Asymptotic behavior of the numbers of runs and microruns

Mathieu Giraud 1, 2, *
* Auteur correspondant
2 SEQUOIA - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe
Abstract : The notion of run (also called maximal repetition) allows a compact representation of the set of all tandem periodicities, even fractional, in a string. Since the work of Kolpakov and Kucherov (1998), it is known that rho(n), the maximum number of runs in a string, is linear in the length n of the string. Between 2003 and 2008, lower bounds haven been provided by Franek et al. and Matsubara et al. (0.9445... n) and upper bounds have been provided by Rytter, Puglisi et al., and Crochemore and Ilie (1.048n). However, very few properties are known for the rho(n)/n function. We show here by a simple argument that limit rho(n)/n exists and that this limit is never reached. We further study the asymptotic behavior of rho_p(n), the maximal number of runs with period at most p. Finally, we provide the first exact limits for some microruns.
Type de document :
Article dans une revue
Information and Computation, Elsevier, 2009, 207 (11), pp.1221-1228. 〈10.1016/j.ic.2009.02.007〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00438214
Contributeur : Mathieu Giraud <>
Soumis le : jeudi 3 décembre 2009 - 07:44:16
Dernière modification le : jeudi 21 février 2019 - 10:52:49
Document(s) archivé(s) le : mardi 16 octobre 2012 - 15:15:29

Fichier

ic.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mathieu Giraud. Asymptotic behavior of the numbers of runs and microruns. Information and Computation, Elsevier, 2009, 207 (11), pp.1221-1228. 〈10.1016/j.ic.2009.02.007〉. 〈hal-00438214〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

265