for each interconnected sstem.  continuous time system with fix or variable delays induced
We investigate the impact of using the scattering transforration by the network, but the potential impact of an asynchronous

in the computation of the MASD, and we provide a numerical ling in th o sh in Fig. 2 has b |
algorithm (based on a set of LMI's) that allows to choose the sampling In the Scenario shown in Fig. as been scarcely

most suitable configuration for the interconnection. studied. One of the objectives of this paper is to study how
the scattering transformation impacts the maximum samgplin
time preserving the stability of its original interconneat
I. INTRODUCTION

This paper presents a method to analyze the stability 2 . s,
of the feedback interconnection of a class of dissipative y1 7 To W
linear systems when the sampling associated to the feedback y Scattering [ ¥ Seatering >
. . . A N - 2
interconnection is asynchronous. The considered scenario ' e “— O v
. A . . th Z 7%
is shown in Fig. 1. These types of interconnections ar

2k

present in many application fields such as remotely-opérate
systems [1]’ interconnected vehicle control SUb_SyStam’ Fig. 2. Interconnection by means of scattering. Scattenmay be used

more generally in component-based control design Whegg a mean to improve the system stability under asynchrosamspled
synchronous exchange of information is not feasible. interconnection.

The lost of the original system properties such as dissi-

yi U pation and small gain, under the sampling process has been
5 > i > ) studied before. In [8], [9], [10], [11] it has been shown that
e S O—= ? positive realness can be lost in the process of discratizati
t Tox Y2 and that in order to preserve the property of passivity in

sampled systems, it is necessary that the outputs of these

Fig. 1. Asynchronous Feedback Interconnection. Systamand system systems depends on their inputs, forcing the syst_em relativ
53, are feedback interconnected throughout the asynchrommaspossible  degree to be zero. In [12] the authors have introduced
time-varying, samplindly , and T . a Lyapunov-based theory for asynchronous linear systems
and shows how Lyapunov functions and controllers can be
It is well known that, the continuous time interconnectiorconstructed by solving linear matrix inequalities (LMhi$
of two systems in feedback form is stable when each systetimeory was extended to nonlinear systems in [13]. In [14],
posses certain passivity property, or satisfies the smail gahe interconnection of passive asynchronous systems was
condition (see [2], [3], [4]). As these two properties arestudied, and control design method (based in a set of LMI's)
fundamentally different (the first is phase shift sensibleile  was introduced. The LMI's were constructed using an Euler
the second depends on its gain characteristics), it is éapecapproximation of the derivative of the Lyapunov function,
that these conditions may behave differently when the dutpbeing the approach different from [15], [16], [17], where th
signals are sampled as shown in Fig. 1. In the framewompproximation is introduced in the model.
of this work, the maximum sampling time preserving the This paper extends the results in [14], dealing only with
stability of its original interconnection, may be diffetelo  passive system, to a more general dissipative systemagincl
each case. ing Lo-gain stable systems. The objective is also to devise a
Scattering transformation is a well known method whosgeneral method to find an optimal way to interconnect a dis-
change of variables is used to improve and/or to preserve thipative system that tolerates the maximum possible sample
time intervals. The method includes the possibility to use o
M. Lopez-Martinez and F.R. Rubio are with the Departmentystems  not the scattering transformation, and allows us to devise a
and automation, University of Seville, Spaih m r ubi o@si . us. es . . . .
C. Canudas-de-Wit is with the CNRS, at Gipsa-Lab, GrenoBtance numerical algorithm able to compute the Maximum sampling
carl os. canudas-de-w t @i psa-| ab.inpg.fr time preserving stability of such an interconnection.



The paper is organized as follows. In section IlI, weA. Passivity and L.-gain duality throughout scattering trans-
present the problem formulation for asynchronous feedbactormation

interconnected dissipative systems, and we also introducep way to analyze the stability of the interconnection of
some background on scattering theory with application ¢o thy, systems is via Passivity di»-gain. If both systems are
interconnection of dissipative systems. The main resubs apassive or have their respective-gain equal or less than
given in Section Il and IV. In Section Ill, we characteritet one, then the interconnection is stable. However, the two
conditions required to preserve dissipation for asynobusn properties are fundamentally different; a system can pvese

sampled systems, and in section IV, we provide necessagy passivity property while is..-gain varies, while another
conditions to guarantee_the_ stab|I|t_y of the interconmecti 5, preserve its small gain property while the passivity is
Our results are summarize in Section V. lost. This is illustrated by Fig.3.

Il. PROBLEM FORMULATION AND PRELIMINARIES

Consider the feedback interconnection of two linear sys
temsX; andX,, as shown in Fig. 1, with each syster), |
of the following form:

yi = Cizi+ Dy, 2 ' -
. . . .. . Fig. 3. Output passive system with differeht-gains (left). System with
subject to a general dissipative condition given by different passivity properties preserving ifs-gain (right).

Vi(w,u) < — (y Qiyi + u Riui + 2y, Sius) — piVi(z) (3)  Nevertheless, if the scattering transformation is used to
interconnect the two sub-systems as in Fig. 2, i.e.
whereV;(x) is a positive definite function, that can be chosen

for linear systems a¥;(z) = ;| P,x;. u = L(Z/{ +J), y= i(z,{ -J) (4)
We consider here two specific classes of systems charac- V2 V2

terized by the properties of matric€s, R; andS; (see [18], Whereu andy are respectively the input and the output of

[19]): each system, antf and J are the ones resulting from this

transformation, it has been shown (see Proposition 2.3.4 in
[2]) that: if and only if a system is IOSP from to y, then
[ Py oA _ the resulting transformed system hasLa-gain less than
Cz: Finite smaIIQLQ gain systemsy( < 1); @ = 1, § =0 one fromy to J . This result can be easily understood
andR = —y°1 . : : )
following the next reasoning which will be useful for our
The problem considered in this paper is to find, for eachext development.

system clasg’;, andC, the maximum sampling times, such  Assume that we want the transformed syst&nto have

that their dissipative and finite small gain original prajes L,-gain less than one. Therefore, it should hold that
are preserved, and thus to ensure that the interconnection

is stable. To this aim, we also consider the the possibility V4 pV < 1(Z/{TZ/{ -J'T) (5)
to use the scattering transformation in the setup shown in _2 ) )

Fig. 2, and compare this possibility to the one without th&ith p > 0. After substitution of (4) in (5), we get
transformation. Thls combination leads to four cases; A, B, V 4+ oV —uy < 0.

C and D shown in Table I.

Cy : Input/Output Strictly Passive systems (IOSP)- 61 >
0,S=—-3landR=¢l >0

This inequality is equivalent to say that there exists fiar t

TABLE | systemy, a positive definite functionyp (u, v),
DIFFERENT CASES TO BE STUDIED IN THE PAPER

wp(u,y) =y Qy+u' Ru+2y"Su>0 (6)
System class| System class|
C1 Ca where@ > 0 and R > 0, such that
without scattering A B )
with scattering C D V+pV —uy < —wp(u,y). @

) ) ) To prove this, we substitutg = Cz + Du and define
There is a certain duality between these cases; a system _ ;7 ;7] in the above inequality, where

that is IOSP (clas<C;) has its Ly-gain small than one
after using the scattering transformatiaf, and viceversa, —wp(u,y) = —§ ME < —e£7¢ (8)
a system withLy-gain small than one (clas$;) becomes \yith
IOSP after using the transformatich This is discussed in (
M =

. cTqQec c'QD+CTs
detail next. >0

D'QC+S8S"C R+D'QD+D'S+S5"D



ande = \pin(M) >0< @Q >0, R >0.Finally, Itis A. Discrete-time system description
important to remark that always it is posible to figd> 0
and R > 0 such thats > 0 is small enough, which means
that > must be an Input and Output Strictly Passive (IOSP
system.

We have to re-formulate our problem in the discrete time
amework starting with the discrete time representatibn o
e system®; in (1),

. L . Yk = A + B 15
B. Symmetry and modularity design in the scattering trans- ok Tht1 kK Rk (15)
formation yr = Cop+ Dug, (16)

As there are many possibilities to define the scatterin@hereAk = eATv and By, = A1 (A, — I)B. and the system
transformation, we wish to select one that make the transfogi in (12)

mation of one side independent to the other (modular design)
In addition, and from the original problem, as defined in 5
Fig. 1, the original system inter-connection requires that
y1 = ugz andu; = —yo. Then, any possible transformation
should then preserve this relation.

A good choice fulfilling such requirements is to define

ikt Thp1 = Agzy + Bl
T = ka + Duk. (17)

Next, the equivalent definition of the dissipative prop-
erty needs to be reformulated also in this discrete-time

1 1 f k. O ibl is t ke a discrete-ti
Uy = —(u1 +v1), Jo=—=(us —y1). 9 ramework. One possible way is to make a discrete-time
! \/5( 1t v ! \/5( =) ®) approximation of (3), or (13) according to the considered
for systemX;, and case, by using the approximation
1 1
Up = ——=(uz + y2), = ——=(uz — 10 7 o Vi1 — Vi
2 \/§(U2 y2), J2 \/§(U2 Y2) (10) Vo LT TR

Ty
for systemX,. It can be easily checked that this transforma- _ _ . _
tion give rise to the same transfer function, whereV;, = ;] Pay, and proceeding as in previous section
to write the associated discrete-time LMI, which can be used
— :ﬁ_ui—yi_l—Gi(S)

i Gils = = , (11) to find the maximum value fofy, preserving its dissipative
(®) U uity  1+Gi(s) property.
in any of the two possible system coordinates. Note that each of the two considered classes of system can
Note that the transformed systex in terms of the new pe then evaluated by the proper substitution of the assatiat
input/ and the new output/ can be written as (@, R, S, p) values.
Yi: i=Ax+BU
J=Cz+ DU (12) B Original system coordinates
i - 1 A
where A = A+ BC, B = B (%I"' D)’ The dissipation inequality (3) evaluated in the setup shown

C=—2(I+D)'CandD = (I+ D) (I — D). in Fig. 1, gives the following LMI
The dissipative properties of the transform system can be
expressed, using (3), as

. I . AT LA -2 Al LB,
V<—(J"QI +UTRU+2T"SU) - pV, (13) B 2 A, B;T_Jin +
where the new dissipative matrixes are defined as ( C:QC—FQP TCT(QD _,_TS) ] > <0
~ 1 D D'QD+ D D )~
0 = Lotrr-29 (D' Q+S5)C R+D QD+D'S+S
2 (18)
— 1
R = - R+2S
2 (@+ R +25) which in a compact notation writes % (7;) + Z < 0,
5 = 1 (RT _ QT) _ (14) with W (T},) being the first matrix sampling dependent, and

Z the matrix capturing the particular dissipative property o

the original system. Note that here the value$s@f R, S, p)

TIME PRESERVING DISSIPATION MASD , and P are given from the original system properties, and
then we only need to search for the maximum value of

In this section we aim to characterizeé the maximum, ~yhat yverifies the LMI. Note also that from continuity
sampling time that preserve the system original dissipatiop yne gojution, (there exist always a solution for infinjtel

properties. We will treat the general case of the dissipatiosma” T}), a limit solution for 7 > 0 will always exist.

property including the two class of systeis andCs, with - tpe gefinition of MASD, T} > 0, follows then from this
and without the scattering transformation described in th§,carvation. ie.

previous section. The results will be presented as theisalut

of a LMIs guaranteing that the sampled system will satisfy Ty = max {Ty : W(Tk) + Z < 0} (19)
the corresponding dissipative condition. Ty >0 -

IIl. CHARACTERIZATION OF THE MAXIMUM SAMPLING



C. Using the Scattering transformation 2) Underdamped Second Order System: This example

Our second option will be to perform a similar analysiscompares the MASD obtained for a dissipative systmf
in the transformed system coordinates after applying tHé@ssCz (Case B in Tab. 1), with and without the scattering
previously presented scattering transformation, in thepse transformation. Consider the system
given by Fig. 2. Proceeding as before, but now using (13), Ko

we get Gls) = s2 4 20w ns + w3 (22)

AT P A P AT P n»
Al A - AL B
Byl 4 Ay By 1-Bi with parametersk = 0.865, w, = 6 andd = 0.5. This

Figure 5-(a) shows th&,-gain versus the sampling time. It
(20) can be observed that the gain over-exceeds offie at 0.46.

The second option is to use the transform system using the
scattering matrix. Because the duality indicated in prasio
section, the transform systed belongs to clasg, (Case

Tf = max {1}, : W(Ty) + Z <0} (21) Cin Tab. I_). Figure 5-(b) shows_ the = min(Re{G(jw)})
Tx>0 as a function of the sampling time. It can be observed that

Remark 1. Note that both formulations (18) and (20) yield A > 0 for all sampling time, which shows that the best option
similar forms of the LMIs, but with matrices that inside have(in terms of stability) to interconnect this system is by the
different values. Therefore, the expected values for edch scattering transformation.
the MASD; Ty, and T} will be different.

AT A A AT(AT o systemX is not passive, but hak,-gain equal t00.999.
+((Q QC +pP CT(@D +5) )SO. 2

which in a compact _notation writes &8 (Ty) + Z < 0. The
definition of MASD T; > 0, follows as before, i.e.

1.2

D. Examples 115}
1) First-order IOSP system: This example compares the 7 Y
MASD obtained for a dissipative systemof classC, (Case l
A in Tab. I), with and without the scattering transformation 0051 : :
For this, consider the following input-output strictly gas 01 0.2
(IOSP) system,

| |
0.4 0.5

0.3
Sampling Time(s)

1 0.08F
= s+1 +d 0.07}

A 0.06F
0.05}

G(s)

and recall that the use of the scattering transformatiokgma
the transformed systei have L,-gain less than one (Case
D in table I). Figure 4 shows the evolution of tfg and 003
the T} for different values of the parametet It can be 01 02 03 04 05 06 07 08 09
noticed that the resulting MASD is larger when the scattgrin Sampling Time (5
transformation is used{ > T}). The example reveals how

the use of the scattering transformation improves over tHdd- 5. ~Evolution of dissipative properties. (a)- Evolutiof the L»-gain
one without transformation ~ of G(s) as a function of the sampling time, and (b)- Evolution)of=

min(Re{G(jw)}) as a function of the sampling time.

0.04f

Maximum Sample Time Preserving the Dissipative Property

‘ ‘ ‘ ‘ ‘ ‘ ‘ One of the paper goal is to select the formulation that
gives the larger MASD, while preserving the stability of the
interconnection. Stability issues under such intercotioec
framework are studied next.

A
2]

S
T

w
o
T

w
T

IV. STABILITY PROPERTIES OF ASYNCHRONOUS
SAMPLED SYSTEMS

N
T

=
3]
T

Let us assume that each systeim sampled using a zero
order hold, and as before, that the sampling time-intervals
15, andT; j are not constant but are multiple-integers. For
o s o 03 om  0i o0& os S|mpI|C|ty we consider the case in which, , = n,?Tl_,;?,

Feedforward Term d with ng € {1,2, ..., %mas}, but similar results hold if., is
of the formny, € {1,1/2,...,1/nmax}-

Maximum Sampling Time (sec)
N
0

[N
T

Fig. 4. Comparison of MASD for a first-order IOSP system witida

without scattering transformation 1The notion of system here designs, eitBgr, or &;, according with the

considered case.



A. Sability conditions in the original system coordinates The proposition can be particularized for every kind of

Proposition 1: Consider two dissipative systefs;, ful- ~ dissipative systems, i.e. in terms of passivity or in terrhs o
filling each one its respective dissipative inequality (£8)d Ly-gain. The proposition is also valid for systems intercon-
interconnected asynchronously as shown in Fig. 1. Assunfécted with the scattering transformation, as shown next.
that there exists for each systely, a MASD T}, i = 1,2,

verifying B. Sability conditions using scattering transformation
Top = niTh e < min{Ty, Ty}, Proposition 2: Consider two dissipative systefns;, ful-
Then, the following holds: filling each one its respective dissipative inequality (20)

. the feedback asynchronous interconnection of two dissgd interconnected asynchronously by means of a scattering
pative systems is asymptotically stable if the fonowingtransformatlon as shown in Fig. 2. Assume that there exists

LMl is satisfied for each systemy;, a MASD T}, i = 1,2, verifying
Q1 +Ry S1—S5 To = ni Ty < min{T},T5},
( ST -8 Ri+Qy ) % @3)

Then, the following holds:

« the feedback asynchronous interconnection of two dissi-
pative systems is asymptotically stable if the following

o If p; > 0,1 = 1,2, then the feedback interconnection
is also exponentially stable,

o For the two classe§;, andCs of considered systems, LMI is satisfied
the condition (23) holds, and hence the interconnection O+ Ry S 5T
is asymptotically stable. ¢l T2 D1 D) >0, 25
S =8 Ri+Q (25)
Proof: Assuming that there exigt’, i = 1, 2, verifying o If p; >0, i = 1,2, then the feedback interconnection
Ty k= niT1 . < min{T7,T5}, such that each sub-system s also exponentially stable,

3, fulfills its respective dissipative inequality, impliesath « For the two classe§;, andC; of considered systems,
that both systems must verify a dissipative property for the  the condition (25) holds, and hence the interconnection
smaller sampling timeT7 4, that is is asymptotically stable.

Y1:Vigr — Vi < _ L ) .
T T T Proof: The proof is similar to the one in Proposition 1,

< ~Tn(yra@uynn + ug pBuvag + 2y; pS1uns + p1Vik) - and then it is omitted. ]
Yo : Vo1 — Vo < Remark 2: Substituting (14) in (25) the LMI can be

< —Tl.,k(?/;,kazk + UQT,kR2U2,k + 2y2T,kS2U2.,k + paVay)  expressed in terms of the (_)riginal dissipat_ive properties o

) ) the systems with no scattering transformation.

As both systems are feedback interconnected it follows that rarark 3- The condition given by the two previous
uzk = yip @ndyop = —upy. Taking as a Lyapunov pranositions, can be also used in an inverse manner to find
function candidateVy, = Vi + Vo, the rate of change o the most appropriate maximum sampling time ensuring
of this functionAVy = Vi1 — Vi is given as stability. Besides, it may be possible also to use this aigly
AV = Vi1 — Vig + Vagq1 — Vai < (24) fi;control design along the same lines than in the works of
—Tl,k(yIleyl,k + quR1U1,k + 2yIk51U1,k +p1Vig + [14].

+uy  Qaur i + yi pRoyi e — 2uf 1 Soyr i + p2Va) <0

C. Example
introducingp =min(p1, p2) yields, Consider the interconnections of two systems of the form
AVp < —Tig [le,k(Ql + Ro)y1k (22) as described in the Example 11I-D.2. The goal of this

+ o7 (Ri + Qs) example is to evaluate by simulation the interconnection
ul’i ! QTul’k behavior for the two possible scenarios shown in Fig. 1 and
+ 2y 5 (S1 = Sy Jur g + ﬁVk] <0 Fig. 2, with the addition of a reference step signal applied

It follows straightforward that ifp = 0 asymptotic stability to the systemd; to better visualize the system transient

can be reached if the two systems are ZSD, and the conditifrePONSes: _ _
(23) hold, insuring thatAVj, < 0. The first simulation tests are done by the proper selection

The second item in the proposition is simple to check b f the sampling time validating the stability conditions:

observing that if5 > 0, then AVj, is an strictly decreasing 1+=0-3 S, which implies that}, < T;; < Ty’ Figure 6-(a)
function, and hence the interconnection become exponeffioWs the system outputs corresponding to the interconnec-
tially stable. tion in Figure. 1 (Case B in Tab. I), and Figure 6-(b) the

Finally, the last item is easy to check by simple substituSyStém output using the scenario shown in Figure 2 (Case

tion of the definition of the(Q;, R:, Sy, p;) in the equation C in Tab. I), including the scattering transformation. Ihca

(23). m Pe seen how the inclusion of the scattering transformation
increases the achieved performance.

2For completeness we also assume that both systems are z¢eo st
detectable (ZSD). 3Both systems are assumed to be zero state detectable (ZSD).
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not used, because longer sampling time intervals can thus be
tolerated.

We have presented stability conditions for the asyn-
chronous interconnection of two general dissipative sgyste
The conclusions are extended to the case of using the
scattering transformation in the interconnection. Finalle
have introduced a numeric procedure for choosing an optimal
way to interconnect a dissipative system.
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Fig. 6. Time-evolution of the system outpyt(t). Sampling time fulfilling
the stability conditions for both case&t) without the use of the scattering
transformation, andb) using the scattering transformation.

1
(a) | | | (1]
(2]

= (3]
=

0 I [4]

3?lme (seé? [5]

I
[N

—06f 1 (6]

(7]

0.2r B

3‘Efime (sec4.9 [8]

Fig. 7. Time-evolution of the system outpyt () with T} < T}, < Tg. [9]
The case of sampling time not fulfilling the stability comalits is shown in

(a) which does not the use of the scattering transformation. Cetse (b)

using the scattering transformation is stable and has a geddrmance. [10]

[11]

The second example, shown in Figure 7, repeat the previ-
ous simulation but now witl, = 0.55 s. This sample time
selection implies thatT(; < Ty < T). As the computation [12]
in the Example 11I-D.2 have shown, the use of the scatteringz;
matrices allows for larger sampling interval for stabilibyt
also an improvement in the system transient behavior.  [14]

V. CONCLUSIONS [15]

In this paper we have presented a method to analyze the
stability of the feedback interconnection of a class ofdine [16]
systems when the sampling is asynchronous. The analysis
has been made taking into account dissipatedness prapertig]
of the original continuous-time system.

We have characterized specific conditions in terms qfg
LMis allowing to compute the larger sampling time interval
preserving the original system dissipative propertiestifrat,
we have also considered the possibility of using the séager [19]
transformation. This transformation allows, in some cases
to improve the system stability over the situation where it i

possible.
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