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Abstract

We examine the problem of the existence of optimal deterministic stationary
strategies in two-players antagonistic (zero-sum) perfect information stochastic
games with finitely many states and actions. We show that the existence of
such strategies follows from the existence of optimal deterministic stationary
strategies for some derived one-player games. Thus we reduce the problem from
two-player to one-player games (Markov decision problems), where usually it is
much easier to tackle. The reduction is very general, it holds not only for all
possible payoff mappings but also in more a general situations where players’
preferences are not expressed by payoffs.

1 Introduction

Given a perfect-information zero-sum stochastic game with a finite set of states and
actions, the existence of deterministic and stationary optimal strategies is a useful
property. The existence of such simple strategies has been well-studied for several
examples of games and Markov decision processes.

For example, since there are finitely many such strategies, computability of the
values of a stochastic game is often a direct corollary of the existence of deterministic
and stationary optimal strategies.

Of course not in every game both players have optimal deterministic stationary
strategies, this depends on the transition rules of the game (the arena) and on the
way players’ payoffs are computed (the payoff function). Actually, for various payoff
functions like the mean-payoff function, the discounted payoff function and also parity
games, players have deterministic and stationary optimal strategies whatever is the
arena they are playing in.

We provide a result which is very useful for establishing existence of deterministic
and stationary optimal strategies: if for some fixed payoff function f , players have
optimal deterministic stationary strategies in every one-player stochastic game then
this is also the case for zero-sum two-player stochastic games with perfect informa-
tion.

In fact we prove a more general result. We show that the existence of optimal
deterministic stationary strategies for one player games implies the existence of such
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strategies for two-player games for each class of games satisfying certain closure prop-
erties. These closure properties are satisfied by the class of all games. We prove that
this result holds also for some subclasses of perfect information games, for example
deterministic arenas or arenas without cycles except self-loops.

The reduction is very general, it holds not only for all possible payoff mappings
but also in more a general situations where players’ preferences are not expressed by
payoffs but rather by preference orders on the set of probability measures over plays.

2 Stochastic Perfect Information Games

Notation. N = {1, 2, 3, . . .}, Z+ = N ∪ {0}. For a set X, |X| is the cadinality of
X, P(X) is the power set of X. M(X,F(X)) will stand for the set of probability
measures on a measurable space (X,F(X)), where F(X) is a σ-algebra of subsets of
X.

If X is finite or countably infinite then we always assume that F(X) = P(X) and
to simplify the notation we write M(X) rather than M(X,P(X)) to denote the set
of all probability measures over X. Moreover for σ ∈ M(X), supp(σ) = {x ∈ X |
σ(x) > 0} will denote the support of measure σ.

2.1 Arenas and games

We consider games that two players, Max and Min, play on an arena

A = (S,A,T, p,P,R, ρ)

consisting of the following ingredients:

• S and A are finite nonempty sets of, respectively, states and actions,

• T ⊆ S×A× S is the set of transitions

• p : T → (0, 1] is the transition probability function which assigns for each
transition (s, a, s′) ∈ T a positive probability p(s, a, s′) of transition from s to
s′ if a is executed at s. We extend p to all elements of S ×A × S by setting
p(s, a, s′) = 0 if (s, a, s′) 6∈ T.

• P : S → {Min,Max} is a mapping associating with each state s ∈ S the player
P(s) controling s.

• finally, R a set of rewards and ρ : T → R is a reward mapping assigning to
each transition (s, a, s′) a reward ρ(s, a, s′).

For each s ∈ S, we define AT(s) := {a ∈ A | ∃s′ ∈ S, (s, a, s′) ∈ T} to be the
set of actions available at s. We assume that all AT(s) are nonempty and, for each
action a ∈ AT(s),

∑
s′∈S p(s, a, s

′) = 1.
A infinite game is played by players Max and Min on A, at each stage player P(s)

controlling the current state s chooses an available action a ∈ AT(s) which results in
a transition to a state s′ (which can be equal to s) with probability p(s, a, s′). Let us
note that the set of rewards can be uncountable, for example R can be equal to the
set R of real numbers, however since the set of transition is finite each arena contains
only finitely many rewards.

In the case where all transition probabilities are equal either to 0 or to 1 the arena
is said to be deterministic. In a deterministic arena, given a state s and an action
a ∈ AT(s) available at s there is a unique state t such that (s, a, t) ∈ T.



2.2 Strategies

A finite history of length |h| = n in the arena A is a finite sequence h = s1a1s2 . . . sn−1an−1sn
alternating states and actions such that h starts and ends in a state, contains n states
and for every 1 ≤ i < n the triplet (si, ai, si+1) is a transition i.e. (si, ai, si+1) ∈ T.

The set of finite histories of length n is denoted Hn(A) and H(A) := ∪∞
i=1H

n is
the set of all finite histories. When A is clear from the context we simply write H
instead of H(A).

Let HMax be the subset of H consisting of finite histories with the last state
controlled by player Max.

A strategy of player Max is a mapping σ : HMax → M(A) which assigns to each
h ∈ HMax a probability measure over actions. We write σ[h](a) for the probability
that σ assigns to action a for h ∈ HMax. We assume that only actions available in
the last state of h can be chosen, i.e. supp(σ(h)) ⊆ AT(s) where s is the last state
of h.

Strategy σ is said to be deterministic if, for each h ∈ HMax there is an action
a ∈ A such that σ[h](a) = 1. We can identify the deterministic strategies of player
Max with the mappings σ : HMax → A such that for h ∈ HMax, σ(h) is the action
selected by σ if the current finite history is h.

A strategy σ is stationary if, for all h ∈ HMax, σ[h](a) = σ[s](a), where s is the
last state of h.

Deterministic stationary strategies of Max can be seen as mappings from the set
P−1(Max) of states controlled by Max to the set of actions such that σ[s] ∈ AT(s)
for s ∈ P−1(Max).

Strategies for player Min (deterministic, stationary or general) are definedmutatis
mutandis.

Σ(A) and T (A) will stand for the sets of strategies of Max and Min respectively,
and we use σ and τ (with subscripts or superscripts if necessary) to denote the
elements of Σ(A) and T (A) respectively.

A strategy profile (σ, τ) ∈ Σ(A)× T (A) (consisting of strategies for each player)
defines a mapping (σ ∪ τ) : H → M(A),

(σ ∪ τ)[h](a) =

{
σ[h](a) if the last state of h is controlled by player Max,

τ [h](a) if the last state of h is controlled by player Min.

The set of infinite histories H∞(A) consists of infinite sequences h = s1a1s2a2 . . .
alternating states and actions such that (si, ai, si+1) ∈ T for every i ≥ 1. Again we
write H∞ instead of H∞(A) when A is clear from the context.

For a finite history h = s1a1s2 . . . sn by h+ we denote the cylinder generated by
h which consists of all infinite histories having prefix h. An initial state s ∈ S and
a strategy profile (σ, τ) determine a probability measure P

σ,τ
A,s ∈ M(H∞,F(H∞)),

where F(H∞) is the σ-algebra generated by the set of all cylinders. When it is clear
from the context, we remove the arena from this notation and simply write P

σ,τ
s .

Given an initial state s1 and strategies σ, τ of players Max and Min we define the
probability P

σ,τ
s of h+:

P
σ,τ
s (h+) = Is=s1 · (σ ∪ τ)[s1](a1) · p(s1, a1, s2)·

(σ ∪ τ)[s1a1s2](a2) · p(s2, a2, s3) · · · ·

(σ ∪ τ)[s1a1s2 . . . sn−1](an−1) · p(sn−1, an−1, sn) (1)



where Is=s1 is the indicator function equal to 1 is s = s1 and 0 otherwise.
By the Ionescu Tulcea theorem [Nev71] there exists a unique probability measure

P
σ,τ
s ∈ M(H∞,F(H∞)) satisfying (1). Moreover the support of this probability

measure is the set H∞(A, s, σ, τ) of infinite histories whose every finite prefix has
positive probability i.e.

H∞(A, s, σ, τ) = {s1a1s2 · · · ∈ H∞(A) | ∀n, (σ ∪ τ)[s1a1s2 · · · sn](an) > 0} .

2.3 Players preferences

We extend the reward mapping ρ to finite and infinite histories: for h = s1a1s2a2s3a3s4 . . . ∈
H≤∞, we set ρ(h) = ρ(s1, a1, s2)ρ(s2, a2, s3)ρ(s3, a3, s4) . . ..

We assume that the set R∞ of infinite reward sequences is endowed with the
product σ-algebra F(R∞) := ⊗∞

i=1P(R) Then the mapping ρ defined above is a
measurable mapping from (H∞(A),F(H∞(A)) to (R∞,F(R∞)).

This implies that, for each probability measure P ∈ M(H∞,F(H∞)) with support
supp(P) included in H∞(A), the mapping ρ induces a probability measure ρP ∈
M(R∞,F(R∞)) such that, for U ∈ F(R∞),

ρP(U) := P(ρ−1(U)) .

We assume that players are interested only in infinite sequence of rewards obtained
during the play. This leads to the following definition.

Definition 1 (Outcomes and preference relations). Fix an arena A. For a given
strategy profile (σ, τ) and an initial state s the outcome of the game is the probability
measure

O(A, s, σ, τ) = ρPσ,τ
A,s ∈ M(R∞,F(R∞))

Given two set of strategies Σ ⊆ Σ(A) and T ⊆ T (A) We set

Os(A,Σ,T ) := {O(A, s, σ, τ) | (σ, τ) ∈ Σ× T }

to be the set of outcomes in A starting at s and using strategies from Σ and T and

O(A,Σ,T ) =
⋃

s∈S

Os(A,Σ,T )

the set of all possible outcomes using strategies from Σ and T .
A preference relation in A with strategies in Σ and T is a reflexive and transitive

binary relation � over O(A,Σ,T )

A preference relation � is total if for all outcomes P1,P2 ∈ O(A,Σ,T ), either
P1 � P2 or P2 � P1. Usually naturally arising preference relations are total but this
assumption is not necessary to formulate and prove our main result.

2.4 Games and optimal strategies

A game is a tuple Γ = (A,Σ,T ,�) composed of an arena, some set of strategies for
the players in A and a preference relation � in A with strategies in Σ and T . The
aim of Max is to maximize the obtained outcome with respect to �. We consider
only zero-sum games where the preference relation of player Min is the inverse of �.



A strategy σ ∈ Σ is a best response to a strategy τ ∈ T in Γ if for each state s
and each strategy σ′ ∈ Σ of Max,

O(A, s, σ′, τ) � O(A, s, σ, τ) .

Symmetrically, a best response of player Min to a strategy σ of Max is a strategy τ
such that for all strategies τ ′ ∈ T of Min,

O(A, s, σ, τ) � O(A, s, σ, τ ′) .

A pair of strategies σ♯ ∈ Σ, τ ♯ ∈ T is optimal if σ♯ is a best response to τ ♯ and τ ♯

a best response to σ♯, i.e. if, for each state s and all strategies σ ∈ Σ, τ ∈ T ,

O(A, s, σ, τ ♯) � O(A, s, σ♯, τ ♯) � O(A, s, σ♯, τ) . (2)

It is an elementary exercise to check that if (σ♯
1, τ

♯
1) and (σ♯

2, τ
♯
2) are pairs of

optimal strategies then (σ♯
1, τ

♯
2) and (σ♯

2, τ
♯
1) also are. As a consequence we say that

a single strategy σ♯ ∈ Σ itself is optimal whenever it belongs to some pair of optimal
strategies (σ♯, τ ♯), and similarly for τ ♯ ∈ T .

2.5 Deterministic games

For some applications, it is natural to require both arenas and strategies to be deter-
ministic. In this case, it is enough to express the preferences of the players between
infinite sequences of rewards because the probability measures defined by strategy
profiles are Dirac measures over R∞. For this purpose we define deterministic pref-
erence relations as follows.

Definition 2. Fix a deterministic arena A. For a given profile (σ, τ) of determin-
istic strategies and an initial state s there is a unique infinite history h(s, σ, τ) =
s1a1s2a2 . . . ∈ H∞ such that s = s1 and for every n,

(σ ∪ τ)(s1a1 . . . an−1sn) = an and

(sn, an, sn+1) ∈ T ,

and ρ(h(s, σ, τ)) ∈ R∞ is called the deterministic outcome of the game. A determin-
istic preference relation in A is a reflexive and transitive binary relation � over the
set of deterministic outcomes in A.

A deterministic game is a tuple Γ = (A,Σ,T ,�) composed of a deterministic
arena, the sets Σ and T of deterministic strategies in A and a deterministic preference
relation � of player Max. In a deterministic game strategies σ♯, τ ♯ are optimal if for
each state s and all deterministic strategies σ ∈ Σ, τ ∈ T ,

ρ(h(s, σ, τ ♯)) � ρ(h(s, σ♯, τ ♯)) � ρ(h(s, σ♯, τ)). (3)

3 Examples

Specifying players’ preferences by means of preference relations over measures allows
us to cover a wide range of optimality criteria. We illustrate this flexibility with four
examples.



In most application the preferences are rather defined by means of a payoff map-
ping.

A payoff mapping is a measurable mapping f from the set (R∞,B(R∞)) of infinite
reward sequences to the set (R,B(R)) of real numbers equipped with the σ-algebra
of Borel sets.

For each outcome ρPσ,τ
s we write ρPσ,τ

s (f) for the expectation of f ,

ρPσ,τ
s (f) :=

∫

R∞

fdP

where P := ρPσ,τ
s . We assume that f is integrable for all outcome measures ρPσ,τ

s .
We say that a preference relation � is induced by a payoff mapping f if for any

two outcomes P1 and P2, P1 � P2 iff P1(f) ≤ P2(f).
Mean-payoff games and parity games are two well-known examples of games with

preferences induced by payoff mappings.

Example 1 (Mean-payoff games). A mean-payoff game is a game played on arenas
equipped with a reward mapping ρ : T → R and the payoff of an infinite reward

sequence r1r2r3 . . . is given by lim sup
∑n

i=1
ri

n
.

Example 2 (Parity games). The class of games with many applications in computer
science and logic is the class of parity games [GTW02]. These games are played
on arenas endowed with a priority mapping β : S → Z+ and the payoff for an
infinite history is either 1 or 0 depending on whether lim supi β(si), the maximal
priority visited infinitely often, is odd or even, where si is the state visited at stage
i. Again the aim of players Max and Min is, respectively, to maximize/minimize the
probability

P
σ,τ
s (lim sup

n
β(sn) is even) .

The next example is a variant of parity games which is positional in deterministic
arena but in general not in stochastic arenas.

Example 3 (Simple parity games). A simple parity game is played in a parity game
arena, the aim of players Max and Min is, respectively, to maximize/minimize the
probability

P
σ,τ
s (sup

n
β(sn) is even) .

We continue with two examples where the preference relation is not induced by a
payoff over infinite reward sequences. The first is a well-known variant of mean-payoff
games of Example 1.

Example 4 (Mean-payoff games). The arena is equipped with a real valued reward

mapping ρ : T → R exactly like in Example 1. Let fn =
∑n

i=1
ρ(si,ai,si+1)

n
be the mean-

payoff over first n periods. For outcomes P1 and P2 we set P1 � P2 if lim supn P1(fn) ≤
lim supn P2(fn).

The next example is variant of the overtaking optimality criterion:

Example 5 (Overtaking). Let ρ : T → R be a real valued reward mapping. For
outcomes P1 and P2 we set P1 � P2 if there exists n such that for all k ≥ n,
P1(

∑k
i=1 ρ(si, ai, si+1)) ≤ P2(

∑k
i=1 ρ(si, ai, si+1)). This preference relation is not

total.



In the first three examples we associated with each outcome a real number which
allows us to order the outcomes. These real numbers can be used also to quantify how
much one outcome is better than another one for a given player but the question “how
much better” is irrelevant when we are interested in optimal strategies. Moreover, as
Example 5 shows, for some preference relations it is difficult to define a corresponding
payoff mapping.

4 From one-player to two-player games: the case of de-

terministic games and perfect-information stochastic

games

Our main result relies on three notions: one player games, subarenas and coverings.
Before stating our theorem in its full generality, we provide in this section a weaker
form of Theorem 9 which does not make use of the notions of subarenas and coverings
and is enough to cover most applications.

4.1 One-player arenas

We say that arena A = (S,A,T, p,P,R, ρ) is a one-player arena controlled by Max
if each state s controlled by player Min has only one available action. But for states
with one available action it is essentially irrelevant which player controls them and
we can as well assume that all states of such an arena A are controlled by Max.
Therefore games on one-player arenas controlled by player Max are nothing else but
Markov decision processes where the unique player Max wants to maximize (relative
to �) the resulting outcome.

One-player arenas controlled by player Min are defined in a symmetric way and
they can be identified with Markov decision processes where the aim of the unique
player Min is to minimize the outcome relative to �.

A one-player game is a game on a one-player arena A controlled either by Max
or by Min.

4.2 Specializations of the one-to-two theorem

Our main result reduces the problem of the existence of optimal deterministic sta-
tionary strategies in two-player games to the same problem for one-player games.

For the reader interested only in using our theorem for a particular class of games,
it may be sufficient to make use of one of the two following weak forms of our result,
which adresses specifically the cases of deterministic games and of perfect-information
stochastic games.

The general statement and its proof may be found in the next section.
We start with a specialization of our theorem to the class of deterministic games.

Theorem 3 (One-to-two theorem for deterministic games). Let R be a set of rewards
and � a reflexive and transitive relation on R∞. A deterministic game G = (AG,�G)
with rewards in R is said to be compatible with � if �G is the restriction of � to
the set of deterministic outcomes of G.

Assume that optimal deterministic stationary strategies exist in every determin-
istic one-player games compatible with �. Then optimal deterministic stationary
strategies exist in every deterministic two-player games compatible with �.



Remark that we do not require the transitive relation � to be total, in other words
� is simply assumed to be a partial preorder. This degree of generality is natural
because in this paper all arenas are assumed to be finite, hence any infinite history
arising in a game goes through finitely many different transitions and generates a
sequence of rewards that takes finitely many different values in R. Thus it is useless
to define u � v when either u or v takes infinitely many different letters from R.

When applied to the class of all perfect-information two-player games, our theo-
rem specializes as follows.

Theorem 4 (One-to-two theorem for games with perfect-information). Let R be a
set of rewards and � a reflexive and transitive relation on the set M(H∞,F(H∞))
of probability measures on H∞ equipped with the σ-algebra F(H∞) generated by the
set of all cylinders.

A game G = (AG,�G) with rewards in R is said to be compatible with � if �G

is the restriction of � to the set of outcomes of G.
Assume that optimal deterministic stationary strategies exist in every determin-

istic one-player games compatible with �. Then optimal deterministic stationary
strategies exist in every deterministic two-player games compatible with �.

Again remark that � is not assumed to be total, and actually we only need to
compare probability measures that arise as outcomes in an arena A with rewards
R (i.e. elements of O(A)). In particular, it is enough to define � for probability
measures whose support is included in the set of histories that take finitely many
different values in R.

Although the formulations of the two specializations of our theorem are quite
close, they apply to different situations. The first one adresses deterministic games,
where players are restricted to deterministic strategies and the preference relations
are defined only on infinite sequences of rewards, while the second one adresses the
full class of stochastic games where players use behavioural strategies and their prefer-
ences are expressed with respect to probability measures on infinite reward sequences.
As a matter of fact there is no way, at least to our knowledge, to deduce the second
theorem from the first one nor the contrary.

4.3 Examples revisited

Bierth [Bie87] shows that one-player games of Example 1 have optimal deterministic
stationary strategies. A more readable proof of this fact is given in [Ney04].

One-player parity games of Example 2 have also optimal deterministic stationary
strategies [dA97], thus the same holds for two-player parity games (the latter fact
was proved by several authors but we can see now that this is a consequence of the
result for one-player games).

Unlike parity games, one-player simple parity games are not positional, however
they become positional when played on deterministic arenas. This is discussed in the
next subsection.

One-player games of Example 4 have optimal deterministic stationary strategies
[Der62]. Theorem 4 allows us to deduce that the same holds for two-player games
with perfect information.

One-player games of Example 5 do not have optimal deterministic stationary
strategies. For example if the game is made of two simple cycles of length 4 on the
initial state, labelled with 0, 1, 1, 0 on one hand and 1, 0, 0, 1 on the other hand then
neither cycle dominates the other.



4.4 Application to deterministic games

A deterministic game is a game played on a deterministic arena with the additional
constraint that both players can use only deterministic strategies.

Even if deterministic games are usually much simpler to analyze than their
stochastic counterparts, this does not mean that they are always easy. They are
also interesting by themselves for at least two reasons. First of all deterministic
games prevail in computer science applications related to automata theory, logic and
verification [GTW02]. The second reason is that, concerning our main problem –
the existence of optimal deterministic stationary strategies, deterministic games can
differ from their stochastic counterparts.

It turns out that for the payoff mapping f associated to simple parity games, all
deterministic games with payoff f have optimal deterministic stationary strategies
but the same is not true for simple stochastic parity games. A suitable example was
shown to us by Florian Horn, see Figure 1.

Figure 1: A simple parity game with all states controlled by player Max. Each
transition t is labelled by a triple ((b, p), r) where b is an action, r the reward and p is
the transition probability of t. There is only one randomized action try, its execution
yields with probability 1/2 either the reward 1 or 2.

In the game in Figure 1 only the state w has two available actions try and idle.
The payoff of Max is determined in the following way. Let r = r0r1r2 · · · be the
infinite sequence of rewards, player Max obtains payoff 1 if this sequence contains at
least one occurence of reward 1 and no occurence of reward 2, otherwise Max gets
payoff 0. Clearly the optimal strategy for player Max is to execute the action try
exactly once. If the transition with reward 1 is taken then returning to w he should
always execute idle, if the transition with reward 2 is taken then he can do anything,
his payoff will be 0. Thus his maximal expected payoff is 1/2. This strategy is not
stationary since player Max should remember if it is the first visit to w or not.

On the other hand it is easy to see that all stationary strategies (randomized or
not) yield the expected payoff 0.

4.5 A remark on one-player stochastic games with sub-mixing payoff

functions

In light of Theorem 4 it is important to be able to decide if one-player games have
optimal deterministic stationary strategies. A convenient way to tackle this problem
was discovered by the first author [Gim07].

Let f : A∞ → R be a bounded (either from below or from above) and measurable.



We say that f is prefix-independent f does not depend on the finite initial seg-
ment, i.e. f(a1a2a3 . . .) = f(a2a3 . . .) for each infinite sequence a1a2a3 . . . ∈ A∞.
And f is said to be sub-mixing if

f(a1a2a3 · · · ) ≤ max{f(ai1ai2 · · · ), f(aj1aj2 · · · )},

for each infinite sequence a1a2a3 . . . ∈ A∞ of actions and each partition of N onto
two infinite sets I = {i1 < i2 < i3 < . . .}, J = {j1 < j2 < j3 < . . .}.

In [Gim07] it is proved that if f is prefix independent and sub-mixing then for each
one-player game Γ = (A,�) with the preference relation induced by f and such that
A is controlled by player Max, this player has an optimal deterministic stationary
strategy.

In order to prove that one-player games controlled by player Min have optimal
deterministic stationary strategies it suffices to verify that −f is sub-mixing. Thus
verifying that f and −f are prefix independent and sub-mixing can be used to prove
that two-player games with the preference relation induced by f have

Let us note that the payoff f of the parity game of Example 2 is prefix independent
and sub-mixing and the same holds for −f .

For the mean-payoff games of Example 1 the payoff f is sub-mixing, but −f is not
(replacing lim sup by lim inf we obtain the payoff mapping which is not sub-mixing).
However, for if players use deterministic stationary strategies then we a get a finite

state Markov chain and for the resulting outcome P we have lim sup
∑n

i=1
ρ(si,ai,si+1)

n
=

lim
∑n

i=1
ρ(si,ai,si+1)

n
almost surely, where si, ai, si+1) is the transition at stage i. This

can be used to prove that one-player games controlled by player Min have optimal
deterministic stationary strategies we can apply Theorem 4 once again.

5 From one- to two-player games: the general theorem

Our main result relies on the notions of subarenas and splits of an arena on a state.

5.1 Subarenas and subgames

An arena A
′ = (S,A,T′, p′,P,R, ρ′) is a subarena of another arena

A = (S,A,T, p,P,R, ρ) if T′ ⊆ T and p′ and ρ′ are the restrictions of p and ρ to T′.
Clearly the set T′ of transition of subarena A

′ satisfies the following conditions:

(a) if (s, a, s′) ∈ T′ and (s, a, s′′) ∈ T then (s, a, s′′) ∈ T′, i.e. for each state s and
each action a either we keep all transitions (s, a, ·) in A

′ or we remove them all,

(b) for each s ∈ S there exist a ∈ A and s′ ∈ S such that (s, a, s′) ∈ T′.

By definition of an arena, both conditions (a) and (b) are necessary for A′ to be an
arena: (a) is necessary for the sum of transition probabilities induced by a pair of
states and actions to be 1 and (b) because in each state there should be at least one
available action. They are also sufficient: if T′ ⊂ T satisfies (a) and (b) then there
exists a unique subarena A

′ of A having T′ as the set of transitions.
If A′ is a subarena of A then all finite histories consistent with A

′ are consistent
with A.

We say that a strategy σ in A is compatible with A
′ if its restriction to H(A′)

is a strategy in A
′. By definition of a strategy, this requires that σ restricted to



H(A′) only puts positive probability on actions available in A
′, i.e. formally for every

s1a2s2 · · · sn ∈ H(A′) and a ∈ A,

σ(s1a2s2 · · · sn)(a) > 0 =⇒ ∃t ∈ S, (sn, a, t) ∈ T′ .

This condition is also sufficient for σ to be compatible with A
′.

Conversely, every strategy σ′ in A
′ defined on H(A′) can be extended in an arbi-

trary way to a strategy in A defined on H(A). This implies the inclusion O(A′) ⊆
O(A) of the sets of outcomes. Therefore a preference � relation defined on outcomes
of A is also a preference on outcomes of A′.

Definition 5 (Subgame induced by a subarena). Let A
′ be a subarena of A and

G = (A,Σ,T ,�) a game played in A. The subgame of G induced by A
′ is the game

G′ = (A′,Σ′,T ′,�′) where:

i) Σ′ is the set of strategies obtained by restricting to H(A′) the strategies in Σ
compatible with A

′,

ii) T ′ is the set of strategies obtained by restricting to H(A′) the strategies in T
compatible with A

′,

iii) �′ is the restriction of � to O(A′,Σ′,T ′).

5.2 Split of an arena

Intuitively, the split of an arena A = (S,A,T, p,P,R, ρ) on a state ω ∈ S consists
in adding in the states of the arena an extra information: the last action chosen in
the state ω by the player controlling ω. This memory is reset each time ω is reached.
The state ω is called the separation state. An example is provided on Fig. 2.

A

s

ω
a, 12

a, 12

b, 1

a, 1

b, 1

Â

sa

ω

sb

a, 12

a, 12

b, 1

a, 1

b, 1

a, 1

b, 1

Figure 2: Splitting an arena. The arena A on the left handside has two states
{s, ω} and two action {a, b}, the transitions and their probabilities are represented
graphically, for example p(ω, a, s) = 1

2 . The split of A on the separation state ω is

the arena Â represented on the right handside.

Formally, the split of arena A on the separation state ω is the arena Â =
(Ŝ,A, T̂, p̂, P̂,R, ρ̂) defined as follows. The actions and rewards are the same in
both arenas A and Â. A state of Â is either the separation state ω or a pair made of
another state and an action available in the separation state, thus

Ŝ = {ω} ∪ (S \ {ω})×AT(ω) ,

whereAT(ω) denotes the set of actions available in state ω. For every state s ∈ S\{ω}
and action x ∈ AT(ω) we denote sx = (s, x). To make the notation uniform we set
ωx = ω i.e. ωx is just an alias name for ω. There is a natural mapping

π : Ŝ → S

which sends sx to s. The rewards and the controlling player are the same in states s
and sx: we set ρ̂ = ρ ◦ π and P̂ = P ◦ π. The transitions of Â and their probabilities



are inherited from A so that the second component of a state in Â keeps track of the
last action chosen in the separation state:

T̂ = {(ω, x, tx) | (ω, x, t) ∈ T} ∪ {(sx, a, tx) | (s, a, t) ∈ T ∧ s 6= ω} ,

for every (sx, a, ty) ∈ T̂ we set p̂(sx, a, ty) = p(s, a, t) .

The separation state ω separates the states of the split Â in the following sense.
For every action x ∈ AT(ω) we denote

Ŝx = (S \ {ω})× {x} .

Then Ŝ is partitioned in {ω} on one hand and the sets (Ŝx)x∈AT(ω) on the other
hand. By construction of the split:

Proposition 6 (Separation property). Every finite history of Â starting in Ŝx and
ending in Ŝy with x 6= y passes through ω.

5.3 Projecting histories and lifting strategies

Projecting histories H(Â)
s1a1s2 · · · sn

H(A)

π(s1)a1π(s2) · · · π(sn)

π

Lifting strategies Σ(Â)
σ ◦ π

Σ(A)

σ

Π

Fix x ∈ AT(ω)

Lifting histories H(Â)

φx(s) = sx

π ◦ φx is the identity.

H(A)
φx

Projecting strategies Σ(Â)
σ

Σ(A)

σ ◦ φx

Φx

Figure 3: Projections and liftings of histories and strategies and their characteris-
tic properties. Strategies of Min in T (A) and T (Â) are projected and lifted in a
symmetric way.

Let Â be the split of an arena A on some separation state ω.
There is a natural projection π of finite histories in the split Â to finite histories

in the original arena Â and conversely a natural lifting Π of strategies in the original
arena to strategies in the split. These mappings are represented on Fig. 3.

The projection π : H(Â) → H(A) is the natural extension to histories of the
mapping π : Ŝ → S which maps ω to ω and forgets the second component of other
states (∀sx ∈ Ŝ, π(sx) = s). For every finite history h = s1a1s2 · · · sn ∈ H(Â) in Â, we
set π (h) = π(s1)a1π(s2) · · · π(sn). That π (h) is a finite history in H(A) is immediate
from the definition of T̂.

The mapping Π : Σ(A) → Σ(Â) transforms a strategy σ ∈ Σ(A) to the strategy
Π(σ) = σ ◦ π called the lifting of σ from A to Â. Obviously σ ◦ π is a strategy in Â

because for every state sx ∈ Ŝ, the same actions are available in state sx of the arena
Â and in the state s of the arena A.

5.4 Lifting histories and projecting strategies

There is a canonical way to lift histories from the original arena to the splitted arena,
provided the initial state is fixed.

Proposition 7. Fix an action x ∈ AT(ω). For every state s of A and history
h ∈ H(A, s) starting in s there exists a unique history φx(h) ∈ H(Â, sx) such that
π(φx(h)) = h. F every state s ∈ S, φx(s) = sx and in particular φx(ω) = ω.
Moreover, for every for every state s ∈ S and strategies σ̂ ∈ Σ(Â) and τ̂ ∈ T (Â),

π ◦ φx is the identity on H(A) (4)

φx ◦ π is the identity on H(A, sx, σ̂, τ̂) . (5)



Proof. The mapping φx is defined inductively. Initially, φx maps s to sx. Assume
φx(h) is uniquely defined for some h ∈ H(A) and let a ∈ A and s ∈ S such that
has ∈ H(A). Let t be the last state of h. If t = ω then there is a unique y ∈ AT(ω)
such that (ω, a, sy) is a transition in Â: necessarily y = a. If t 6= ω then by induction,
according to property i) there exists b ∈ AT(ω) such that tb is the last state of φx(h).
There is a unique y ∈ AT(ω) such that (tb, a, sy) is a transition in Â: necessarily
y = b. Equations (4) holds by definition of φx. Equation (5) follows from an easy
induction.

Beware that the lifting of a finite history s1a1s2 · · · sn in A is in general different
from φx(s1)a1φx(s2) · · ·φx(sn) which actually may not even be a finite history in Â.
For example, in the arena of Fig. 2, the lifting of h = s, a, ω, b, s, b, s, b, s with respect
to a is φa(h) = sa, a, ω, b, sb, b, sb, b, sb and not sa, a, ω, b, sa, b, sa, b, sa.

The lifting of histories from A to Â can be used to project strategies from Â to
A. For this purpose for every action x ∈ AT(ω) we define Φx : Σ(Â) → Σ(A) as

Φx(σ) = σ ◦ φx .

Φx(σ) is a strategy in the arena A because for every state sx ∈ Ŝ, the same actions
are available in state sx of the arena Â and in the state s of the arena A.

6 The general one-to-two theorem

The general formulation of our theorem concerns classes of games that have three
properties: every subgame or split of a game of the class should also be in the class.
Moreover in every game in the class the set of strategies available for the players
should contain all the deterministic stationary strategies.

Definition 8. Let G = (Ai,Σi,Ti,�i)i∈I be a collection of games. We say that G:

• is subgame-closed if every subgame of a game in G is also in G.

• is split-closed if for every game G = (A,Σ,T ,�) in G, every state ω of A there
is a game Ĝ = (Â, Σ̂, T̂ ,�) in G, such that Â is the split of A on ω and for
every action x available in ω,

Π(Σ) ⊆ Σ̂ and Π(T ) ⊆ T̂ , (6)

Φx(Σ̂) ⊆ Σ and Φx(T̂ ) ⊆ T .

• contains all deterministic stationary strategies if in every game G = (A,Σ,T ,�
) in G, every deterministic stationary strategy in the arena A is contained in
Σ ∪ T .

The following theorem reduces the problem of the existence of optimal determin-
istic stationary strategies from two-player games to one-player games.

Theorem 9 (The one-to-two theorem). Let G be a subgame-closed and split-closed
collection of games, which contains all deterministic stationary strategies. If optimal
deterministic stationary strategies exist in every one-player game of G then optimal
deterministic stationary strategies exist in every two-player game of G.



In Section 4.2 are presented two specializations of Theorem 9 to deterministic
games (Theorem 3) and games with perfect-information (Theorem 4). In both cases a
transitive relation � is fixed, on eitherR∞ for deterministic games orM(H∞,F(H∞))
for games with perfect-information. Both results follow from an application of The-
orem 9 to the class of all games compatible with � (all deterministic games for
Theorem 3 and all games with perfect-information for Theorem 4).

7 From one-player games to two-player games – the proof

This section is devoted to the proof of Theorem 9. We start with some trivial though
crucial properties of projections and liftings.

Proposition 10 (Properties of liftings and projections). Let G = (A,Σ,T ,�) and
Ĝ = (Â, Σ̂, T̂ ,�) be two games on arenas A and Â such that Â is the split of A on
some separating state ω. Let x ∈ AT(ω) an action available in ω, let σ ∈ Σ and
τ ∈ T some strategies in G and σ̂ ∈ Σ̂ and τ̂ ∈ T̂ some strategies in Ĝ.

Lifting and projection preserve outcomes: for every state s ∈ S,

O(A, s, σ, τ) = O(Â, sx,Π(σ),Π(τ))

O(Â, sx, σ̂, τ̂) = O(A, s,Φx(σ̂),Φx(τ̂ )) .

Assume moreover that condition (6) of Definition 8 holds, i.e.

Π(Σ) ⊆ Σ̂ and Π(T ) ⊆ T̂ ,

Φx(Σ̂) ⊆ Σ and Φx(T̂ ) ⊆ T .

If σ̂ and τ̂ are optimal strategies in Ĝ from state sx then Φx(σ̂) and Φx(τ̂) are optimal
in G from state s. If σ̂ is deterministic and stationary and x = σ̂(ω) then also Φx(σ̂)
is deterministic and stationary.

Proof. We prove the first part of the proposition. Define

π∞ : H∞(Â, sx, σ̂, τ̂ ) → H∞(A, s,Φx(σ̂),Φx(τ̂))

as π∞(s1a1s2 · · · ) = π(s1)a1π(s2) · · · . Equivalently, π
∞(h) = limn π(hn) where hn is

the prefix of h of length 2n+ 1. First we show

P
Φ(σ̂),Φ(τ̂)
A,s = π∞P

σ̂,τ̂

Â,sx
(7)

Let h ∈ H(A, s,Φx(σ̂),Φx(τ̂)), remember that h+ ⊆ H∞(A, s) denotes the cylinder
of infinite histories starting with h. According to Proposition 7,

π−1
∞ (h+) = (φx(h))

+ .

By definition of P
Φ(σ̂),Φ(τ̂ )
A,s and since π ◦ φx is the identity on H(A), an easy in-

duction shows that P
Φ(σ̂),Φ(τ̂ )
A,s (h+) = P

σ̂,τ̂

Â,sx
((φx(h))

+). Finally P
σ̂,τ̂

Â,sx
(π−1

∞ (h+)) =

P
Φ(σ̂),Φ(τ̂)
A,s (h+). Since this holds for every cylinder h+ with h ∈ H(A, s,Φx(σ̂),Φx(τ̂ ))

we get (7).
The projection π∞ does not change the sequence of rewards thus ρ ◦ π∞ = ρ and

O(A, s,Φx(σ̂),Φx(τ̂)) = ρP
Φx(σ̂),Φx(τ̂)
A,s = ρπ∞P

σ̂,τ̂

Â,sx
= ρPσ̂,τ̂

Â,sx
= O(Â, sx, σ̂, τ̂)



which proves O(Â, sx, σ̂, τ̂) = O(A, s,Φx(σ̂),Φx(τ̂)). We can apply this equality to
σ̂ = Π(σ) and τ̂ = Π(τ) and since Φx ◦Π is the identity (Proposition 7) this implies
O(Â, sx,Π(σ),Π(τ)) = O(A, s, σ, τ) which terminates the proof of the first part of
the proposition.

We prove the second part of the proposition. Assume σ̂ and τ̂ are optimal in Â

from state sx. Let σ ∈ Σ and τ ∈ T be any strategies in G. We prove that

O(A, s, σ,Φx(τ̂ )) � O(A, s,Φx(σ̂),Φx(τ̂ )) � O(A, s,Φx(σ̂), τ) . (8)

By symmetry, it is enough to prove the left inequality:

O(A, s, σ,Φx(τ̂)) = O(A, s,Φx(Π(σ)),Φx(τ̂))

= O(Â, sx,Π(σ), τ̂ ))

� O(Â, sx, σ̂, τ̂))

= O(A, s,Φx(σ̂),Φx(τ̂)) .

The first equality holds because π ◦ φx is the identity on H(A) thus Φx ◦ Π is the
identity on Σ. The second equality was established in the first part of the proposition.
The inequality holds because (σ̂, τ̂ ) are optimal in Â and Π(σ) is a strategy in Ĝ since
Π(Σ) ⊆ Σ̂ by hypothesis. The last equality was established in the first part.

Since by hypothesis Φx(Σ̂) ⊆ Σ and Φx(T̂ ) ⊆ T then Φx(σ̂) and Φx(τ̂ )) are
strategies in Ĝ and according to (8) they are optimal in Ĝ.

Assume now that σ̂ is deterministic and stationary and x = σ̂(ω). On H(Ax)
the lifting φx is very simple, it sends every finite history s1a1s2 · · · sn ∈ H(Ax) to
φx(s1)a1φx(s2) · · · φx(sn). As a consequence, a simple induction shows that every
history consistent with Φ(σ̂) is a history of Ax and Φ(σ̂)(s1a1s2 · · · sn) = σ̂(φ(sn)).
Thus Φ(σ̂) is deterministic stationary.

Remark that the last property stated in Proposition 10 is specific to the case
where x = σ̂(ω), because in general projection turns deterministic strategies into
deterministic strategies but does not preserve stationarity. For example in the game
of Fig. 2, the stationary strategy σ in Â which plays b in sa and a in sb is not
stationary anymore once projected to A: when playing with Φω(σ), it is necessary to
remember which action was taken on the last visit to ω.

The proof of Theorem 9 is performed by induction on the size of the games in G.
The size of an arena A = (S,A,T, p,P,R, ρ) is defined as

size(A) =
∑

s∈S

(|AT(s)| − 1).

Note that size(A) ≥ 0 since each state has at least one available action. By extension,
the size of a game is the size of its arena.

The core of the inductive step in the proof of Theorem 9 is:

Lemma 11. Let G = (A,Σ,T ,�) and Ĝ = (Â, Σ̂, T̂ ,�) be two games such that Â is
the split of A on some state ω of A controlled by Max. Assume that:

i) at least two actions are available in state ω in arena A,

ii) there exists optimal deterministic stationary strategies in every subgame G′ of
Ĝ such that such that size(G′) < size(G),



iii) there exists optimal deterministic stationary strategies in every subgame G′ of
Ĝ which is a one-player game,

iv) every deterministic stationary strategy in the arena Â is a strategy in the game
Ĝ, i.e. Σ̂ ∪ T̂ contains all these strategies.

Then there exists a pair (σ♯, τ ♯) of optimal deterministic stationary strategies in Ĝ.

Proof. We set the usual notations:

A = (S,A,T, p,P,R, ρ) and Â = (Ŝ,A, T̂, p̂, P̂,R, ρ̂) .

For each action x ∈ AT(ω) let Âx be the subarena of Â induced by the set T̂x of
transitions:

T̂x = {(ω, x, sx) | (ω, x, s) ∈ T} ∪ {(sx, a, s
′
x) | (s, a, s

′) ∈ T and s 6= ω}. (9)

For every x ∈ AT(ω) let Ĝx = (Âx,Σx,Tx,�x) be the subgame of Ĝ induced by the
subarena Âx of Â.

We will make use several times of the following lemma, which relates the outcomes
in the games Ĝ and Ĝx when only the action x is played in ω.

Lemma 12. Let σ and τ be two strategies in Ĝ and x ∈ AT(ω). Assume that σ is
deterministic stationary and σ(ω) = x. Let σx and τx be the restrictions of σ and τ
to H(Âx). Then σx and τx are strategies in Ĝx. Moreover, for every state s ∈ S,

O(Â, sx, σ, τ) = O(Âx, sx, σx, τx) .

Proof. First, remark that σx and τx are strategies in Âx. For σx it is obvious: σx
is the deterministic stationary strategy in Ĝx which associates σ(sx) to sx ∈ Sx and
in particular σx(ω) = σ(ω) = x. For τx it is quite obvious as well, because every
state sx ∈ Sx controlled by player Min is different from ω thus the same actions are
available in sx in both arenas Â and Âx.

Therefore, σx and τx are strategies in the subgame Ĝx by definition of a subgame
(Definition 5).

According to the separation property (Proposition 6), since σ(ω) = x every
history consistent with σ and starting from Sx stays in Âx, thus H(Â, sx, σ, τ) =
H(Âx, sx, σx, τx). Since σ and σx on one hand and τ and τx on the other hand
coincide on H(Âx, sx, σx, τx) then P

σ,τ

Â,sx
= P

σx,τx

Âx,sx
. By definition of outcomes, this

terminates the proof of Lemma 12.

Note that, modulo the renaming of states, Âx is isomorphic to the subarena Ax of
A obtained by removing from AT(ω) all actions except x. According to hypothesis
i) |AT(ω)| ≥ 2 thus size(Âx) < size(A). According to hypothesis ii), in the game Ĝx

there are optimal deterministic stationary strategies

(σ♯
x, τ

♯
x) ∈ Σx × Tx .

Given these strategies, our aim is to construct a pair (σ♯, τ ♯) of optimal deterministic
stationary strategies in the game Ĝ.

Construction of τ ♯ Let τ ♯ ∈ T (Â) be the deterministic stationary strategy of
player Min in Â defined in the following way: for each s ∈ S such that P(s) = Min
and all x ∈ AT(ω),

τ ♯(sx) = τ ♯x(sx) . (10)



Construction of σ♯ The construction of σ♯ simply consists in selecting one of
the optimal deterministic stationary strategies (σx)x∈AT(ω) in Ĝx and extend it in a

natural way to Ĝ.
The point is to choose the right action x ∈ AT(ω). For that we consider the

subarena Â[τ ♯] of Â obtained from Â by removing all transitions (sx, a, s
′
x) controlled

by Min and such that a 6= τ ♯(sx). In other words, we restrain the moves of player
Min in Â[τ ♯] by forcing him to play actions according to strategy τ ♯. Therefore Â[τ ♯]
is a subarena of Â. We denote Ĝ[τ ♯] the subgame of Ĝ induced by Â[τ ♯].

Note that only player Max has freedom to choose actions in Â[τ ♯], thus Ĝ[τ ♯]
is a one-player game controlled by player Max. Therefore, according to hypothesis
iii) there are optimal deterministic stationary strategies (ζ♯, τ0) in the game Ĝ[τ ♯].
Actually τ0 is the unique trivial strategy of player Min in Â[τ ♯].

Since there is no restriction on actions of player Max in Â[τ ♯] then ζ♯ is also a
strategy in arena Â and by definition of a subgame, ζ♯ is a strategy in the game Ĝ:

ζ♯ ∈ Σ̂ . (11)

Let e ∈ AT(ω) = A
T̂
(ω) be the action chosen by ζ♯ in the state ω,

ζ♯(ω) = e . (12)

The stationary and deterministic strategy σ♯ : Ŝ → A is the extension of the
optimal deterministic stationary strategy σ♯

e : Ŝe → A from Ŝe to Ŝ defined by:

∀sx ∈ Ŝ, σ♯(sx) = σ♯
e(se) .

In particular, since e is the only action available in ω in the arena Âe,

σ♯(ω) = e . (13)

Strategies (σ♯, τ ♯) are optimal in Ĝ. According to hypothesis iv), the strategies
strategies σ♯ and τ ♯ are strategies in Ĝ. We show they are optimal in the game Ĝ if
the initial state belongs to Se, i.e. for all strategies σ ∈ Σ̂, τ ∈ T̂ and all s ∈ S,

O(Â, se, σ, τ
♯) � O(Â, se, σ

♯, τ ♯) � O(Â, se, σ
♯, τ) . (14)

We start with the proof of the right-handside of (14). Let τ be any strategy for
Min in Ĝ. Then its restriction τe to H(Âe) is also strategy in Âe because for every
state te ∈ Se controlled by player Min, te 6= ω thus exactly the same actions are
available in te in both arenas Â and Âe. The right inequality in (14) decomposes as:

O(Â, se, σ
♯, τ ♯) = O(Âe, se, σ

♯
e, τ

♯
e) �e O(Âe, se, σ

♯
e, τe) = O(Â, se, σ

♯, τ) .

The left and right equalities holds according to Lemma 12. The central inequality
holds because σ♯

e and τ ♯e are optimal in Ĝe and τe is a strategy in Ĝe, according to
Lemma 12 again. Since �e is a restriction of � we get the right-handside of (14).

Now we prove the left-handside of (14). Let σ be any strategy for Max in Ĝ. Then
the restriction σ′ of σ to H(Â[τ ♯]) is a strategy in Â[τ ♯] because the same actions are



available in every state s controlled by Max in both arenas Â and Â[τ ♯]. Let ζ♯e be
the restriction of ζ♯ to the states of Se. The left inequality in (14) decomposes as:

O(Â, se, σ, τ
♯) = O(Â[τ ♯], se, σ

′, τ0) (15)

� O(Â[τ ♯], se, ζ
♯, τ0) (16)

= O(Â, se, ζ
♯, τ ♯) (17)

= O(Âe, se, ζ
♯
e, τ

♯
e) (18)

�e O(Âe, se, σ
♯
e, τ

♯
e) (19)

= O(Âe, se, σ
♯, τ ♯) . (20)

The equality (15) holds because H(Â, se, σ, τ
♯) = H(Â[τ ♯], se, σ

′, τ0) and for every

finite history h ∈ H(Â, se, σ, τ
♯), Pσ,τ ♯

Â,se
(h+) = P

σ′,τ0

Â[τ ♯],se
(h+). The inequality (16) holds

because ζ♯ and τ0 are optimal in Ĝ[τ ♯] and by definition of subgames σ′ is a strategy
in the subgame Ĝ[τ ♯] and the preference order in Ĝ[τ ♯] is a restriction of �. The
equality (17) holds for similar reasons than (15) does. The equalities (18) and (20)

are consequences of Lemma 12. The inequality (19) holds because (σ♯
e, τ

♯
e) is a pair

of optimal strategies in Ĝe and ζ♯e is a strategy in Ĝe according to Lemma 12 again.
Since �e is a restriction of � we get the left inequality in (14).

Finally the two inequalities in (14) do hold and since σ♯ is deterministic stationary
the proof of Lemma 11 is over.

Proof of Theorem 9. We fix a subgame-closed and split-closed collection G of games
which contains all deterministic stationary strategies. We denote G = (Gi)i∈I and
for every i ∈ I we denote

Gi = (Ai,Σi,Ti,�i)i∈I .

The proof of Theorem 9 is carried out by induction on the size of Ai.
The case where size(Ai) = 0 for some i ∈ I is trivial. In this case there is a unique

action available in each state s of Ai, and each player has a unique strategy which is
optimal deterministic stationary.

Let G = (A,Σ,T ,�) a game in G such that size(G) > 0 and suppose that the
theorem holds for all games Gi in G whose arenas Ai satisfy size(Ai) < size(A).

In case G is a one-player game, then by hypothesis optimal deterministic station-
ary strategies exist for both players. In the sequel we assume G is not a one-player
game.

Therefore there exists a state ω in A such that AT(ω) ≥ 2. Assume first that

P(ω) = Max . (21)

Let Â be the split of A on ω. Then, since G is split-closed there exists a game
Ĝ = (Â, Σ̂, T̂ ,�) in G such that property (6) of Definition 8 holds for every action x
available in ω.

All conditions of Lemma 11 are satisfied for the games G and Ĝ: condition i) is
by choice of ω, condition ii) is the inductive hypothesis, and by hypothesis conditions
iii) and iv) hold for every game in G, in particular for Ĝ. As a consequence there
exists a pair (σ♯, τ ♯) of optimal deterministic stationary strategies in Ĝ.

Let e = σ♯(ω) be the action played by σ♯ in the separation state and Φe(σ
♯) the

lifting of σ♯ from Â to A with respect to action e. By choice of Ĝ, condition (6)



holds thus Φx(Σ̂) ⊆ Σ and Φe(σ
♯) is a strategy in G. According to the second part of

Proposition 10, the strategy Φe(σ
♯) is both optimal in G and deterministic stationary.

Therefore Max has an optimal deterministic stationary strategy in G.
To find an optimal deterministic stationary for player Min in G it suffices to

choose as a separation state a state controlled by player Min with at least two ac-
tions available. Such a state exists because G is not a one-player game. By a rea-
soning symmetric to the one developped previously we can construct another pair of
optimal strategies (σ⋆, τ⋆) in G, however now the strategy τ⋆ of player Min will be
deterministic stationary.

But in zero-sum games if we have two pairs of optimal strategies (σ♯, τ ♯) and
(σ⋆, τ⋆) then (σ♯, τ⋆) is also a pair of optimal strategies.

This ends the proof of Theorem 9.

Even if it has no bearing on the proof, we provide an explicit description of the
strategy Φe(τ

♯). Let h ∈ H(A) be any finite history consistent with A starting in a
state s and ending in a state s controlled by Min and ĥ = φe(h) the lifting of h in
H(Â) with respect to e. Then ĥ ends in a state sx ∈ π−1(s) for some x ∈ AT(ω). By

definition, π̂−1(τ ♯)[h] = τ ♯[ĥ] = τ ♯[sx] = τ ♯x[sx]. Informally, for a history ending in a

state s player Min chooses one of the actions τ ♯x[sx], x ∈ AT(ω).
The problem is to see which of these actions should be chosen and this depends

on the last state of ĥ. Thus the question is if we can obtain the last state of ĥ
without explicitly calculating the whole lifted history ĥ? If h never visits the state ω
then, since ĥ begins in a state of Ŝe this history can only end in the state se ∈ Ŝe,
i.e π̂−1(τ ♯)[h] = τ ♯e(se). If h visits ω then all depends on the action chosen by Max
during the last visit to ω, if this action is x ∈ AT(ω) then the last state of ĥ is sx
and therefore π̂−1(τ ♯)[h] = τ ♯x(sx). Notice that the strategy π̂−1(τ ♯) is not stationary,
however we only need a finite amount of memory to implement it, it is sufficient to
know all strategies τ ♯x, the last state s of h, whether since the begining of the game
the state ω was visited or not and if it was visited then what action x ∈ AT(ω) was
taken during the last visit to ω.

8 Final remarks

Theorem 9 gives a sufficient condition for the existence of optimal deterministic sta-
tionary strategies for a given two-player game.

The examples in Section 3 were given only to illustrate the method, we do not
think that reestablishing known results is of particular interest.

Let us note that in recent years, attempting to capture subtle aspects of computer
systems behaviour, several new games were proposed, as typical example we can
cite [CHJ05] combining parity and mean-payoff games. We hope that Theorem 9
and its deterministic counterpart Theorem 3 will prove useful in the study of such
new games.

Finally, note that an improved version of the results is in preparation, for a class
of games both more general and simpler, where probabilities are abstracted as non-
determinism.
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